Including Additional Field Effect Transistor (e.g., Sense Or Access Transistor, Etc.) Patents (Class 438/258)
  • Patent number: 8409950
    Abstract: An embodiment of a method is disclosed to integrate silicon oxide nitride oxide silicon (SONOS) non-volatile memory (NVM) into a standard sub-90 nm complementary metal oxide semiconductor (CMOS) semiconductor foundry process flow. An embodiment of the method adds a few additional steps to a standard CMOS foundry process flow and makes minor changes to the rest of the baseline CMOS foundry process flow to form a new process module that includes both CMOS devices and an embedded SONOS NVM. An embodiment of the method utilizes new material sets (which are not utilized at larger nodes) that enhance NVM performance by improving charge tunneling behavior and reducing leakage currents. Furthermore, an embodiment of the method integrates CMOS with SONOS NVM at ever-shrinking dimensions while enhancing the NVM performance, without performing extra, costly processing steps.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: April 2, 2013
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Patrick Bruckner Shea, Dennis Adams, Michael Rennie, Joseph Terence Smith
  • Patent number: 8410524
    Abstract: Affords Group III nitride semiconductor devices in which the leakage current from the Schottky electrode can be reduced. In a high electron mobility transistor 11, a supporting substrate 13 is composed of AlN, AlGaN, or GaN, specifically. An AlYGa1?YN epitaxial layer 15 has a full-width-at-half maximum of (0002) plane XRD of 150 sec or less. A GaN epitaxial layer 17 is provided between the gallium nitride supporting substrate and the AlYGa1?YN epitaxial layer (0<Y?1). A Schottky electrode 19 is provided on the AlYGa1?YN epitaxial layer 15. The Schottky electrode 19 constitutes a gate electrode of the high electron mobility transistor 11. The source electrode 21 is provided on the gallium nitride epitaxial layer 15. The drain electrode 23 is provided on the gallium nitride epitaxial layer 15.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: April 2, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tatsuya Tanabe, Kouhei Miura, Makoto Kiyama, Takashi Sakurada
  • Publication number: 20130075803
    Abstract: Flash-to-ROM conversion is performed by converting single transistor flash memory cells to single transistor ROM cells. An S-Flash memory cell is converted to a programmed ROM cell by introducing a threshold voltage implant into the channel region of the S-Flash memory cell. Alternately, an S-Flash memory cell is converted to a programmed ROM cell by introducing a threshold voltage implant into a substrate region in alignment with an edge of the gate electrode of the S-Flash memory cell. The width of the mask through which this threshold voltage implant is performed can be varied, such that the threshold voltage implant region can have different dopant concentrations, thereby allowing multiple bits to be represented by the programmed ROM cell. In another embodiment, a Y-flash memory cell is converted to a programmed ROM cell by adjusting the length of a floating gate extension region of the Y-Flash memory cell.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 28, 2013
    Applicant: Tower Semiconductor Ltd.
    Inventors: Itzhak Edrei, Yakov Roizin
  • Patent number: 8404541
    Abstract: A semiconductor device includes a substrate and a memory cell formed on the substrate. The memory cell includes a word line. The semiconductor device also includes a protection area formed in the substrate, a conductive structure configured to extend the word line to the protection area, and a contact configured to short the word line and the protection area.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: March 26, 2013
    Assignee: Spansion LLC
    Inventors: Wei Zheng, Jean Yang, Mark Randolph, Ming Kwan, Yi He, Zhizheng Liu, Meng Ding
  • Patent number: 8394698
    Abstract: A NAND flash memory array, an operating method and a fabricating method of the same are provided. The NAND flash memory array has a cut-off gate line under a control gate in order to operate two cells having vertical channels independently with one control gate (i.e., a shared word line). The memory cell area is reduced considerably compared to the conventional vertical channel structure, and is better for high integration. A shared cut-off gate turn off is made during a programming operation and prevents programming the opposite cell by a self-boosting effect. It is possible to shield electrically with a shared word line (a control gate) during a reading operation, and minimizes the effect of storage condition of the opposite cell. Also, the NAND flash memory array can be fabricated by using the conventional CMOS process.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: March 12, 2013
    Assignee: Seoul National University Industry Foundation
    Inventors: Byung-Gook Park, Seong Jae Cho
  • Patent number: 8383478
    Abstract: Nonvolatile memory cells and methods of forming the same are provided, the methods including forming a first conductor at a first height above a substrate; forming a first pillar-shaped semiconductor element above the first conductor, wherein the first pillar-shaped semiconductor element comprises a first heavily doped layer of a first conductivity type, a second lightly doped layer above and in contact with the first heavily doped layer, and a third heavily doped layer of a second conductivity type above and in contact with the second lightly doped layer, the second conductivity type opposite the first conductivity type; forming a first dielectric antifuse above the third heavily doped layer of the first pillar-shaped semiconductor element; and forming a second conductor above the first dielectric antifuse.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: February 26, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Scott Brad Herner, Maitreyee Mahajani
  • Patent number: 8383479
