Utilizing Epitaxial Semiconductor Layer Grown Through An Opening In An Insulating Layer Patents (Class 438/269)
  • Patent number: 8372716
    Abstract: In one embodiment, a semiconductor device is formed having vertical localized charge-compensated trenches, trench control regions, and sub-surface doped layers. The vertical localized charge-compensated trenches include at least a pair of opposite conductivity type semiconductor layers. The trench control regions are configured to provide a generally vertical channel region electrically coupling source regions to the sub-surface doped layers. The sub-surface doped layers are further configured to electrically connect the drain-end of the channel to the vertical localized charge compensation trenches. Body regions are configured to isolate the sub-surface doped layers from the surface of the device.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: February 12, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Peter J. Zdebel
  • Publication number: 20130011981
    Abstract: A semiconductor structure which exhibits high device performance and improved short channel effects is provided. In particular, a metal oxide semiconductor field effect transistor (MOFET) is provided that includes a low dopant concentration within an inversion layer of the structure; the inversion layer is an epitaxial semiconductor layer that is formed atop a portion of the semiconductor substrate. The structure also includes a well region of a first conductivity type beneath the inversion layer, wherein the well region has a central portion and two horizontally abutting end portions. The central portion has a higher concentration of a first conductivity type dopant than the two horizontally abutting end portions.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: International Business Machines Corporation
    Inventors: Huilong Zhu, Jing Wang
  • Patent number: 8338255
    Abstract: Methods of making semiconductor devices such as vertical junction field effect transistors (VJFETs) or bipolar junction transistors (BJTs) are described. The methods do not require ion implantation. The VJFET device has an epitaxially regrown n-type channel layer and an epitaxially regrown p-type gate layer as well as an epitaxially grown buried gate layer. Devices made by the methods are also described.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: December 25, 2012
    Assignee: SS SC IP, LLC
    Inventor: Lin Cheng
  • Patent number: 8309417
    Abstract: In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: November 13, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jong-Wook Lee, Jong-Hyuk Kang
  • Patent number: 8304313
    Abstract: It is an object of the present invention to provide laser irradiation apparatus and method which can decrease the proportion of the microcrystal region in the whole irradiated region and can irradiate a semiconductor film homogeneously with a laser beam. A low-intensity part of a laser beam emitted from a laser oscillator is blocked by a slit, the laser beam is deflected by a mirror, and the beam is shaped into a desired size by using two convex cylindrical lenses. Then, the laser beam is delivered to the irradiation surface.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: November 6, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Atsuo Isobe, Yoshiaki Yamamoto
  • Publication number: 20120248529
    Abstract: Methods of forming a memory device having an array portion including a plurality of array transistors and a periphery region including peripheral circuit transistor structures of the memory device, where an upper surface of the periphery region and an upper surface of the array portion are planar (or nearly planar) after formation of the peripheral circuit transistor structures and a plurality of memory cells (formed over the array transistors). The method includes forming the peripheral circuit transistor structures in the periphery region, forming the plurality of array transistors in the array portion and forming a plurality of memory cells over respective vertical transistors. Structures formed by the method have planar upper surfaces of the periphery and array regions.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 4, 2012
    Inventors: Jun Liu, Sanh D. Tang, David H. Wells
  • Patent number: 8269307
    Abstract: The invention provides a STI structure and a method for manufacturing the same. The STI includes a semiconductor substrate; a first trench formed on the upper surface of the semiconductor substrate and filled with an epitaxial layer, wherein the upper surface of the epitaxial layer is higher than that of the semiconductor substrate; and a second trench formed on the epitaxial layer and filled with a first dielectric layer, wherein the upper surface of the first dielectric layer is flush with that of the epitaxial layer, and the width of the second trench is smaller than that of the first trench. The invention reduces the influences of divots on performance of the semiconductor device.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: September 18, 2012
