Utilizing Epitaxial Semiconductor Layer Grown Through An Opening In An Insulating Layer Patents (Class 438/269)
  • Patent number: 7491610
    Abstract: A process and an architecture related to a vertical MOSFET device and a capacitor for use in integrated circuits. The integrated circuit structure includes a semiconductor layer with a major surface and further including a first doped region formed in the surface. A second doped region of a different conductivity type than the first doped region is positioned over the first region. A third doped region of a different conductivity type than the second region is positioned over the second region. The integrated circuit includes a capacitor having a bottom plate, dielectric layer and a top plate. In an associated method of manufacture, a first device region. is formed on a semiconductor layer. A field-effect transistor gate region is formed over the first device region. A capacitor comprising top and bottom layers and a dielectric layer is formed on the semiconductor layer.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: February 17, 2009
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
  • Publication number: 20090029513
    Abstract: A method is provided for fabricating a vertical insulated gate transistor. A horizontal isolation region is formed in a substrate to separate and electrically isolate upper and lower portions of the substrate. A vertical semiconductor pillar with one or more flanks and a cavity is formed so as to rest on the upper portion, and a dielectrically isolated gate is formed so as to include an internal portion within the cavity and an external portion resting on the flanks and on the upper portion. One or more internal walls of the cavity are coated with an isolating layer and the cavity is filled with a gate material so as to form the internal portion of the gate within the cavity and the external portion of the gate that rests on the flanks, and to form two connecting semiconductor regions extending between source and drain regions of the transistor.
    Type: Application
    Filed: July 27, 2007
    Publication date: January 29, 2009
    Applicant: STMICROELECTRONICS, INC.
    Inventor: RICHARD A. BLANCHARD
  • Patent number: 7482645
    Abstract: A method for forming a semiconductor structure includes the following steps. A starting semiconductor substrate having a top-side surface and a back-side surface is provided. A recess is formed in the starting semiconductor substrate through the top-side of the starting semiconductor substrate. A semiconductor material is formed in the recess. A vertically conducting device is formed in and over the semiconductor material, where the starting semiconductor substrate serves as a terminal of the vertically conducting device. A non-recessed portion of the starting semiconductor substrate allows a top-side contact to be made to portions of the starting semiconductor substrate extending beneath the semiconductor material.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: January 27, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Chun-Tai Wu, Ihsiu Ho
  • Patent number: 7482220
    Abstract: In one embodiment, a semiconductor device is formed in a body of semiconductor material. The semiconductor device includes a charge compensating trench formed in proximity to active portions of the device. The charge compensating trench includes a trench filled with various layers of semiconductor material including opposite conductivity type layers.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: January 27, 2009
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Gary H. Loechelt, John M. Parsey, Jr., Peter J. Zdebel, Gordon M. Grivna
  • Patent number: 7465622
    Abstract: A method for fabricating a vertical channel transistor device is provided. An opening is formed in a dielectric stack comprised of a pad nitride layer and a pad oxide layer. A plurality of epitaxial silicon growth and dry etching processes are carried out to form drain, vertical channel and source in the opening. Subsequently, sidewall gate dielectric and sidewall gate electrode are formed on the vertical channel. The present invention is suited for dynamic random access memory (DRAM) devices, particularly suited for very high-density trench-capacitor DRAM devices.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: December 16, 2008
    Assignee: Nanya Technology Corp.
    Inventor: Shian-Jyh Lin
  • Patent number: 7439136
    Abstract: The invention includes methods of forming epitaxial silicon-comprising material and methods of forming vertical transistors. In one implementation, a method of forming epitaxial silicon-comprising material includes providing a substrate comprising monocrystalline material. A first portion of the monocrystalline material is outwardly exposed while a second portion of the monocrystalline material is masked. A first silicon-comprising layer is epitaxially grown from the exposed monocrystalline material of the first portion and not from the monocrystalline material of the masked second portion. After growing the first silicon-comprising layer, the second portion of the monocrystalline material is unmasked. A second silicon-comprising layer is then epitaxially grown from the first silicon-comprising layer and from the unmasked monocrystalline material of the second portion. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: October 21, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Nirmal Ramaswamy, Gurtej S. Sandhu, Cem Basceri, Eric R. Blomiley
  • Publication number: 20080246081
    Abstract: A trench metal-oxide-semiconductor field effect transistor (MOSFET), in accordance with one embodiment, includes a drain region, a plurality of gate regions disposed above the drain region, a plurality of gate insulator regions each disposed about a periphery of a respective one of the plurality of gate regions, a plurality of source regions disposed in recessed mesas between the plurality of gate insulator regions, a plurality of body regions disposed in recessed mesas between the plurality of gate insulator regions and between the plurality of source regions and the drain region.