    Abstract: Nanostructure-based charge storage regions are included in non-volatile memory devices and integrated with the fabrication of select gates and peripheral circuitry. One or more nanostructure coatings are applied over a substrate at a memory array area and a peripheral circuitry area. Various processes for removing the nanostructure coating from undesired areas of the substrate, such as target areas for select gates and peripheral transistors, are provided. One or more nanostructure coatings are formed using self-assembly based processes to selectively form nanostructures over active areas of the substrate in one example. Self-assembly permits the formation of discrete lines of nanostructures that are electrically isolated from one another without requiring patterning or etching of the nanostructure coating.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: February 26, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, James K. Kai, Masaaki Higashitani, Takashi Orimoto, George Matamis, Henry Chien
  • Patent number: 8377756
    Abstract: In one embodiment, the invention comprises a MOSFET comprising individual MOSFET cells. Each cell comprises a U-shaped well (228) (P type) and two parallel sources (260) (N type) formed within the well. A plurality of source rungs (262) (doped N) connect sources (260) at multiple locations. Regions between two rungs (262) comprise a body (252) (P type). These features are formed on an N-type epitaxial layer (220), which is formed on an N-type substrate (216). A contact (290) extends across and contacts a plurality of source rungs (262) and bodies (252). Gate oxide and a gate contact overlie a leg of a first well and a leg of a second adjacent well, inverting the conductivity responsive to a gate voltage. A MOSFET comprises a plurality of these cells to attain a desired low channel resistance. The cell regions are formed using self-alignment techniques at several states of the fabrication process.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: February 19, 2013
    Assignee: General Electric Company
    Inventors: Stephen Daley Arthur, Kevin Matocha, Peter Sandvik, Zachary Stum, Peter Losee, James McMahon
  • Publication number: 20130037877
    Abstract: A split gate memory cell is fabricated with a fin structure between a memory gate stack and a select gate. Embodiments include a first channel region under the memory gate stack and a second channel region under the select gate.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Applicant: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Shyue Seng (Jason) Tan, Eng Huat Toh, Elgin Quek
  • Patent number: 8372712
    Abstract: In a memory device and a method of manufacturing the memory device, a source contact connected to a common source line may be formed on a drain region instead of a source region. A transistor having a negative threshold voltage may be formed between the source region and the drain region. A channel of the transistor may be formed. Because the source contact is formed on the drain region, the size of the source region may be reduced. An integration degree of the memory device may be improved. A control gate may linearly extend in a second direction because the source contact is not formed on the source region.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: February 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Wook-Hyoung Lee
  • Patent number: 8361821
    Abstract: In one aspect of this invention, a pixel structure includes a scan line formed on a substrate and a data line formed over the substrate defining a pixel area, a switch formed inside the pixel area on the substrate, a shielding electrode having a first portion and a second portion extending from the first portion, and formed over the scan line, the data line and the switch, where the first portion is overlapped with the switch and the second portion is overlapped with the data line, and a pixel electrode having a first portion and a second portion extending from the first portion, and formed over the shielding electrode in the pixel area, where the first portion is overlapped with the first portion of the shielding electrode so as to define a storage capacitor therebetween and the second portion has no overlapping with the second portion of the shielding electrode.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: January 29, 2013
    Assignee: AU Optronics Corporation
    Inventors: Hsiang-Lin Lin, Ching-Huan Lin, Chih-Hung Shih, Wei-Ming Huang
  • Patent number: 8362538
    Abstract: An object is to provide a memory device which does not need a complex manufacturing process and whose power consumption can be suppressed, and a semiconductor device including the memory device. A solution is to provide a capacitor which holds data and a switching element which controls storing and releasing charge in the capacitor in a memory element. In the memory element, a phase-inversion element such as an inverter or a clocked inverter includes the phase of an input signal is inverted and the signal is output. For the switching element, a transistor including an oxide semiconductor in a channel formation region is used. In the case where application of a power supply voltage to the phase-inversion element is stopped, the data is stored in the capacitor, so that the data is held in the capacitor even when the application of the power supply voltage to the phase-inversion element is stopped.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: January 29, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Shunpei Yamazaki
  • Patent number: 8361863
    Abstract: A method of forming an embedded DRAM cell having multiple-thickness gate dielectrics. An oxidation-enhancing dopant is selectively implanted into a well region in an area that is exposed by a first mask. A thermal oxidation step simultaneously produces the field dielectric for two distinct devices each having a different oxide thickness. The method is applicable to quad-density DRAM cells using fewer oxidation steps. The method is also applicable to planar DRAM cells, and does not require increasing the number of masks during the fabrication of planar DRAM cells.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: January 29, 2013
    Assignee: MoSys, Inc.