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Haizhou Yin, Qingqing Liang, Huilong Zhu
  • Patent number: 8247283
    Abstract: A method for manufacturing a semiconductor device includes the steps of (a) forming a gate electrode on a silicon substrate, through a gate insulating film; (b) forming a lamination of an insulating film and a sacrificial film having different etching characteristics on the silicon substrate, covering the gate electrode, and anisotropically etching the lamination to form side wall spacers on side walls of the gate electrode and the gate insulating film; (c) implanting impurities into the silicon substrate on both sides of the side wall spacers; (d) etching the silicon substrate and the sacrificial film to form recesses in the silicon substrate, and to change a cross sectional shape of each of the side wall spacers to approximately an L-shape; (e) epitaxially growing Si—Ge-containing crystal in the recesses; and (f) depositing an insulating film containing stress, covering the side wall spacers.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: August 21, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Patent number: 8247284
    Abstract: A method for manufacturing a semiconductor device includes the steps of (a) forming a gate electrode on a silicon substrate, through a gate insulating film; (b) forming a lamination of an insulating film and a sacrificial film having different etching characteristics on the silicon substrate, covering the gate electrode, and anisotropically etching the lamination to form side wall spacers on side walls of the gate electrode and the gate insulating film; (c) implanting impurities into the silicon substrate on both sides of the side wall spacers; (d) etching the silicon substrate and the sacrificial film to form recesses in the silicon substrate, and to change a cross sectional shape of each of the side wall spacers to approximately an L-shape; (e) epitaxially growing Si—Ge-containing crystal in the recesses; and (f) depositing an insulating film containing stress, covering the side wall spacers.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: August 21, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Patent number: 8242555
    Abstract: Methods, devices and systems for a FinFET are provided. One method embodiment includes forming a FinFET by forming a relaxed silicon germanium (Si1-XGeX) body region for a fully depleted Fin field effect transistor (FinFET) having a body thickness of at least 10 nanometers (nm) for a process design rule of less than 25 nm. The method also includes forming a source and a drain on opposing ends of the body region, wherein the source and the drain are formed with halo ion implantation and forming a gate opposing the body region and separated therefrom by a gate dielectric.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: August 14, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Hussein I. Hanafi
  • Patent number: 8222108
    Abstract: A method of forming trench MOSFET structure having improved avalanche capability is disclosed. In a preferred embodiment according to the present invention, only three masks are needed in the fabricating process, wherein the source region is formed by performing source Ion Implantation through contact open region of a thick contact interlayer for saving source mask. Furthermore, said source region has a doping concentration along channel region lower than along contact trench region, and source junction depth along channel region shallower than along contact trench, and source doping profile along surface of epitaxial layer has Guassian-distribution from trenched source -body contact to channel region.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: July 17, 2012
    Assignee: Force MOS Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Publication number: 20120175624
    Abstract: A method and structures are provided for implementing vertical transistors utilizing wire vias as gate nodes. The vertical transistors are high performance transistors fabricated up in the stack between the planes of the global signal routing wire, for example, used as vertical signal repeater transistors. An existing via or a supplemental vertical via between wire planes provides both an electrical connection and the gate node of the novel vertical transistor.
    Type: Application
    Filed: January 12, 2011
    Publication date: July 12, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20120168857
    Abstract: A memory structure having a floating body is provided, which includes a substrate including an active area and an isolation structure surrounding the active area, a first source/drain region in the substrate in the active area, a first floating body in the substrate above the first source/drain region, a second floating body on the first floating body, a second source/drain region on the second floating body, and a trench-type gate structure in the substrate and beside the first floating body. A method of fabricating a memory structure having a floating body is also provided.
