Subsequent Separation Into Plural Bodies (e.g., Delaminating, Dicing, Etc.) Patents (Class 438/458)
  • Publication number: 20140097519
    Abstract: A method for fabricating a semiconductor device includes forming a first semiconductor wafer, in which a circuit part and a first bonding layer are stacked, on a first semiconductor substrate, forming a second semiconductor wafer, which includes structures and an insulating layer for gap-filling between the structures, on a second semiconductor substrate, the structures including a pillar and bit lines stacked therein, bonding the first semiconductor wafer with the second semiconductor wafer so that the first bonding layer faces the insulating layer, and separating the second semiconductor substrate from the bonded second semiconductor wafer.
    Type: Application
    Filed: December 17, 2012
    Publication date: April 10, 2014
    Applicant: SK HYNIX INC.
    Inventors: Heung-Jae CHO, Eui-Seong HWANG, Tae-Yoon KIM, Kyu-Hyung YOON
  • Patent number: 8691604
    Abstract: A substrate and a delamination film are separated by a physical means, or a mechanical means in a state where a metal film formed over a substrate, and a delamination layer comprising an oxide film including the metal and a film comprising silicon, which is formed over the metal film, are provided. Specifically, a TFT obtained by forming an oxide layer including the metal over a metal film; crystallizing the oxide layer by heat treatment; and performing delamination in a layer of the oxide layer or at both of the interface of the oxide layer is formed.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: April 8, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junya Maruyama, Toru Takayama, Yumiko Ohno, Shunpei Yamazaki
  • Patent number: 8691663
    Abstract: A method of processing an epistructure or processing a semiconductor device including associating a conformal and flexible handle with the epistructure and removing the epistructure and handle as a unit from the parent substrate. The method further includes causing the epistructure and handle unit to conform to a shape that differs from the shape the epistructure otherwise inherently assumes upon removal from the parent substrate. A device prepared according to the disclosed methods.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: April 8, 2014
    Assignee: Alliance for Sustainable Energy, LLC
    Inventor: Mark W. Wanlass
  • Patent number: 8691674
    Abstract: A method for producing a group 3-5 nitride semiconductor includes the steps of (i), (ii), (iii) in this order: (i) placing inorganic particles on a substrate, (ii) epitaxially growing a semiconductor layer by using the inorganic particles as a mask, and (iii) separating the substrate and the semiconductor layer by irradiating the interface between the substrate and the semiconductor layer with light; and a method for producing a light emitting device further includes adding electrodes.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: April 8, 2014
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Sadanori Yamanaka, Kazumasa Ueda, Yoshihiko Tsuchida
  • Patent number: 8691670
    Abstract: A method and structure for a semiconductor device, the device including a handle wafer, a diamond layer formed directly on a front side of the handle wafer, and a thick oxide layer formed directly on a back side of the handle wafer, the oxide layer of a thickness to counteract tensile stresses of the diamond layer. Nitride layers are formed on outer surfaces of the diamond layer and thick oxide layer and a polysilicon is formed on outer surfaces of the nitride layers. A device wafer is bonded to the handle wafer to form the semiconductor device.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: April 8, 2014
    Assignee: Soitec
    Inventors: Rick Carlton Jerome, Francois Hebert, Craig McLachlan, Kevin Hoopingarner
  • Patent number: 8691666