    Type: Application
    Filed: January 17, 2008
    Publication date: October 9, 2008
    Applicant: VISHAY-SILICONIX
    Inventors: Jian Li, Kuo-In Chen, Kyle Terril
  • Patent number: 7432161
    Abstract: Methods for forming {110} type facets on a (001) oriented substrate of Group III-V compounds and Group IV semiconductors using selective epitaxial growth is provided. The methods include forming a dielectric film on a (100) substrate. The dielectric film can then be patterned to expose a portion of the substrate and to form a substrate-dielectric film boundary substantially parallel to a <110> direction. A {110} type sidewall facet can then be formed by epitaxially growing a semiconductor layer on the exposed portion of the substrate and the dielectric film.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: October 7, 2008
    Assignee: STC.UNM
    Inventors: Seung-Chang Lee, Steven R. J. Brueck
  • Publication number: 20080203471
    Abstract: The nitride semiconductor device includes: a nitride semiconductor structure comprising an n-type first layer, a p-type second layer, and an n-type third layer, the nitride semiconductor structure comprising a mesa structure having a lateral surface which forms a wall surface extending from the first, second, to third layers; a gate insulating film formed on the wall surface of the mesa structure; a gate electrode formed as facing the wall surface in the second layer; a drain electrode electrically connected to the first layer; and a source electrode electrically connected to the third layer, the nitride semiconductor structure having a high dislocation region and a low dislocation region arranged along a direction parallel to a principal surface of lamination of the nitride semiconductor structure, a dislocation density of the low dislocation region being lower than that of the high dislocation region, the mesa structure being formed in the low dislocation region.
    Type: Application
    Filed: February 25, 2008
    Publication date: August 28, 2008
    Applicant: ROHM CO., LTD.
    Inventors: Hirotaka Otake, Shin Egami, Hiroaki Ohta
  • Publication number: 20080194067
    Abstract: Methods for forming {110} type facets on a (001) oriented substrate of Group III-V compounds and Group IV semiconductors using selective epitaxial growth is provided. The methods include forming a dielectric film on a (100) substrate. The dielectric film can then be patterned to expose a portion of the substrate and to form a substrate-dielectric film boundary substantially parallel to a <110> direction. A {110} type sidewall facet can then be formed by epitaxially growing a semiconductor layer on the exposed portion of the substrate and the dielectric film.
    Type: Application
    Filed: January 6, 2006
    Publication date: August 14, 2008
    Inventors: Seung-Chang Lee, Steven R. J. Brueck
  • Patent number: 7374990
    Abstract: A vertical transistor having a wrap-around-gate and a method of fabricating such a transistor. The wrap-around-gate (WAG) vertical transistors are fabricated by a process in which source, drain and channel regions of the transistor are automatically defined and aligned by the fabrication process, without photolithographic patterning.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: May 20, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Robert J. Burke, Anand Srinivasan
  • Patent number: 7371645
    Abstract: Fabrication of recessed channel array transistors (RCAT) with a corner gate device includes forming pockets between a semiconductor fin that includes a gate groove and neighboring shallow trench isolations that extend along longs sides of the semiconductor fin. A protection liner covers the semiconductor fin and the trench isolations in a bottom portion of the gate groove and the pockets. An insulator collar is formed in the exposed upper sections of the gate groove and the pockets, wherein a lower edge of the insulator collar corresponds to a lower edge of source/drain regions formed within the semiconductor fin. The protection liner is removed. The bottom portion of the gate groove and the pockets are covered with a gate dielectric and a buried gate conductor layer. The protection liner avoids residuals of polycrystalline silicon between the active area in the semiconductor fin and the insulator collar.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: May 13, 2008
    Assignee: Infineon Technologies AG
    Inventors: Klaus Muemmler, Peter Baars, Stefan Tegen
  • Patent number: 7361556
    Abstract: A double gated silicon-on-insulator (SOI) MOSFET is fabricated by forming epitaxially grown channels, followed by a damascene gate. The double gated MOSFET features narrow channels, which increases current drive per layout width and provides low out conductance.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: April 22, 2008
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Paul D. Agnello, Arne W. Ballantine, Rama Divakaruni, Erin C. Jones, Edward J. Nowak, Jed H. Rankin
  • Publication number: 20080085585
    Abstract: The invention is directed to an improved transistor that reduces dopant cross-diffusion and improves chip density. A first embodiment of the invention comprises gate electrode material partially removed at a junction of a first gate electrode region comprised of gate material doped with first ions for a first device and second gate electrode region comprised of gate material doped with second ions for a second device. The respectively doped regions are connected by a silicide layer near the top surface of the gate conductors.