    Type: Application
    Filed: May 5, 2011
    Publication date: July 5, 2012
    Inventors: Tzung-Han Lee, Chung-Yuan Lee
  • Patent number: 8211770
    Abstract: A transistor structure optimizes current along the A-face of a silicon carbide body to form an AMOSFET that minimizes the JFET effect in the drift region during forward conduction in the on-state. The AMOSFET further shows high voltage blocking ability due to the addition of a highly doped well region that protects the gate corner region in a trench-gated device. The AMOSFET uses the A-face conduction along a trench sidewall in addition to a buried channel layer extending across portions of the semiconductor mesas defining the trench. A doped well extends from at least one of the mesas to a depth within the current spreading layer that is greater than the depth of the trench. A current spreading layer extends between the semiconductor mesas beneath the bottom of the trench to reduce junction resistance in the on-state. A buffer layer between the trench and the deep well further provides protection from field crowding at the trench corner.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: July 3, 2012
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Anant Agarwal, Charlotte Jonas
  • Publication number: 20120153378
    Abstract: A semiconductor device and a method for forming the same are disclosed. The semiconductor device prevents separation between the channel region and the semiconductor substrate to prevent the floating body effect and to guarantee a sufficient overlap between a gate and a junction region. The semiconductor device includes a vertical pillar including a vertical channel, a diffusion control layer contained in the vertical pillar, and a junction region formed close to the diffusion control layer in the vertical pillar.
    Type: Application
    Filed: February 1, 2011
    Publication date: June 21, 2012
    Applicant: Hynix Semiconductor Inc.
    Inventor: Jung Nam KIM
  • Patent number: 8198161
    Abstract: A vertical transistor and a method for forming the same. The vertical transistor includes a semiconductor substrate having pillar type active patterns formed on a surface thereof; first junction regions formed in the surface of the semiconductor substrate on both sides of the active patterns; screening layers formed on sidewalls of the first junction regions; second junction regions formed on upper surfaces of the active patterns; and gates formed on sidewalls of the active patterns including the second junction regions to overlap with at least portions of the first junction regions.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: June 12, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Seon Yong Cha
  • Patent number: 8187938
    Abstract: A method for fabricating a non-volatile memory device includes alternately stacking a plurality of interlayer dielectric layers and a plurality of conductive layers over a substrate, etching the interlayer dielectric layers and the conductive layers to form a trench which exposes a surface of the substrate forming a first material layer over a resulting structure in which the trench is formed, forming a second material layer over the first material layer, removing portions of the second material layer and the first material layer formed on a bottom of the trench to expose the surface of the substrate, removing the second material layer, and burying a channel layer within the trench in which the second material layer is removed.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 29, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Se-Yun Lim, Eun-Seok Choi, Young-Wook Lee, Won-Joon Choi, Ki-Hong Lee, Sang-Bum Lee
  • Publication number: 20120100681
    Abstract: An integrated circuit device and method for manufacturing the integrated circuit device provide improved control over a shape of a trench for forming the source and drain features of integrated circuit device, by forming a second doped region in a first doped region and removing the first and the second doped regions by a first and a second wet etching processes.
    Type: Application
    Filed: December 30, 2010
    Publication date: April 26, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ziwei FANG, Jeff J. XU, Ming-Jie HUANG, Yimin HUANG, Zhiqiang WU, Min CAO
  • Publication number: 20120094453
    Abstract: Semiconductor devices and methods of fabricating semiconductor devices that may include forming an insulation structure including insulation patterns that are sequentially stacked and vertically separated from each other to provide gap regions between the insulation patterns, forming a first conductive layer filling the gap regions and covering two opposite sidewalls of the insulation structure, and forming a second conductive layer covering the first conductive layer. A thickness of the second conductive layer covering an upper sidewall of the insulation structure is greater than a thickness of the second conductive layer covering a lower sidewall of the insulation structure.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 19, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hauk Han, Byoung-Kyu Lee, Jingi Hong, Changwon Lee, Eungjoon Lee, Je-Hyeon Park, Jeonggil Lee
  • Patent number: 8158471
    Abstract: A method of forming capacitorless DRAM over localized silicon-on-insulator comprises the following steps: A silicon substrate is provided, and an array of silicon studs is defined within the silicon substrate. An insulator layer is defined atop at least a portion of the silicon substrate, and between the silicon studs. A silicon-over-insulator layer is defined surrounding the silicon studs atop the insulator layer, and a capacitorless DRAM is formed within and above the silicon-over-insulator layer.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: April 17, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Suraj Mathew, Jigish D Trivedi
  • Patent number: 8159024
    Abstract: In one aspect, a lateral MOS device is provided. The lateral MOS device includes a gate electrode disposed at least partially in a gate trench to apply a voltage to a channel region, and a drain electrode spaced from the gate electrode, and in electrical communication with a drift region having a boundary with a lower end of the channel region. The device includes a gate dielectric layer in contact with the gate electrode, and disposed between the gate electrode and the drain electrode. The channel region is adjacent to a substantially vertical wall of the gate trench. The device includes a field plate contacting the gate electrode and configured to increase a breakdown voltage of the device.