    Abstract: A method for producing a chip (13) in which a die bonding adhesive layer (24) and a wafer (1) are laminated on a close-contact layer (31) of a fixing jig (3), the chip is formed by completely cutting the wafer and the die bonding adhesive layer and then the chip is picked up together with the die bonding adhesive layer from the fixing jig by deforming the close-contact layer of the fixing jig. In the method the fixing jig is provided with the close-contact layer and a jig base (30) that is provided with a plurality of protrusions (36) on one side and a sidewall (35) at the outer circumference section of the one side. The close-contact layer is laminated on the surface of the jig base provided with the protrusions and is bonded on the upper surface of the sidewall. On the surface of the jig base provided with the protrusions, a partitioned space is formed by the close-contact layer, the protrusions, and the sidewall.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: April 8, 2014
    Assignee: Lintec Corporation
    Inventors: Takeshi Segawa, Naofumi Izumi
  • Patent number: 8691665
    Abstract: The present invention is directed to a method for producing a bonded wafer, the method in which heat treatment for flattening the surface of a thin film is performed on a bonded wafer made by the ion implantation delamination method in an atmosphere containing hydrogen or hydrogen chloride, wherein the surface of a susceptor on which the bonded wafer is to be placed, the susceptor used at the time of flattening heat treatment, is coated with a silicon film in advance. As a result, a method for producing a bonded wafer is provided, the method by which a bonded wafer having a thin film with good film thickness uniformity can be obtained even when heat treatment for flattening the surface of a thin film of a bonded wafer after delamination is performed in the ion implantation delamination method.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: April 8, 2014
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Satoshi Oka, Hiroji Aga, Masahiro Kato, Nobuhiko Noto
  • Publication number: 20140091393
    Abstract: There is provided a semiconductor device including: a first source and a first drain of a first-channel-type MISFET formed on a first semiconductor crystal layer, which are made of a compound having an atom constituting the first semiconductor crystal layer and a nickel atom, a compound having an atom constituting the first semiconductor crystal layer and a cobalt atom, or a compound having an atom constituting the first semiconductor crystal layer, a nickel atom, and a cobalt atom; and a second source and a second drain of a second-channel-type MISFET formed on a second semiconductor crystal layer, which are made of a compound having an atom constituting the second semiconductor crystal layer and a nickel atom, a compound having an atom constituting the second semiconductor crystal layer and a cobalt atom, or a compound having an atom constituting the second semiconductor crystal layer, a nickel atom, and a cobalt atom.
    Type: Application
    Filed: December 6, 2013
    Publication date: April 3, 2014
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, THE UNIVERSTIY OF TOKYO
    Inventors: Masahiko HATA, Hisashi YAMADA, Masafumi YOKOYAMA, SangHyeon Kim, Mitsuru TAKENAKA, Shinichi TAKAGI, Tetsuji YASUDA
  • Publication number: 20140091439
    Abstract: One embodiment for forming a shaped substrate for an electronic device can form a shaped perimeter to define the substrate shape on the surface of a substrate. The shaped perimeter can extend at least part way into the substrate. A subsequent thinning process can remove substrate material and expose the shaped perimeter effectively forming shaped dies from the substrate.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: APPLE INC.
    Inventors: Shawn X. ARNOLD, Matthew E. LAST
  • Publication number: 20140091392
    Abstract: There is provided a semiconductor device including a first channel-type first MISFET formed and a second channel-type second MISFET: a first source and a first drain of the first MISFET and a second source and a second drain of the second MISFET are made of the same conductive substance, and the work function ?M of the conductive substance satisfies at least one of relations respectively represented by (1) ?1<?M<?2+Eg2, and (2) |?M??1|?0.1 eV and |(?2+Eg2)??M|?0.1 eV, where ?1 represents an electron affinity of an N-type semiconductor crystal layer, and ?2 and Eg2 represent an electron affinity and a band gap of a crystal of a P-type semiconductor crystal layer.