    Inventor: Jeong Y. Choi
  • Publication number: 20130020626
    Abstract: A device having a substrate prepared with a memory cell region having a memory cell is disclosed. The memory cell includes an access transistor and a storage transistor. The access transistor includes first and second source/drain (S/D) regions and the storage transistor includes first and second storage S/D regions. The access and storage transistors are coupled in series and the second S/D regions being a common S/D region. An erase gate is disposed over the common S/D region. A program gate is disposed over the first storage S/D region. Such an arrangement of the memory cell decouples a program channel and an erase channel.
    Type: Application
    Filed: July 24, 2011
    Publication date: January 24, 2013
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Shyue Seng TAN, Eng Huat TOH, Elgin QUEK, Yanzhe TANG
  • Publication number: 20130017655
    Abstract: Devices can be fabricated using a method of growing nanoscale structures on a semiconductor substrate. According to various embodiments, nucleation sites can be created on a surface of the substrate. The creation of the nucleation sites may include implanting ions with an energy and a dose selected to provide a controllable distribution of the nucleation sites across the surface of the substrate. Nanoscale structures may be grown using the controllable distribution of nucleation sites to seed the growth of the nanoscale structures. According to various embodiments, the nanoscale structures may include at least one of nanocrystals, nanowires, or nanotubes. According to various nanocrystal embodiments, the nanocrystals can be positioned within a gate stack and function as a floating gate for a nonvolatile device. Other embodiments are provided herein.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 17, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, D. Mark Durcan
  • Patent number: 8349686
    Abstract: To reduce capacitance between each adjacent two word lines in a semiconductor memory device, a first insulating film is formed, with a first gate insulating film thereunder, in an interstice between gates respectively of each adjacent two memory transistors, and in an interstice between a gate of a selective transistor and a gate of a memory transistor adjacent thereto. Additionally, a second insulating film is formed on the first insulating film, sides of the gate of each memory transistor, and a side, facing the memory transistor, of the gate of the selective transistor. A third insulating film is formed parallel to a semiconductor substrate so as to cover a metal silicide film, the first and second insulating films and fourth and fifth insulating films. Avoid part is provided in the interstice between each adjacent two gates of the memory transistors, and in the interstice between the gate of the selective transistor and the gate of the memory transistor adjacent thereto.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: January 8, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Nitta
  • Patent number: 8350344
    Abstract: Provided are a semiconductor device and a method of fabricating the same. The semiconductor device may include a charge storage structure and a gate. The charge storage structure is formed on a substrate. The gate is formed on the charge storage structure. The gate includes a lower portion formed of silicon and an upper portion formed of metal silicide. The upper portion of the gate has a width greater than that of the lower portion of the gate.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: January 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Min Son, Woon-Kyung Lee
  • Patent number: 8344443
    Abstract: A single-poly non-volatile memory includes a PMOS select transistor (210) formed with a select gate (212), and P+ source and drain regions (211, 213) formed in a shared n-well region (240), a serially connected PMOS floating gate transistor (220) formed with part of a p-type floating gate layer (222) and P+ source and drain regions (221, 223) formed in the shared n-well region (240), and a coupling capacitor (230) formed over a p-well region (250) and connected to the PMOS floating gate transistor (220), where the coupling capacitor (230) includes a first capacitor plate formed with a second part of the p-type floating gate layer (222) and an underlying portion of the p-well region (250).