    Type: Grant
    Filed: April 20, 2008
    Date of Patent: April 17, 2012
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Tat-sing Paul Chow, Kamal Raj Varadarajan
  • Patent number: 8154050
    Abstract: A semiconductor device in which semiconductor epitaxial layers are embedded in the source/drain regions includes an element formation region formed in the major surface of a semiconductor substrate, a gate electrode formed on a part of the element formation region, the semiconductor epitaxial layers formed in the source/drain regions of the element formation region so as to sandwich the channel region below the gate electrode, and silicide layers formed on the gate electrode and semiconductor epitaxial layers. Each semiconductor epitaxial layer has a three-layered structure in which first semiconductor films different in material or composition from the semiconductor substrate sandwich a second semiconductor film having a silicidation reactivity higher than that of the first semiconductor films. Each silicide layer extends to the second semiconductor film along the interface between the semiconductor substrate and semiconductor epitaxial layer.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: April 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Gaku Sudo
  • Publication number: 20120077320
    Abstract: A semiconductor device includes a semiconductor pattern on a substrate, gate structures on sidewalls of the semiconductor pattern, the gate structures being spaced apart from one another, insulating interlayers among the gate structures, wherein an uppermost insulating interlayer is lower than an upper face of the semiconductor pattern, a common source line contacting the substrate and protruding above the uppermost insulating interlayer, an etch stop layer pattern on the semiconductor pattern and on the common source line wherein the common source line protrudes above the uppermost insulating interlayer, an additional insulating interlayer on the uppermost insulating interlayer, and contact plugs extending through the additional insulating interlayer so as to make contact with the semiconductor pattern and the common source line, respectively.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 29, 2012
    Inventors: Jae-Joo SHIM, Han-Soo KIM, Won-Seok CHO, Jae-Hoon JANG, Sang-Yong PARK
  • Patent number: 8105903
    Abstract: A method for making a trench MOSFET with shallow trench structures with a thick trench bottom is disclosed. The improved method resolves the problem of deterioration of breakdown voltage resulted by LOCOS having a bird's beak shape introduced in prior art, and at the same time, the inventive device has a lower Qgd and lower Rds.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: January 31, 2012
    Assignee: Force MOS Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 8105902
    Abstract: A semiconductor device with a vertical transistor includes a plurality of active pillars, a plurality of vertical gates surrounding sidewalls of the active pillars; a plurality of word lines having exposed sidewalls whose surfaces are higher than the active pillars and connecting the adjacent vertical gates together, and a plurality of spacers surrounding the exposed sidewalls of the word lines over the vertical gates.
    Type: Grant
    Filed: June 27, 2009
    Date of Patent: January 31, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jong-Han Shin
  • Publication number: 20120021575
    Abstract: A method for manufacturing a semiconductor device comprises: forming a pillar pattern including a sidewall contact over a semiconductor substrate; forming a silicon layer in a lower portion disposed between the pillar patterns; implanting ions into the silicon layer; diffusing the implanted impurity ions into the inside of the pillar pattern to form an ion-implanting region; removing the silicon layer; and burying a conductive material in the lower portion disposed between the pillar patterns. The method can prevent a floating body effect by adding a process of a vertical channel transistor.
    Type: Application
    Filed: November 16, 2010
    Publication date: January 26, 2012
    Applicant: Hynix Semiconductor Inc.
    Inventor: Tae Su Jang
  • Publication number: 20120021576
    Abstract: A vertical transistor and a method for forming the same. The vertical transistor includes a semiconductor substrate having pillar type active patterns formed on a surface thereof; first junction regions formed in the surface of the semiconductor substrate on both sides of the active patterns; screening layers formed on sidewalls of the first junction regions; second junction regions formed on upper surfaces of the active patterns; and gates formed on sidewalls of the active patterns including the second junction regions to overlap with at least portions of the first junction regions.