    Type: Application
    Filed: October 5, 2006
    Publication date: April 10, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Haining Yang, Xiangdong Chen
  • Patent number: 7354826
    Abstract: According to one exemplary embodiment, a method of fabricating a bitline in a memory array includes forming a trench in a substrate, where the trench has sidewalls and a bottom surface. The method further includes performing a selective epitaxial process to partially fill the trench with selective epitaxially grown silicon, where the selective epitaxially grown silicon is situated on the sidewalls and bottom surface of the trench. The selective epitaxially grown silicon is doped in the selective epitaxial process. The method further includes performing a silicon reflow process to cause the selective epitaxially silicon to be redistributed in the trench. The method further includes performing a number of selective epitaxial process/silicon reflow process cycles to substantially fill the trench with the selective epitaxially grown silicon. The method further includes extending a top surface of the selective epitaxially grown silicon in the trench above an ONO stack to form the bitline.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: April 8, 2008
    Assignees: Spansion LLC, Advanced Micro Devices, Inc.
    Inventors: Takashi Orimoto, Robert B. Ogle, Rinji Sugino
  • Publication number: 20080079076
    Abstract: A semiconductor device includes a semiconductor substrate having an active region which includes a gate forming zone and an isolation region; an isolation layer formed in the isolation region of the semiconductor substrate to expose side surfaces of a portion of the active region including the gate forming zone, such that the portion of the active region including the gate forming zone constitutes a fin pattern; a silicon epitaxial layer formed on the active region including the fin pattern; and a gate formed to cover the fin pattern on which the silicon epitaxial layer is formed.
    Type: Application
    Filed: July 12, 2007
    Publication date: April 3, 2008
    Inventors: Dong Sun SHEEN, Sang Tae AHN, Seok Pyo SONG, Hyeon Ju AN
  • Publication number: 20080050876
    Abstract: A method of forming a vertical MOSFET device includes forming a trench within a drift layer substrate, the drift layer comprising a first polarity type, the trench generally defining a well region of a second polarity type opposite the first polarity type. An ohmic contact layer is formed within a bottom surface of the trench, the ohmic contact layer comprising a material of the second polarity type. A layer of the second polarity type is epitaxially grown over the drift layer, sidewall surfaces of the trench, and the ohmic contact layer. A layer of the first polarity type is epitaxially grown over the epitaxially grown layer of the second polarity type so as to refill the trench, and the epitaxially grown layers of the first and second polarity type are planarized so as to expose an upper surface of the drift layer substrate.
    Type: Application
    Filed: August 23, 2006
    Publication date: February 28, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kevin Sean Matocha, Jody Alan Fronheiser, Larry Burton Rowland, Jesse Berkley Tucker, Stephen Daley Arthur, Zachary Matthew Stum
  • Patent number: 7314799
    Abstract: Junction field-effect transistors with vertical channels and self-aligned regrown gates and methods of making these devices are described. The methods use techniques to selectively grow and/or selectively remove semiconductor material to form a p-n junction gate along the sides of the channel and on the bottom of trenches separating source fingers. Methods of making bipolar junction transistors with self-aligned regrown base contact regions and methods of making these devices are also described. The semiconductor devices can be made in silicon carbide.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: January 1, 2008
    Assignee: SemiSouth Laboratories, Inc.