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: January 1, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weize Chen, Richard J. De Souza, Xin Lin, Patrice M. Parris
  • Patent number: 8338251
    Abstract: One or more embodiments of the invention relate to a method comprising: treating a fin of a first n-channel access transistor in a static random access memory cell to have a lower charge carrier mobility than a fin of a first n-channel pull-down transistor in a first inverter in the memory cell, the first n-channel access transistor being coupled between a first bit line and a first node of the first inverter; and treating a fin of a second n-channel access transistor in the memory cell to have a lower charge carrier mobility than a fin of a second n-channel pull-down transistor in a second inverter in the memory cell, the second n-channel access transistor being coupled between a second bit line and a second node of the second inverter.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: December 25, 2012
    Assignee: Infineon Technologies AG
    Inventors: Joerg Berthold, Christian Pacha, Klaus von Arnim
  • Patent number: 8338252
    Abstract: A non-volatile semiconductor memory device is disclosed, which comprises a memory cell unit including at least one memory cell transistor formed on a semiconductor substrate and having a laminated structure of a charge accumulation layer and a control gate layer, and a selection gate transistor one of the source/drain diffusion layer regions of which is connected to a bit line or a source line and the other of the source/drain diffusion layer regions of which is connected to the memory cell unit. The shape of the source diffusion layer region of the selection gate transistor is asymmetrical to the shape of the drain diffusion layer region thereof below the selection gate transistor.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: December 25, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshitake Yaegashi
  • Patent number: 8328701
    Abstract: The invention is an inclined dome shaped exercise platform. The upper surface of the platform of the invention is large and shallow so that a user can comfortably lie on it. The dome is made of a stiff material and it is preferably covered with a layer of foam, which is in turn covered with decorative upholstery material. Embodiments of the platform of the invention include grasping means to assist in performing the exercises.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: December 11, 2012
    Inventor: Doron Dahary
  • Patent number: 8330210
    Abstract: A blocking dielectric engineered, charge trapping memory cell includes a charge trapping element that is separated from a gate by a blocking dielectric including a buffer layer in contact with the charge trapping element, such as silicon dioxide which can be made with high-quality, and a second capping layer in contact with said one of the gate and the channel. The capping layer has a dielectric constant that is higher than that of the first layer, and preferably includes a high-? material. The second layer also has a conduction band offset that is relatively high. A bandgap engineered tunneling layer between the channel and the charge trapping element is provided which, in combination with the multilayer blocking dielectric described herein, provides for high-speed erase operations by hole tunneling. In an alternative, a single layer tunneling layer is used.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: December 11, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Sheng-Chih Lai, Hang-Ting Lue, Chien-Wei Liao
  • Patent number: 8324052
    Abstract: A nonvolatile memory device includes a string selection gate and a ground selection gate on a semiconductor substrate, and a plurality of memory cell gates on the substrate between the string selection gate and the ground selection gate. First impurity regions extend into the substrate to a first depth between ones of the plurality of memory cell gates. Second impurity regions extend into the substrate to a second depth that is greater than the first depth between the string selection gate and a first one of the plurality of memory cell gates immediately adjacent thereto, and between the ground selection gate and a last one of the plurality of memory cell gates immediately adjacent thereto. Related fabrication methods are also discussed.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: December 4, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Yean Oh, Jai-Hyuk Song, Chang-Sub Lee, Chang-Hyun Lee, Hyun-Jae Kim
  • Patent number: 8324047
    Abstract: In a specific embodiment, the present invention provides an integrated circuit device. The device includes a base substrate having a surface region and an interlayer dielectric material overlying the surface region. The device also has a thickness of single crystal silicon material overlying the interlayer dielectric material. In one or more embodiments, the thickness of single crystal silicon material has a front region and a backside region. The front region faces the interlayer dielectric material. In a preferred embodiment, the device has a plurality of transistor devices spatially arranged in the thickness of silicon crystal silicon material. Each of the transistor devices has a gate structure within a region of the interlayer dielectric material. The device also has an enclosure housing configured to form a cavity between the backside region of the thickness of silicon material and an upper inside region of the enclosure housing.
    Type: Grant
    Filed: November 13, 2010
    Date of Patent: December 4, 2012
    Assignee: MCube Inc.