    Type: Application
    Filed: October 3, 2011
    Publication date: January 26, 2012
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Seon Yong CHA
  • Patent number: 8101484
    Abstract: In accordance with an exemplary embodiment of the invention, a substrate of a first conductivity type silicon is provided. A substrate cap region of the first conductivity type silicon is formed such that a junction is formed between the substrate cap region and the substrate. A body region of a second conductivity type silicon is formed such that a junction is formed between the body region and the substrate cap region. A trench extending through at least the body region is then formed. A source region of the first conductivity type is then formed in an upper portion of the body region. An out-diffusion region of the first conductivity type is formed in a lower portion of the body region as a result of one or more temperature cycles such that a spacing between the source region and the out-diffusion region defines a channel length of the field effect transistor.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: January 24, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Izak Bencuya, Brian Sze-Ki Mo, Ashok Challa
  • Patent number: 8097501
    Abstract: A method for manufacturing a semiconductor device, includes: forming a first-conductivity-type semiconductor region on a semiconductor layer; forming a mask member on the first-conductivity-type semiconductor region; selectively forming an opening in the mask member; etching the first-conductivity-type semiconductor region exposed to the opening to form a trench having a larger diameter than the opening and an eaves-like mask projected above the trench and made of the mask member; and forming a second-conductivity-type semiconductor region in the trench below the eaves-like mask by epitaxial growth to form a structure section in which the first-conductivity-type semiconductor region and the second-conductivity-type semiconductor region are alternately repeated in a direction generally parallel to a major surface of the semiconductor layer.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: January 17, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoyuki Sakuma, Shingo Sato
  • Patent number: 8097510
    Abstract: A method of forming a field effect transistor (FET) includes: forming a drift region comprising a stack of alternating conductivity type silicon layers; forming a drain region of a first conductivity type extending into the stack of alternating conductivity type silicon layers; forming a trench gate extending into the stack of alternating conductivity type silicon layers, the trench gate having a non-active sidewall and an active sidewall being perpendicular to one another; and forming a body region of a second conductivity type adjacent to the active sidewall of the trench gate, wherein the trench gate and the drain region are formed such that the non-active sidewall of the trench gate faces the drain region.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: January 17, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Chang-ki Jeon, Gary Dolny
  • Patent number: 8093127
    Abstract: A vertical transistor includes a semiconductor substrate provided with a pillar type active pattern over the surface thereof. A first tensile layer is formed over the semiconductor substrate and around the lower end portion of the pillar type active pattern, and a second tensile layer is formed over the upper end portion of the pillar type active pattern so that a tensile stress is applied in a vertical direction to the pillar type active pattern. A first junction region is formed within the surface of the semiconductor substrate below the first tensile layer and the pillar type active pattern. A gate is formed so as to surround at least a portion of the pillar type active pattern. A second junction region is formed within the upper end portion of the pillar type active pattern.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: January 10, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Eun Sung Lee
  • Patent number: 8076209
    Abstract: Methods for forming a semiconductor device comprising a silicon-comprising substrate are provided. One exemplary method comprises depositing a polysilicon layer overlying the silicon-comprising substrate, amorphizing the polysilicon layer, etching the amorphized polysilicon layer to form a gate electrode, etching recesses into the substrate using the gate electrode as an etch mask, depositing a stress-inducing layer overlying the gate electrode, annealing the silicon-comprising substrate to recrystallize the gate electrode, removing the stress-inducing layer, and epitaxially growing impurity-doped, silicon-comprising regions in the recesses.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: December 13, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Frank Bin Yang, Rohit Pal, Michael J. Hargrove
  • Patent number: 8071435
    Abstract: A method for manufacturing a semiconductor device includes the steps of (a) forming a gate electrode on a silicon substrate, through a gate insulating film; (b) forming a lamination of an insulating film and a sacrificial film having different etching characteristics on the silicon substrate, covering the gate electrode, and anisotropically etching the lamination to form side wall spacers on side walls of the gate electrode and the gate insulating film; (c) implanting impurities into the silicon substrate on both sides of the side wall spacers; (d) etching the silicon substrate and the sacrificial film to form recesses in the silicon substrate, and to change a cross sectional shape of each of the side wall spacers to approximately an L-shape; (e) epitaxially growing Si—Ge-containing crystal in the recesses; and (f) depositing an insulating film containing stress, covering the side wall spacers.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: December 6, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Patent number: 8071450
    Abstract: A method of manufacturing a semiconductor device includes preparing a semiconductor wafer with a substrate of a first conductivity type and forming a first epitaxial layer of the first conductivity type on the substrate. The first epitaxial layer has a first thickness. The method further includes growing a first oxide layer on the first epitaxial layer, masking the first oxide layer, ion implanting to create at least one embedded region of a second conductivity type in the first epitaxial layer, removing the first oxide layer, and forming a second epitaxial layer of the first conductivity type on the first epitaxial layer. The second epitaxial layer has the first thickness minus a thickness equal to a thickness of the at least one embedded region of the second conductivity type.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: December 6, 2011
    Assignee: Third Dimension (3D) Semiconductor, Inc.