    Inventors: Joseph Neil Merrett, Igor Sankin
  • Patent number: 7303966
    Abstract: Provided are a semiconductor device and a method of manufacturing the same. The method includes the steps of: forming a first silicon layer on a semiconductor substrate; patterning the first silicon layer formed on the semiconductor substrate, and exposing a channel region; forming a second silicon layer on the semiconductor substrate in which the channel region is exposed; removing the first silicon layer, and forming source and drain regions; and forming a third silicon layer in the source and drain regions. According to the manufacturing method, it is possible to minimize defects in a silicon interface by forming the source and drain using only a selective epitaxial growth method without a dry-etching process. Also, since stress is concentrated to a silicon channel region, hole mobility and driving current characteristics are considerably improved.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: December 4, 2007
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Hun Kim, Hyun Cheol Bae, Sang Heung Lee
  • Patent number: 7300837
    Abstract: A FinFET transistor on SOI device and method of fabrication is provided. At least two FinFET fins each having an upper poly-silicate glass portion and a lower silicon portion are formed using spacer patterning technology. Each fin is formed on a sacrificial SiN mask layer having a sacrificial support structure. The SiN mask is removed and then a breakthrough etch is applied to remove an underlying pad oxide layer. A PSG layer defining a width of each of the fins on a sidewall of each of the support structures is deposited on each of the support structures. At least two fins each having a narrow fin pitch of about 0.25 ?m. are formed. The fins provide a seed layer for at least two selective epitaxially raised source and drain regions, wherein each raised source-drain associated with each fin are interconnected thus forming a source pad and a drain pad.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: November 27, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Hau-Yu Chen, Chang-Yun Chang, Cheng-Chung Huang, Fu-Liang Yang
  • Patent number: 7276416
    Abstract: The invention includes methods of forming epitaxial silicon-comprising material and methods of forming vertical transistors. In one implementation, a method of forming epitaxial silicon-comprising material includes providing a substrate comprising monocrystalline material. A first portion of the monocrystalline material is outwardly exposed while a second portion of the monocrystalline material is masked. A first silicon-comprising layer is epitaxially grown from the exposed monocrystalline material of the first portion and not from the monocrystalline material of the masked second portion. After growing the first silicon-comprising layer, the second portion of the monocrystalline material is unmasked. A second silicon-comprising layer is then epitaxially grown from the first silicon-comprising layer and from the unmasked monocrystalline material of the second portion. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Nirmal Ramaswamy, Gurtej S. Sandhu, Cem Basceri, Eric R. Blomiley
  • Patent number: 7271066
    Abstract: Disclosed are a semiconductor devices and method of fabricating the same. Anti-etch films are formed in the top corners of the device isolation film using a material that has a different etch selectivity ratio from nitride or oxide and is not etched in an oxide gate pre-cleaning process. It is thus possible to prevent formation of a moat at the top corners of the device isolation film and the gate oxide film from being thinly formed, thereby improving reliability and electrical characteristics of the device.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: September 18, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventors: Kwan Yong Lim, Heung Jae Cho, Jung Ho Lee
  • Patent number: 7271067
    Abstract: A semiconductor high-voltage device comprising a voltage sustaining layer between a n+-region and a p+-region is provided, which is a uniformly doped n (or p)-layer containing a plurality of floating p (or n)-islands. The effect of the floating islands is to absorb a large part of the electric flux when the layer is fully depleted under high reverse bias voltage so as the peak field is not increased when the doping concentration of voltage sustaining layer is increased. Therefore, the thickness and the specific on-resistance of the voltage sustaining layer for a given breakdown voltage can be much lower than those of a conventional voltage sustaining layer with the same breakdown voltage. By using the voltage sustaining layer of this invention, various high voltage devices can be made with better relation between specific on-resistance and breakdown voltage.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: September 18, 2007
    Assignee: Third Dimension (3D) Semiconductor, Inc.