    Inventor: Xiao “Charles” Yang
  • Publication number: 20120299079
    Abstract: Field Side Sub-bitline NOR-type (FSNOR) flash array and the methods of fabrication are disclosed. The field side sub-bitlines of the invention formed with the same impurity type as the memory cells' source/drain electrodes along the two sides of field trench oxide link all the source electrodes together and all the drain electrodes together, respectively, for a string of semiconductor Non-Volatile Memory (NVM) cells in a NOR-type flash array of the invention. Each field side sub-bitline is connected to a main metal bitline through a contact at its twisted point in the middle. Because there are no contacts in between the linked NVM cells' electrodes in the NOR-type flash array of the invention, the wordline pitch and the bitline pitch can be applied to the minimum geometrical feature of a specific technology node. The NOR-type flash array of the invention provides at least as high as those in the conventional NAND flash array in cell area density.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 29, 2012
    Inventor: Lee WANG
  • Patent number: 8304310
    Abstract: The disclosure pertains to a semiconductor device and its manufacture method, the semiconductor device including non-volatile memory cells and a peripheral circuit including field effect transistors having an insulated gate. A semiconductor device and its manufacture method are to be provided, the semiconductor device having memory cells with a high retention ability and field effect transistors having an insulated gate with large drive current. The semiconductor device has a semiconductor substrate (1) having first and second areas (AR1, AR2), a floating gate structure (4, 5, 6, 7, 8) for a non-volatile memory cell, a control gate structure (14) formed coupled to the floating gate structure, formed in the first area, and an insulated gate electrode (12, 14) for a logical circuit formed in the second area, wherein the floating gate structure has bird's beaks larger than those of the insulated gate electrode.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: November 6, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Hiroshi Hashimoto, Kazuhiko Takada
  • Publication number: 20120273862
    Abstract: Apparatus and methods are disclosed, including an apparatus that includes a number of tiers of a first semiconductor material, each tier including at least one access line of at least one memory cell and at least one source, channel and/or drain of at least one peripheral transistor, such as one used in an access line decoder circuit or a data line multiplexing circuit. The apparatus can also include a number of pillars of a second semiconductor material extending through the tiers of the first semiconductor material, each pillar including either a source, channel and/or drain of at least one of the memory cells, or a gate of at least one of the peripheral transistors. Methods of forming such apparatus are also described, along with other embodiments.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 1, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Toru Tanzawa
  • Patent number: 8288228
    Abstract: Semiconductor devices and a methods of fabricating the semiconductor devices are provided. The methods may include forming a pattern on a substrate, forming a capping dielectric layer on the pattern, and thermally processing the substrate. After thermally processing the substrate, the methods may further include forming a diffusion barrier layer by a nitride process that may include supplying nitrogen to the capping dielectric layer. The methods may also include forming an etching stop layer on the diffusion barrier layer, forming an inter-layer dielectric layer on the etching stop layer, and planarizing the inter-layer dielectric layer.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: October 16, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joon-Sung Lim, Jongho Park, Okcheon Hong, Jung-Hwan Park
  • Patent number: 8283228
    Abstract: Monolithic, three dimensional NAND strings include a semiconductor channel, at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate, the blocking dielectric comprising a plurality of blocking dielectric segments, a plurality of discrete charge storage segments, and a tunnel dielectric located between each one of the plurality of the discrete charge storage segments and the semiconductor channel.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: October 9, 2012
    Assignee: SanDisk Technologies Inc.