    Type: Application
    Filed: December 6, 2013
    Publication date: April 3, 2014
    Applicants: Sumitomo Chemical Company, Limited, National Institute of Advanced Industrial Science And Technology, The University of Tokyo
    Inventors: Tomoyuki TAKADA, Hisashi YAMADA, Masahiko HATA, Shinichi TAKAGI, Tatsuro MAEDA, Yuji URABE, Tetsuji YASUDA
  • Patent number: 8685761
    Abstract: A method of making an electronic device with a redistribution layer includes providing an electronic device having a first pattern of contact areas, and forming a redistribution layer on a temporary substrate. The temporary substrate has a second pattern of contact areas matching the first pattern of contact areas, and a third pattern of contact areas different than the second pattern of contact areas. The second pattern of contact areas is coupled to the third pattern of contact areas through a plurality of stacked conductive and insulating layers. The first pattern of contact areas is coupled to the second pattern of contact areas on the transferrable redistribution layer. The temporary substrate is then removed to thereby form a redistributed electronic device.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: April 1, 2014
    Assignee: Harris Corporation
    Inventors: Thomas Reed, David Herndon, Suzanne Dunphy
  • Patent number: 8685844
    Abstract: A graphene lattice comprising an ordered array of graphene nanoribbons is provided in which each graphene nanoribbon in the ordered array has a width that is less than 10 nm. The graphene lattice including the ordered array of graphene nanoribbons is formed by utilizing a layer of porous anodized alumina as a template which includes dense alumina portions and adjacent amorphous alumina portions. The amorphous alumina portions are removed and the remaining dense alumina portions which have an ordered lattice arrangement are employed as an etch mask. After removing the amorphous alumina portions, each dense alumina portion has a width which is also less than 10 nm.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: April 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Christos D. Dimitrakopoulos, Aaron D. Franklin, Joshua T. Smith
  • Patent number: 8685836
    Abstract: A method for forming a silicon layer according to inventive concept comprises: preparing an SOI substrate; applying an etchant or vapor of the etchant to the SOI substrate; and irradiating a light to the SOI substrate.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: April 1, 2014
    Assignee: Industry-Academic Corporation Foundation, Yonsei University
    Inventors: Taeyoon Lee, Ja Hoon Koo, Sang Wook Lee, Ka Young Lee
  • Patent number: 8683674
    Abstract: Method for stacking microelectronic devices using two or more carriers, each holding microelectronic devices in an array so they may be registered. Each device is releasably held by its edges in a carrier to allow access to top and bottom surfaces of the device for joining. Arrays of devices held in two or more carriers are juxtaposed and joined to form an array of stacked devices. A resulting stacked device is released from the juxtaposed carriers holding each device by releasing forces of the corresponding carrier urging upon edges of the device, thereby permitting removal of the stacked device.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: April 1, 2014
    Assignee: Centipede Systems, Inc.
    Inventor: Thomas H. Di Stefano
  • Patent number: 8685837
    Abstract: After depressed portions (4) have been formed in advance in that surface of a Si substrate (1) on which Si single films (8) are to be formed, that surface of the Si substrate (1) on which the Si single films are to be formed and an intermediate substrate (5) are bonded together, and elements are separated from each other by grinding the Si substrate (1) from the bottom wall side of the depressed portions (4).
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: April 1, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Masahiro Mitani
  • Patent number: 8685835
    Abstract: Applications and demand for an IC chip formed with a silicon wafer are expected to increase, and further reduction in cost is required. An object of the invention is to provide a structure of an IC chip and a process capable of being produced at a lower cost. In view of the above described object, one feature of the invention is to provide the steps of forming a separation layer over an insulating substrate and forming a thin film integrated circuit having a semiconductor film of as an active region over the separation layer, wherein the thin film integrated circuit is not separated. In the case of using an insulating substrate, there is less limitation on the shape of the mother substrate when compared to a case of taking a chip out of a circular silicon wafer. Accordingly, reduction in cost of an IC chip can be achieved.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: April 1, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koji Dairiki
  • Patent number: 8685834
    Abstract: A package structure and fabrication method thereof. The structure includes a substrate having a terminal, a chip overlying the substrate, the chip having an active surface, having a center region and periphery region, the periphery region having an electrode thereon, a patterned cover plate overlying the chip and exposing the electrode, a conductive material electrically connecting the electrode and terminal, and an encapsulant covering the terminal, conductive material, and electrode, but exposing the cover plate overlying the center region of the chip.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: April 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Pei-Haw Tsao, Chender Huang, Chuen-Jye Lin