    Inventor: Xing-Bi Chen
  • Patent number: 7268043
    Abstract: A semiconductor device and a method of manufacturing the same is disclosed. A trench is formed in an active region of a semiconductor substrate. A doped layer is formed on the inner walls of the trench. The trench is filled up with a first semiconductor layer. A gate insulating layer is formed on the first semiconductor layer and the substrate. Two gate electrodes are formed on the gate insulating layer such that the trench is located in between two gate electrodes. First and second impurity regions are formed in the substrate on both sides of each of the gate electrodes. Since the doped layer is locally formed in the trench area, the source and drain regions are completely separated from the heavily doped layer to weaken the electric field of PN junction, thereby improving refresh and preventing punchthrough between the source and drain.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: September 11, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Nak-Jin Son, Ji-Young Kim
  • Patent number: 7262099
    Abstract: A mass of material is formed over a semiconductor substrate. Semiconductive material is formed laterally proximate the mass of material. A space is provided laterally between the mass of material and the semiconductive material. The space comprises an outermost portion and a portion immediately adjacent thereto. The outermost portion has a maximum lateral width which is greater than that of the adjacent portion. Gate dielectric material and conductive gate material are formed within the space. The gate dielectric material and the conductive gate material in combination fill the adjacent portion of the space but do not fill the outermost portion of the space. At least the conductive gate material is etched from at least a majority of the outermost portion of the space. Source/drain regions are formed operatively proximate the conductive gate material and the semiconductive material is used as a channel region of the field effect transistor.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: August 28, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, H. Montgomery Manning, Cem Basceri
  • Patent number: 7259069
    Abstract: A semiconductor device and a method of manufacturing the same is disclosed. A trench is formed in an active region of a semiconductor substrate. A doped layer is formed on the inner walls of the trench. The trench is filled up with a first semiconductor layer. A gate insulating layer is formed on the first semiconductor layer and the substrate. Two gate electrodes are formed on the gate insulating layer such that the trench is located in between two gate electrodes. First and second impurity regions are formed in the substrate on both sides of each of the gate electrodes. Since the doped layer is locally formed in the trench area, the source and drain regions are completely separated from the heavily doped layer to weaken the electric field of PN junction, thereby improving refresh and preventing punchthrough between the source and drain.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: August 21, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Nak-Jin Son, Ji-Young Kim
  • Patent number: 7241655
    Abstract: A vertical transistor having a wrap-around-gate and a method of fabricating such a transistor. The wrap-around-gate (WAG) vertical transistors are fabricated by a process in which source, drain and channel regions of the transistor are automatically defined and aligned by the fabrication process, without photolithographic patterning.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: July 10, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Robert J. Burke, Anand Srinivasan
  • Patent number: 7238576
    Abstract: A semiconductor device comprises a drain layer of first conductivity type, drift layers of first and second conductivity types on the drain layer, an insulating film between the drift layers and contacting the drift layers, a first base layer of second conductivity type on a surface of the drift layer of first conductivity type, a source layer of first conductivity type selectively provided on a surface of the first base layer of second conductivity type, a gate insulating film on the first base layer of second conductivity type between the source layer and the drift layer, a gate electrode on the gate insulating film, a second base layer of second conductivity type on a surface of the drift layer, a first main electrode on the drain layer, and a second main electrode on the source layer, the first base layer and the second base layer.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: July 3, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masakazu Yamaguchi, Ichiro Omura, Wataru Saito, Takashi Shinohe, Hiromichi Ohashi
  • Patent number: 7163864
    Abstract: A double gated silicon-on-insulator (SOI) MOSFET is fabricated by forming epitaxially grown channels, followed by a damascene gate. The double gated MOSFET features narrow channels, which increases current drive per layout width and provides low out conductance.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: January 16, 2007
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Paul D. Agnello, Arne W. Ballantine, Rama Divakaruni, Erin C. Jones, Edward J. Nowak, Jed H. Rankin
  • Patent number: 7153731
    Abstract: A method of forming a field effect transistor includes forming a channel region within bulk semiconductive material of a semiconductor substrate. Source/drain regions are formed on opposing sides of the channel region. An insulative dielectric region is formed within the bulk semiconductive material proximately beneath at least one of the source/drain regions. A method of forming a field effect transistor includes providing a semiconductor-on-insulator substrate, said substrate comprising a layer of semiconductive material formed over a layer of insulative material. All of a portion of the semiconductive material layer and all of the insulative material layer directly beneath the portion are removed thereby creating a void in the semiconductive material layer and the insulative material layer. Semiconductive channel material is formed within the void. Opposing source/drain regions are provided laterally proximate the channel material. A gate is formed over the channel material.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: December 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Todd R. Abbott, Zhongze Wang, Jigish D. Trivedi, Chih-Chen Cho