    Inventor: Xing-Bi Chen
  • Patent number: 8048743
    Abstract: A method for fabricating a vertical channel type nonvolatile memory device includes: stacking a plurality of interlayer insulating layers and a plurality of gate electrode conductive layers alternately over a substrate; etching the interlayer insulating layers and the gate electrode conductive layers to form a channel trench exposing the substrate; forming an undoped first channel layer over the resulting structure including the channel trench; doping the first channel layer with impurities through a plasma doping process; and filling the channel trench with a second channel layer.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: November 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ki-Hong Lee, Moon-Sig Joo, Kwon Hong, Sun-Hwan Hwang
  • Patent number: 7998816
    Abstract: A method for fabricating a semiconductor device includes forming buried bit lines separated from each other by a trench in a substrate, forming a plurality of first pillar holes that expose a top surface of the substrate, forming first active pillars buried in the first pillar holes, forming a gate conductive layer over entire surface of a resultant structure including the first active pillars, forming a gate electrode by etching the gate conducting layer to cover the first active pillars, forming a plurality of second pillar holes that expose the first active pillars by partially etching the gate electrode, and forming second active pillars buried in the second pillar holes and connected to the first active pillars.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 16, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young-Kyun Jung
  • Publication number: 20110169080
    Abstract: A charge-balance power device and a method of manufacturing the charge-balance power device are provided. The charge-balance power device includes: a charge-balance body region in which one or more first conductive type pillars as a first conductive type impurity region and one or more second conductive type pillars as a second conductive type impurity region are arranged; a first conductive type epitaxial layer that is formed on the charge-balance body region; and a transistor region that is formed in the first conductive type epitaxial layer. With this invention, it is possible to form the same charge-balance body region regardless of the structure of the transistor region formed on the top side of wafer.
    Type: Application
    Filed: December 14, 2010
    Publication date: July 14, 2011
    Inventors: Chong-Man YUN, Soo-Seong Kim, Kwang-Hoon Oh
  • Publication number: 20110163354
    Abstract: Memory cell structures, including PSOIs, NANDs, NORs, FinFETs, etc., and methods of fabrication have been described that include a method of epitaxial silicon growth. The method includes providing a silicon layer on a substrate. A dielectric layer is provided on the silicon layer. A trench is formed in the dielectric layer to expose the silicon layer, the trench having trench walls in the <100> direction. The method includes epitaxially growing silicon between trench walls formed in the dielectric layer.
    Type: Application
    Filed: March 15, 2011
    Publication date: July 7, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: David H. Wells, Du Li
  • Publication number: 20110159650
    Abstract: A DMOS type semiconductor device and a method for manufacturing the same are provided. An isolation oxide layer with an ion implantation opening is formed on a semiconductor. A gate oxide film is formed on the semiconductor within the ion implantation opening. A gate is formed on the isolation oxide layer and the gate oxide film. A body layer diffusively formed in the semiconductor by implanting ions of an impurity element having a first conduction type from the ion implantation opening. A regulation layer which is shallower than the body layer is diffusively formed in the body layer by implanting ions of an impurity element having a second conduction type opposite to the first conduction type from the ion implantation opening. A source layer is diffusively formed in the regulation layer by implanting ions of an impurity element having the second conduction type from the ion implantation opening.