  • Publication number: 20140087541
    Abstract: A method of manufacturing a semiconductor substrate includes providing a semiconductor wafer having a first surface and a second surface opposite the first surface, and forming, when seen in a cross-section perpendicular to the first surface, cavities in the semiconductor wafer at a first distance from the first surface. The cavities are laterally spaced from each other by partition walls formed by semiconductor material of the wafer. The cavities form a separation region. The method further includes forming a semiconductor layer on the first surface of the semiconductor wafer, and breaking at least some of the partition walls by applying mechanical impact to the partition walls to split the semiconductor wafer along the separation region.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Wolfgang Werner, Hans-Joachim Schulze
  • Patent number: 8681489
    Abstract: A storage unit is provided with a plurality of sub storage units configured to include a plurality of hard disk drives, an enclosure, a printed wiring board, a power supply device, and a cable holder. The sub storage units each operate separately. The enclosure is provided in the array of the hard disk drives so that the distance can be shorter between the enclosure and each of the hard disk drives. With the provision of the cable holder, communications cables can be both brought closer to the printed wiring board. With such a configuration, the coupling point among the communications cables and the printed wiring board, and the enclosure can be favorably reduced. The resulting storage control apparatus can be mounted with a larger number of storage devices, thereby being able to maintain good signal quality.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: March 25, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Midori Kurokawa, Akihiro Inamura, Tsuyoshi Sasagawa, Takahiko Iwasaki, Toru Yoneyama, Minoru Shimokawa, Kiyoshi Honda
  • Patent number: 8679883
    Abstract: Various embodiments of the present disclosure pertain to selective photo-enhanced wet oxidation for nitride layer regrowth on substrates. In one aspect, a semiconductor structure may comprise: a first substrate structure; a III-nitride structure bonded with the first substrate structure; a plurality of air gaps formed between the first substrate structure and the III-nitride structure; and a III-oxide layer formed on surfaces around the air gaps, wherein a portion of the III-nitride structure including surfaces around the air gaps is transformed into the III-oxide layer by a selective photo-enhanced wet oxidation, and the III-oxide layer is formed between an untransformed portion of the III-nitride structure and the first substrate structure.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: March 25, 2014
    Assignee: Opto Tech Corporation
    Inventors: Lung-Han Peng, Jeng-Wei Yu, Po-Chun Yeh
  • Patent number: 8679943
    Abstract: A spalling method is provided that includes depositing a stressor layer on surface of a base substrate, and contacting the stressor layer with a planar transfer. The planar transfer surface is then traversed along a plane that is parallel to and having a vertical offset from the upper surface of the base substrate. The planar transfer surface is traversed in a direction from a first edge of the base substrate to an opposing second edge of the base substrate to cleave the base substrate and transfer a spalled portion of the base substrate to the planar transfer surface. The vertical offset between the plane along which the planar transfer surface is traversed and the upper surface of the base substrate is a fixed distance. The fixed distance of the vertical offset provides a uniform spalling force. A spalling method is also provided that includes a transfer roller.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Xiao Hu Liu, Devendra K. Sadana
  • Patent number: 8679942
    Abstract: Composite substrates are produced that include a strained III-nitride material seed layer on a support substrate. Methods of producing the composite substrate include developing a desired lattice strain in the III-nitride material to produce a lattice parameter substantially matching a lattice parameter of a device structure to be formed on the composite substrate. The III-nitride material may be formed with a Ga polarity or an N polarity. The desired lattice strain may be developed by forming a buffer layer between the III-nitride material and a growth substrate, implanting a dopant in the III-nitride material to modify its lattice parameter, or forming the III-nitride material with a coefficient of thermal expansion (CTE) on a growth substrate with a different CTE.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: March 25, 2014
    Assignee: Soitec
    Inventors: Fabrice Letertre, Jean-Marc Bethoux, Alice Boussagol
  • Patent number: 8679870
    Abstract: Provided is a method of manufacturing a semiconductor element having at a cut portion with excellent quality, which minimizes a region on a silicon substrate necessary for cutting, and which prevents cutting water used when cutting by dicing is carried out from entering the semiconductor element. The method of manufacturing a semiconductor element includes: arranging, on the silicon substrate, multiple semiconductor element portions so as to be adjacent to one another; bonding the silicon substrate and a glass substrate together using the resin; and cutting the silicon substrate and the glass substrate, respectively, in a region in which the resin is provided, the cutting the silicon substrate and the glass substrate including: half-cutting the silicon substrate by dicing; cutting the glass substrate by scribing; and dividing the silicon substrate, the glass substrate, and the resin.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: March 25, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ichiro Kataoka, Kazuya Igarashi