  • Patent number: 7144779
    Abstract: The invention includes methods of forming epitaxial silicon-comprising material and methods of forming vertical transistors. In one implementation, a method of forming epitaxial silicon-comprising material includes providing a substrate comprising monocrystalline material. A first portion of the monocrystalline material is outwardly exposed while a second portion of the monocrystalline material is masked. A first silicon-comprising layer is epitaxially grown from the exposed monocrystalline material of the first portion and not from the monocrystalline material of the masked second portion. After growing the first silicon-comprising layer, the second portion of the monocrystalline material is unmasked. A second silicon-comprising layer is then epitaxially grown from the first silicon-comprising layer and from the unmasked monocrystalline material of the second portion. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: December 5, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Nirmal Ramaswamy, Gurtej S. Sandhu, Cem Basceri, Eric R. Blomiley
  • Patent number: 7138316
    Abstract: A method including forming a via dielectric layer on a semiconductor device substrate; forming a trench dielectric layer on the via dielectric layer; forming a trench through the trench dielectric layer to expose the via dielectric layer; forming a via in the via dielectric layer through the trench to expose the substrate; and forming a semiconductor material in the via and in the trench. An apparatus including a device substrate; a dielectric layer formed on a surface of the device substrate; and a device base formed on the dielectric layer including a crystalline structure derived from the device substrate.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: November 21, 2006
    Assignee: Intel Corporation
    Inventors: Been-Yih Jin, Brian S. Doyle, Scott A. Hareland, Mark L. Doczy, Matthew V. Metz, Boyan I. Boyanov, Suman Datta, Jack T. Kavalieros, Robert S. Chau
  • Patent number: 7138315
    Abstract: A semiconductor device is formed to have a shape that reduces the thermal resistance of the semiconductor device.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: November 21, 2006
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Narayan Raja, Roger P. Stout
  • Patent number: 7132339
    Abstract: An improved transistor structure that decreases source/drain (S/D) resistance without increasing gate-to-S/D capacitance, thereby increasing device operation. S/D structures are formed into recesses formed on a semiconductor wafer through a semiconductor layer and a first layer of a buried insulator having at least two layers. A body is formed from the semiconductor layer situated between the recesses, and the body comprises a top body surface and a bottom body surface that define a body thickness. Top portions of the S/D structures are within and abut the body thickness. An improved method for forming the improved transistor structure is also described and comprises: forming recesses through a semiconductor layer and a first layer of a buried insulator so that a body is situated between the recesses; and forming S/D structures into the recesses so that top portions of the S/D structures are within and abut a body thickness.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: November 7, 2006
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, Mark D. Jaffe
  • Patent number: 7118960
    Abstract: A memory cell having a bit line contact and a method of manufacturing the memory cell is provided The memory cell may be a 6F2 or smaller memory cell. The bit line contact may have a contact hole bounded by insulating side walls, the contact hole may have a selective, epitaxially grown base layer, may be partially or completely filled with a doped polysilicon plug, and may have a silicide cap. The doped polysilicon plug may have an upper plug surface profile that is substantially free of concavities or substantially convex. Similarly, a storage node contact may comprise a doped polysilicon plug having an upper plug surface profile that is substantially free of concavities or that is substantially convex. Additionally, a semiconductor device having a conductive contact comprising a polysilicon plug may is provided. The plug may contact a capacitor structure.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: October 10, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Luan Tran
  • Patent number: 7084001
    Abstract: Resist patterns (R11 and R12) are formed such that an opening between both the films is aligned to the position, where the source electrode (7) is formed, while the region on the N+-layer (5), where the drain electrode (8) is formed afterwards, is covered by the resist film (R11). After ohmic electrode material is applied from a direction perpendicular to a semiconductor substrate (1), the resist films (R11 and R12) are removed with the ohmic electrode films (OM11 and OM12). The remaining ohmic electrode film (OM14) functions as the source electrode (7). After the above-described first lift off process, the second lift off process is performed to form a drain electrode (8) on the N+-layer (5).
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: August 1, 2006
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Kenichi Furuta, Takahiro Imayoshi
  • Patent number: 7067376
    Abstract: A power MOSFET is provided that includes a substrate of a first conductivity type. An epitaxial layer also of the first conductivity type is deposited on the substrate. First and second body regions are located in the epitaxial layer and define a drift region between them. The body regions have a second conductivity type. First and second source regions of the first conductivity type are respectively located in the first and second body regions. A plurality of trenches are located below the body regions in the drift region of the epitaxial layer. The trenches, which extend toward the substrate from the first and second body regions, are filled with an epitaxially layered material that includes a dopant of the second conductivity type. The dopant is diffused from the trenches into portions of the epitaxial layer adjacent the trenches.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: June 27, 2006
    Assignee: General Semiconductor, Inc.