    Inventor: Johann Alsmeier
  • Patent number: 8283717
    Abstract: Device isolation/insulation films each have a first height within a first area and a second height higher than the first height within a second area. At least the device isolation/insulation films adjacent to a contact diffusion region exist in the second area, and the device isolation/insulation films adjacent to memory transistors exist in the first area. The device isolation/insulation films are implanted with an impurity of a first conductivity type, and device formation regions each have a diffusion region of the first conductivity type, the diffusion region being formed by diffusion of the impurity of the first conductivity type from the device isolation/insulation films.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: October 9, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Junya Matsunami, Hiroyuki Kutsukake
  • Patent number: 8278169
    Abstract: The present invention provides a technology capable of reducing an area occupied by a nonvolatile memory while improving the reliability of the nonvolatile memory. In a semiconductor device, the structure of a code flash memory cell is differentiated from that of a data flash memory cell. More specifically, in the code flash memory cell, a memory gate electrode is formed only over the side surface on one side of a control gate electrode to improve a reading speed. In the data flash memory cell, on the other hand, a memory gate electrode is formed over the side surfaces on both sides of a control gate electrode. By using a multivalued memory cell instead of a binary memory cell, the resulting data flash memory cell can have improved reliability while preventing deterioration of retention properties and reduce its area.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: October 2, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Koichi Toba, Yasushi Ishii, Yoshiyuki Kawashima, Takashi Hashimoto, Kosuke Okuyama
  • Patent number: 8274108
    Abstract: A nonvolatile semiconductor memory device, includes: a stacked body including a plurality of insulating films alternately stacked with a plurality of electrode films, the electrode films being divided to form a plurality of control gate electrodes aligned in a first direction; a plurality of semiconductor pillars aligned in a stacking direction of the stacked body, the semiconductor pillars being arranged in a matrix configuration along the first direction and a second direction intersecting the first direction to pierce the control gate electrodes; and a connection member connecting a lower end portion of one of the semiconductor pillars to a lower end portion of one other of the semiconductor pillars, an upper end portion of the one of the semiconductor pillars being connected to a source line, an upper end portion of the one other of the semiconductor pillars being connected to a bit line.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 25, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Megumi Ishiduki, Yosuke Komori, Yoshiaki Fukuzumi, Hideaki Aochi
  • Patent number: 8252196
    Abstract: A method for preparing nanotubes by providing nanorods of a piezoelectric material having an asymmetric crystal structure and by further providing hydroxide ions to the nanorods to etch inner parts of the nanorods to form the nanotubes.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: August 28, 2012
    Assignees: Samsung Electronics Co., Ltd., Kumoh National Institute of Technology
    Inventors: Jaeyoung Choi, Sangwoo Kim
  • Patent number: 8252644
    Abstract: A method for forming a nonvolatile memory cell is provided that includes: (1) forming a rail-shaped first conductor above a substrate, (2) forming a rail-shaped second conductor above the first conductor, and (3) forming a substantially vertical first pillar disposed between the first conductor and the second conductor. The first pillar includes a vertically oriented p-i-n diode, and the p-i-n diode includes: (a) a bottom heavily doped region having a first conductivity type, (b) a middle intrinsic or lightly doped region, and (c) a top heavily doped region having a second conductivity type opposite the first conductivity type. The bottom heavily doped region is doped by implantation of arsenic ions and the top heavily doped region is doped by implantation of BF2 ions. Numerous additional aspects are provided.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: August 28, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Scott Brad Herner, Steven J. Radigan
  • Patent number: 8241983
    Abstract: Embodiments of the present disclosure provide a method to fabricate a hetero-junction in a Tunnel Field Effect Transistor (TFET) device configuration (e.g. in a segmented nanowire TFET). Since in prior art devices the highly doped source is in direct contact with the lowly doped or undoped channel, some amount of dopants will diffuse from the source to the channel which cannot be avoided due to the source deposition thermal budget. This out-diffusion reduces the steepness of the doping profile and hence deteriorates the device operation. Particular embodiments comprise the insertion of a thin transition layer in between the source region and channel region such that the out-diffusion is within a very limited region of a few nm, guaranteeing extremely good doping abruptness thanks to the lower diffusion of the dopants in the transition layer. The transition layer avoids the direct contact between the highly doped (e.g. Ge or SiGe) source region and the lowly doped or undoped (e.g.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: August 14, 2012
    Assignee: IMEC
    Inventors: Francesca Iacopi, Anne S. Verhulst, Arturo Sibaja-Hernandez
  • Patent number: 8232589
    Abstract: The gate tunnel leakage current is increased in the up-to-date process, so that it is necessary to reduce the gate tunnel leakage current in the LSI which is driven by a battery for use in a cellular phone and which needs to be in a standby mode at a low leakage current. In a semiconductor integrated circuit device, the ground source electrode lines of logic and memory circuits are kept at a ground potential in an active mode, and are kept at a voltage higher than the ground potential in an unselected standby mode. The gate tunnel leakage current can be reduced without destroying data.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: July 31, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Kenichi Osada, Koichiro Ishibashi, Yoshikazu Saitoh, Akio Nishida, Masaru Nakamichi, Naoki Kitai
  • Patent number: 8228726
    Abstract: A system and method of an electrically programmable and erasable non-volatile memory cell fabricated using a single-poly, logic process with the addition of ONO deposition and etching is disclosed. In one embodiment, a non-volatile memory system includes at least one non-volatile memory cell consists of a SONOS transistor fabricated on a P substrate, with a deep N-well located in the P substrate, with a P-well located in the deep N-well. The memory cell further includes an access NMOS transistor, coupled to the SONOS transistor and located in the same P-well that includes an oxide only gate-dielectric. The cell can be fabricated in a modified logic process with other transistors and with their physical characteristics preserved.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: July 24, 2012
    Assignee: Chip Memory Technology, Inc.