    Type: Application
    Filed: March 3, 2011
    Publication date: June 30, 2011
    Inventor: Naohiro Shiraishi
  • Patent number: 7955914
    Abstract: A method is for producing an asymmetric architecture semiconductor device. The device includes a substrate, and in stacked relation, a first photosensitive layer, a non-photosensitive layer, and a second photosensitive layer. The method includes a first step of exposing a first zone in each of the photosensitive layers by a first beam of electrons traversing the non-photosensitive layer. A second step includes exposing at least one second zone of one of the two photosensitive layers by a second beam of electrons or photons or ions, thereby producing a widening of one of the first zones compared to the other first zone such that the second zone is in part superimposed on one of the first zones.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: June 7, 2011
    Assignees: STMicroelectronics SA, Commissariat a l'Energie Atomique
    Inventors: Serdar Manakli, Jessy Bustos, Philippe Coronel, Laurent Pain
  • Patent number: 7947569
    Abstract: A method for producing a semiconductor including a material layer. In one embodiment a trench is produced having two opposite sidewalls and a bottom, in a semiconductor body. A foreign material layer is produced on a first one of the two sidewalls of the trench. The trench is filled by epitaxially depositing a semiconductor material onto the second one of the two sidewalls and the bottom of the trench.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: May 24, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Frank Pfirsch, Rudolf Berger, Stefan Sedlmaier, Wolfgang Lehnert, Raimund Foerg
  • Patent number: 7932136
    Abstract: In a field effect transistor (FET), halo features may be formed by etching into the surface of a silicon layer followed by a step of growing a first epitaxial silicon (epi-Si) layer on the etched silicon layer. Source (S) and drain (D), as well as S/D extension features may similarly be formed by etching an epitaxial silicon layer, then filling with another epitaxial layer. Source and Drain, and extensions, and halo, which are normally formed by diffusion, may be formed as discrete elements by etching and filling (epi-Si). This may provide a shallow, highly activated, abrupt S/D extension, an optimally formed halo and deep S/D diffusion doping, and maximized improvement of channel mobility from the compressive or tensile stress from e-SiGe or e-SiC.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: April 26, 2011
    Assignee: International Business Machines Corporation
    Inventors: Xuefeng Hua, Johnathan E. Faltermeier, Toshiharu Furukawa, Oleg Gluschenkov
  • Patent number: 7927952
    Abstract: A method of manufacturing semiconductor devices comprises forming an semiconductor layer of the first conduction type on a substrate of the first conduction type; forming an anti-oxidizing layer on the surface of the semiconductor layer of the first conduction type, the anti-oxidizing layer having an aperture only through a region for use in formation of a guard ring layer of the second conduction type; forming the guard ring layer of the second conduction type in the surface of the semiconductor layer of the first conduction type through implantation of ions into a surface where said anti-oxidizing layer is formed; forming an oxide layer at least in the aperture; forming a base layer of the second conduction type adjacent to the guard ring layer of the second conduction type in the surface of the semiconductor layer of the first conduction type; and forming a diffused layer of the first conduction type through implantation of ions into the base layer of the second conduction type.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: April 19, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miwako Akiyama, Yusuke Kawaguchi, Yoshihiro Yamaguchi
  • Patent number: 7910971
    Abstract: A method of forming a vertical field effect transistor includes etching an opening into semiconductor material. Sidewalls and radially outermost portions of the opening base are lined with masking material. A semiconductive material pillar is epitaxially grown to within the opening adjacent the masking material from the semiconductor material at the opening base. At least some of the masking material is removed from the opening. A gate dielectric is formed radially about the pillar. Conductive gate material is formed radially about the gate dielectric. An upper portion of the pillar is formed to comprise one source/drain region of the vertical transistor. Semiconductive material of the pillar received below the upper portion is formed to comprise a channel region of the vertical transistor. Semiconductor material adjacent the opening is formed to comprise another source/drain region of the vertical transistor. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: March 22, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Larson Lindholm, David Hwang
  • Patent number: 7892925