    Inventor: Richard A. Blanchard
  • Patent number: 7045845
    Abstract: A transistor (10) is formed in a semiconductor substrate (12) whose top surface (48) is formed with a pedestal structure (24). A conductive material (40) is disposed along a side surface (28) of the pedestal structure to self-align an edge of a first conduction electrode (45) of the transistor. A dielectric spacer (55) is formed along a side surface (49) of the conductive material to self-align a contact area (56) of the first conduction electrode.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: May 16, 2006
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventor: Gordon M. Grivna
  • Patent number: 7029977
    Abstract: A fabrication method of a semiconductor wafer can fill trenches formed in a semiconductor substrate with an epitaxial film with high crystal quality without leaving cavities in the trenches. The trenches are formed in the first conductivity type semiconductor substrate. Planes exposed inside the trenches are made clean surfaces by placing the substrate in a gas furnace, followed by supplying the furnace with an etching gas and carrier gas, and by performing etching on the exposed planes inside the trenches by a thickness from about a few nanometers to one micrometer. The trenches have a geometry opening upward through the etching. Following the etching, a second conductivity type semiconductor is epitaxially grown in the trenches by supplying the furnace with a growth gas, etching gas, doping gas and carrier gas, thereby filling the trenches. Instead of making the trenches slightly-opened upward, their sidewalls may be made planes enabling facet formation.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: April 18, 2006
    Assignees: Fuji Electric Holdings Co., Ltd., Shin-Etsu Handotai Co., Ltd.
    Inventors: Daisuke Kishimoto, Susumu Iwamoto, Katsunori Ueno, Ryohsuke Shimizu, Satoshi Oka
  • Patent number: 7015125
    Abstract: A trench MOSFET transistor device and a method of making the same.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: March 21, 2006
    Assignee: General Semiconductor, Inc.
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, John E. Amato, Yan Man Tsui
  • Patent number: 6969644
    Abstract: The present invention provides a system for producing a triple-gate transistor segment (300), utilizing a standard semiconductor substrate (302). The substrate has a plurality of isolation regions (304) formed along its upper surface in a distally separate relationship, defining a channel region (306). A form structure (308) is disposed atop the isolation regions, and defines a channel body area (310) over the channel region. A channel body structure (316) is disposed within the channel body area, and is engineered to provide a blunted corner or edge (318) along a perimeter of its upper exposed surface. The form structure is then removed, and subsequent processing is performed.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: November 29, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Mark R. Visokay, James J. Chambers
  • Patent number: 6955969
    Abstract: A method of forming a channel region for a transistor includes forming a layer of silicon germanium (SiGe) above a substrate, forming an oxide layer above the SiGe layer wherein the oxide layer includes an aperture in a channel area and the aperture is filled with a SiGe feature, depositing a layer having a first thickness above the oxide layer and the SiGe feature, and forming source and drain regions in the layer.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: October 18, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ihsan J. Djomehri, Jung-Suk Goo, Srinath Krishnan, Witold P. Maszara, James N. Pan, Qi Xiang
  • Patent number: 6924205
    Abstract: A method of forming collar isolation for a trench storage memory cell structure is provided in which amorphous Si (a:Si) and silicon germanium (SiGe) are first formed into a trench structure. An etching process that is selective to a:Si as compared to SiGe is employed in defining the regions in which the collar isolation will be formed. The selective etching process employed in the present invention is a wet etch process that includes etching with HF, rinsing, etching with NH4OH, rinsing, and drying with a monohydric alcohol such as isopropanol. The sequence of NH4OH etching and rinsing may be repeated any number of times. The conditions used in the selective etching process of the present invention are capable of etching a:Si at a faster rate than SiGe.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: August 2, 2005
    Assignee: International Business Machines Corporation
    Inventor: Naim Moumen
  • Patent number: 6908815
    Abstract: A dual work function semiconductor structure with borderless contact and method of fabricating the same are presented. The structure may include a field effect transistor (FET) having a substantially cap-free gate and a conductive contact to a diffusion adjacent to the cap-free gate, wherein the conductive contact is borderless to the gate. Because the structure is a dual work function structure, the conductive contact is allowed to extend over the cap-free gate without being electrically connected thereto.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: June 21, 2005
    Assignee: International Business Machines Corporation
    Inventors: Qiuyi Ye, William R. Tonti, Yujun Li
  • Patent number: 6900099