    Inventors: Gang-Feng Fang, Wingyu Leung
  • Patent number: 8227313
    Abstract: One-transistor memory devices facilitate nonvolatile data storage through the manipulation of oxygen vacancies within a trapping layer of a field-effect transistor (FET), thereby providing control and variation of threshold voltages of the transistor. Various threshold voltages may be assigned a data value, providing the ability to store one or more bits of data in a single memory cell. To control the threshold voltage, the oxygen vacancies may be manipulated by trapping electrons within the vacancies, freeing trapped electrons from the vacancies, moving the vacancies within the trapping layer and annihilating the vacancies.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: July 24, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej S. Sandhu
  • Publication number: 20120178229
    Abstract: A semiconductor memory device includes a first active region, a second active region, a first element isolating region and a second element isolating region. The first active region is formed in a semiconductor substrate. The second active region is formed in the semiconductor substrate. The first element isolating region electrically separates the first active regions adjacent to each other. The second element isolating region electrically separates the second active regions adjacent to each other. An impurity concentration in a part of the second active region in contact with a side face of the second element isolating region is higher than that in the central part of the second active region, and a impurity concentration in a part of the first active region in contact with a side face of the first element isolating region is equal to that in the first active region.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 12, 2012
    Inventors: Yoshiko KATO, Mitsuhiro Noguchi
  • Patent number: 8216899
    Abstract: According to the present disclosure, a flash memory device includes a semiconductor substrate that includes selection transistor regions and a memory cell region defined between the selection transistor region, first isolation layers formed in the selection transistor regions, and second isolation layers formed in the memory cell region. The second isolation layers have a lower height than the first isolation layers.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: July 10, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Byoung Ki Lee
  • Publication number: 20120168842
    Abstract: A method for forming a split gate flash cell device provides for forming floating gate transistors. Each floating gate transistor is formed by providing a floating gate transistor substructure including an oxide disposed over a polysilicon gate disposed over a gate oxide disposed on a portion of a common source. Nitride spacers are formed along sidewalls of the floating gate transistor substructure and cover portions of the gate oxide that terminate at the sidewalls. An isotropic oxide etch is performed with the nitride spacers intact. The isotropic etch laterally recedes opposed edges of the oxide inwardly such that a width of the oxide is less than a width of the polysilicon gate. An inter-gate dielectric is formed over the floating gate transistor substructure and control gates are formed over the inter-gate dielectric to form the floating gate transistors.
    Type: Application
    Filed: December 31, 2010
    Publication date: July 5, 2012
    Applicant: WAFERTECH, LLC
    Inventor: Yimin Wang
  • Patent number: 8207034
    Abstract: A semiconductor memory device is formed to include: a substrate; a floating gate formed on the substrate via a gate insulating film; a control gate formed on an adjacent position to the floating gate via a tunnel insulating film; a spacer insulating film formed on the floating gate; and a protection film formed between the spacer insulating film and the control gate. In such a semiconductor memory device (MC), the protection film functions as a stopper of a side surface of the spacer insulating film when a part other than the spacer insulating film is etched.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: June 26, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Kenji Tsujita
  • Publication number: 20120156842
    Abstract: A semiconductor memory device and a method of manufacturing the same.
    Type: Application
    Filed: December 27, 2010
    Publication date: June 21, 2012
    Inventor: Jin Hyo Jung
  • Publication number: 20120147676
    Abstract: A non-volatile storage system is disclosed that includes pairs of NAND strings (or other groupings of memory cells) in the same block being connected to and sharing a common bit line. To operate the system, two selection lines are used so that the NAND strings (or other groupings of memory cells) sharing a bit line can be selected at the block level. Both selection lines are connected to a selection gate for each of the NAND strings (or other groupings of memory cells) sharing the bit line.