    Abstract: A method of forming a semiconductor device is provided. A hollowed portion is formed over an active region of a semiconductor substrate. The bottom of the hollowed portion is lowered in level than the surface of an isolation region of the substrate. A first mask is formed in the hollowed portion, except on a side region that is adjacent to the boundary between the active region and the isolation region. A trench is formed in the side region of the active region by using the first mask and the isolation region as a mask.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: February 22, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Hiroshi Kujirai
  • Publication number: 20110014760
    Abstract: A method of forming a field effect transistor (FET) includes: forming a drift region comprising a stack of alternating conductivity type silicon layers; forming a drain region of a first conductivity type extending into the stack of alternating conductivity type silicon layers; forming a trench gate extending into the stack of alternating conductivity type silicon layers, the trench gate having a non-active sidewall and an active sidewall being perpendicular to one another; and forming a body region of a second conductivity type adjacent to the active sidewall of the trench gate, wherein the trench gate and the drain region are formed such that the non-active sidewall of the trench gate faces the drain region.
    Type: Application
    Filed: September 27, 2010
    Publication date: January 20, 2011
    Inventors: Chang-ki Jeon, Gary Dolny
  • Patent number: 7871881
    Abstract: A method for fabrication of a monolithically integrated SOI substrate capacitor has the steps of: forming an insulating trench, which reaches down to the insulator and surrounds a region of the monocrystalline silicon of a SOI structure, doping the monocrystalline silicon region, forming an insulating, which can be nitride, layer region on a portion of the monocrystalline silicon region, forming a doped silicon layer region on the insulating layer region, and forming an insulating outside sidewall spacer on the monocrystalline silicon region, where the outside sidewall spacer surrounds the doped silicon layer region to provide an isolation between the doped silicon layer region and exposed portions of the monocrystalline silicon region. The monocrystalline silicon region, the insulating layer region, and the doped silicon layer region constitute a lower electrode, a dielectric, and an upper electrode of the capacitor.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: January 18, 2011
    Assignee: Infineon Technologies AG
    Inventor: Ted Johansson
  • Publication number: 20100330759
    Abstract: One aspect of the present subject matter relates to a method for forming a transistor. According to an embodiment of the method, a pillar of amorphous semiconductor material is formed on a crystalline substrate, and a solid phase epitaxy process is performed to crystallize the amorphous semiconductor material using the crystalline substrate to seed the crystalline growth. The pillar has a sublithographic thickness. A transistor body is formed in the crystallized semiconductor pillar between a first source/drain region and a second source/drain region. A surrounding gate insulator is formed around the semiconductor pillar, and a surrounding gate is formed around and separated from the semiconductor pillar by the surrounding gate insulator. Other aspects are provided herein.
    Type: Application
    Filed: August 26, 2008
    Publication date: December 30, 2010
    Inventor: Leonard Forbes
  • Patent number: 7858475
    Abstract: A manufacturing method of a semiconductor device includes: forming multiple trenches on a semiconductor substrate; forming a second conductive type semiconductor film in each trench to provide a first column with the substrate between two trenches and a second column with the second conductive type semiconductor film in the trench, the first and second columns alternately repeated along with a predetermined direction; thinning a second side of the substrate; and increasing an impurity concentration in a thinned second side so that a first conductive type layer is provided. The impurity concentration of the first conductive type layer is higher than the first column. The first column provides a drift layer so that a vertical type first-conductive-type channel transistor is formed.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: December 28, 2010
    Assignee: DENSO CORPORATION
    Inventors: Hitoshi Yamaguchi, Takeshi Miyajima, Nozomu Akagi
  • Patent number: 7851309
    Abstract: Integrated circuit components are described that are formed using selective epitaxy such that the integrated circuit components, such as transistors, are vertically oriented. These structures have regions that are doped in situ during selective epitaxial growth of the component body.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: December 14, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Terrence C. Leslie