    Abstract: A flash memory cell. The memory cell includes a substrate, a floating gate, a control gate, and a source/drain region. The floating gate, disposed over the substrate and insulated from the substrate, has a plurality of hut structures. The control gate is disposed over the floating gate and insulated from the floating gate. The source/drain region is formed in the substrate. This invention further includes a method of fabricating a flash memory cell. First, a polysilicon layer and a germanium layer are successively formed over a substrate and insulated from the substrate. Subsequently, the substrate is annealed to form a germanium layer having a plurality of hut structures on the polysilicon layer to serve as a floating gate with the polysilicon layer. Next, a control gate is formed over the floating gate and insulated from the floating gate. Finally, a source/drain region is formed in the substrate.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: May 31, 2005
    Assignee: Nanya Technology Corporation
    Inventor: Yung-Meng Huang
  • Patent number: 6878993
    Abstract: A trench JFET includes sidewall oxide spacers at the top of the gate trench and oxide spacers at the bottom of the trench. The source terminal is located at the top surface of the chip and the drain is located at the bottom surface of the chip. The gate may include doped polysilicon, a Schottky metal, or a combination thereof. The sidewall spacers and the top of the trench increase the packing density of the device, and the spacers at the bottom of the trench reduce the gate-to-drain capacitance and prevent dopant from the gate from spreading downward towards the drain. This allows the epitaxial layer to be very thin. The JFET can be operated at high frequency and requires a very low gate drive. It is well suited, therefore, for use in a switch-mode DC—DC converter.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: April 12, 2005
    Inventor: Hamza Yilmaz
  • Patent number: 6875657
    Abstract: A process for manufacturing a trench MIS device includes depositing a conformal nitride layer in the trench; etching the nitride layer to create an exposed area at the bottom of the trench; and heating the substrate and thereby growing an oxide layer in the exposed area. This process causes the mask layer to “lift off”, creating a “bird's beak” structure. This becomes a “transition region”, where the thickness of the oxide layer decreases gradually in a direction away from the exposed area. The method further includes diffusing a dopant into the substrate, the dopant forming a PN junction with a remaining portion of said substrate, and controlling the diffusion such that the PN junction intersects the trench in the transition region. Because the thickness of the oxide layer decreases gradually, the PN junction does not need to be located at a particular point, i.e., there is a margin of error. This improves the manufacturability of the device and enhances its breakdown characteristics.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: April 5, 2005
    Assignee: Siliconix incorporated
    Inventors: Christiana Yue, Mohamed N. Darwish, Frederick P. Giles, Kam Hong Lui, Kuo-In Chen, Kyle Terrill, Deva N. Pattanayak
  • Patent number: 6875656
    Abstract: A method for improving the thickness uniformity of a silicon-on-insulator (SOI) film on a semiconductor wafer. The preferred embodiments disclose using a selective epitaxial growth (SEG), sacrificial oxidation and an oxide removal process for improving SOI thickness uniformity. The SEG process is a leveling process that grows a materially identical layer of epitaxial silicon over the SOI layer, thus thickening the SOI layer and increasing its thickness uniformity. The sacrificial oxidation process oxidizes a portion of the newly thickened SOI layer, converting it into an oxide. An oxide removal process, commonly an etch process, removes the oxide produced by sacrificial oxidation while maintaining the thickness uniformity achieved by SEG leveling.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: April 5, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: Gabriel G. Barna
  • Patent number: 6864129
    Abstract: A double gate MOSFET transistor and a method for fabricating it are described. In this case, a semiconductor layer structure of a transistor channel to be formed is embedded in a spacer material and contact-connected by source and drain regions which are filled into depressions that are etched on opposite sides of the semiconductor layer structure. Afterwards, the spacer material is etched out selectively and replaced by the electrically conductive gate electrode material.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: March 8, 2005
    Assignee: Infineon Technologies AG
    Inventors: Lothar Risch, Wolfgang Rösner, Thomas Schulz
  • Patent number: 6821864
    Abstract: A method of forming at least one deep trench structure having an increased trench depth is provided. The method includes providing at least one deep trench having sidewalls that extend to a common bottom wall in a surface of a substrate. Each deep trench has initial dimensions that are wider than targeted dimensions for the deep trenches. To reduce the initial dimensions to that of the targeted dimensions, an epitaxial silicon film is formed selectively or non-selectively on at least some portions of the sidewalls using a low-temperature ultra-high vacuum epitaxial silicon growth tehnique.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: November 23, 2004
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Subhash B. Kulkarni, Gangadhara S. Mathad, Rajiv M. Ranade