    Type: Application
    Filed: May 13, 2011
    Publication date: June 14, 2012
    Inventors: Nima Mokhlesi, Mohan V. Dunga, Masaaki Higashitani
  • Publication number: 20120139024
    Abstract: In one embodiment, a nonvolatile semiconductor memory includes a memory cell array, a first silicon nitride film and a second silicon nitride film. The memory cell array includes NAND cell units. Each of the NAND cell units has memory cell transistors, a source-side select gate transistor and a drain-side select gate transistor. The source-side select gate transistors is disposed in such a manner as to face each other and the drain-side select gate transistors is disposed in such a manner as to face each other. The first silicon nitride film is present in a region between the source-side select gate transistors and is disposed at a position lowest from the upper surface of the semiconductor substrate. The second silicon nitride film is formed in a region between the drain-side select gate transistors and is disposed at a position lowest from the upper surface of the semiconductor substrate.
    Type: Application
    Filed: March 17, 2011
    Publication date: June 7, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Takayuki TOBA, Tohru Ozaki
  • Patent number: 8187935
    Abstract: A method of forming an active region structure includes preparing a semiconductor substrate having a cell array region and a peripheral circuit region, forming upper cell mask patterns having a line shape in the cell array region, forming first and second peripheral mask patterns in the peripheral circuit region, the first and second peripheral mask patterns being stacked in sequence and covering the peripheral circuit region, and upper surfaces of the upper cell mask patterns forming a step difference with an upper surface of the second peripheral mask pattern, forming spacers on sidewalls of the upper cell mask patterns to expose lower portions of the upper cell mask patterns and the second peripheral mask pattern, and removing the lower portions of the upper cell mask patterns using the spacers and the first and second peripheral mask patterns as an etch mask.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: May 29, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Ho Lee, Keon-Soo Kim, Jae-Hwang Sim, Jin-Hyun Shin, Kyung-Hoon Min
  • Patent number: 8178412
    Abstract: A plurality of memory cells each constituted of a memory cell transistor having a gate electrode in a laminated structure composed of a charge storage layer and a control gate layer and a select transistor having source/drain diffusion layers while one of the source/drain diffusion layers is shared by the memory cell transistor are arranged in and on a semiconductor substrate. The impurity concentration of the source/drain diffusion layer shared by the memory cell transistor and the select transistor in each of the plurality of memory cells is set lower than the impurity concentration of the other source/drain diffusion layers in each of the memory cells.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: May 15, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazuaki Isobe
  • Patent number: 8173505
    Abstract: A method includes forming a first layer of gate material over a semiconductor substrate; forming a hard mask layer over the first layer; forming an opening; forming a charge storage layer over the hard mask layer and within the opening; forming a second layer of gate material over the charge storage layer; removing a portion of the second layer and a portion of the charge storage layer which overlie the hard mask layer, wherein a second portion of the second layer remains within the opening; forming a patterned masking layer over the hard mask layer and over the second portion, wherein the patterned masking layer defines both a first and second bitcell; and forming the first and second bitcell using the patterned masking layer, wherein each of the first and second bitcell comprises a select gate made from the first layer and a control gate made from the second layer.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 8, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Matthew T. Herrick, Ko-Min Chang, Gowrishankar L. Chindalore, Sung-Taeg Kang
  • Publication number: 20120108022
    Abstract: A method of manufacturing a semiconductor device including a stacked gate type nonvolatile memory cell and a p-channel type first transistor, includes: forming a gate insulating film of the first transistor on a semiconductor substrate; forming a tunnel insulating film of the stacked gate type nonvolatile memory cell on the semiconductor substrate; forming a first conductive layer containing an n-type impurity on the tunnel insulating film and the gate insulating film; and implanting p-type impurity ions to a region of the first conductive layer for forming the first transistor to turn the region of the first conductive layer into a p-type region.
    Type: Application
    Filed: December 22, 2011
    Publication date: May 3, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Toru Anezaki, Kenichi Okabe
  • Patent number: RE44156
    Abstract: First of all, a semiconductor substrate is provided, and then a first/second wells with a first conductivity are formed therein so as to individually form a first part of the floating gate of single-level EEPROM and a low-voltage device thereon, wherein the first and the second wells are used to separate the high-voltage device, and the depth of the first well is the same as the second well. Furthermore, the high-voltage device and the second part of the floating gate of single-level EEPROM are individually formed on the semiconductor substrate between the first and the second wells, and the control gate of the floating gate of single-level EEPROM is formed in the third well located under the second part of the floating gate of single-level EEPROM, wherein the high-voltage device can be operated in the opposite electric field about 18V, such as ?6V˜12V, ?12V˜6V, ?9V˜9V etc.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: April 16, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Rong-Ching Chen, Ching-Chun Huang, Jy-Hwang Lin