  • Patent number: 8673743
    Abstract: A wafer is divided by setting the focal point of a laser beam inside the wafer at positions corresponding to division lines, thereby forming modified layers inside the wafer along the division lines. Each modified layer has a thickness ranging from the vicinity of the front side of the wafer to the vicinity of the back side of the wafer. An etching gas or an etching liquid is supplied to the wafer to erode the modified layers, thereby dividing the wafer into individual devices. The modified layers are not crushed, so fine particles are not generated in dividing the wafer. Accordingly, fine particles do not stick to the surface of each device and cause a reduction in quality. Further, since the modified layers are removed by etching, it is possible to prevent a reduction in die strength of each device due to the remainder of the modified layers.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: March 18, 2014
    Assignee: Disco Corporation
    Inventor: Kazuhisa Arai
  • Patent number: 8673739
    Abstract: It is an object of the invention to provide a lightweight semiconductor device having a highly reliable sealing structure which can prevent ingress of impurities such as moisture that deteriorate element characteristics, and a method of manufacturing thereof. A protective film having superior gas barrier properties (which is a protective film that is likely to damage an element if the protective film is formed on the element directly) is previously formed on a heat-resistant substrate other than a substrate with the element formed thereon. The protective film is peeled off from the heat-resistant substrate, and transferred over the substrate with the element formed thereon so as to seal the element.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: March 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toru Takayama, Yuugo Goto, Yumiko Fukumoto, Junya Maruyama, Takuya Tsurume
  • Patent number: 8673740
    Abstract: A method is for formation of an electrically conducting through-via within a first semiconductor support having a front face and comprising a silicon substrate. The method may include forming of a first insulating layer on top of the front face of the first semiconductor support, fabricating a handle including, within an additional rigid semiconductor support having an intermediate semiconductor layer, and forming on either side of the intermediate semiconductor layer of a porous region and of an additional insulating layer. The method may also include direct bonding of the first insulating layer and of the additional insulating layer, and thinning of the silicon substrate of the first semiconductor support so as to form a back face opposite to the front face.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 18, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Julien Cuzzocrea, Laurent-Luc Chapelon
  • Patent number: 8673752
    Abstract: A method of growing an epitaxial semiconductor structure is disclosed. The growth and transfer are made using an epitaxy lateral overgrowth technique. The formed epitaxial film on an assembly substrate can be further processed to form devices such as solar cell, light emitting diode, and other devices and assembled into higher integration of desired applications.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: March 18, 2014
    Assignee: Athenaeum, LLC
    Inventor: Eric Ting-Shan Pan
  • Patent number: 8673733
    Abstract: Methods of transferring a layer of semiconductor material from a first donor structure to a second structure include forming a generally planar weakened zone within the first donor structure defined by implanted ions therein. At least one of a concentration of the implanted ions and an elemental composition of the implanted ions may be formed to vary laterally across the generally planar weakened zone. The first donor structure may be bonded to a second structure, and the first donor structure may be fractured along the generally planar weakened zone, leaving the layer of semiconductor material bonded to the second structure. Semiconductor devices may be fabricated by forming active device structures on the transferred layer of semiconductor material. Semiconductor structures are fabricated using the described methods.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: March 18, 2014
    Assignee: Soitec
    Inventors: Mariam Sadaka, Ionut Radu
  • Patent number: 8664025
    Abstract: The width of scribe lines may be reduced in semiconductor devices by applying a process technique in which trenches may be formed first from the rear side on the basis of a required width of the corresponding trenches, while subsequently it may be cut into the substrate from the front side on the basis of a reduced thickness of the corresponding saw blades, thereby also enabling a reduction of the scribe line width. Furthermore, contamination of the front side, i.e., of the metallization system, may be reduced, for instance, by performing an optional intermediate cleaning process.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: March 4, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Daniel Richter, Frank Kuechenmeister
  • Patent number: 8664028
    Abstract: (a) On a growth substrate, a void-containing layer that is made of a group III nitride compound semiconductor and contains voids is formed. (b) On the void-containing layer, an n-type layer that is made of an n-type group III nitride compound semiconductor and serves to close the voids is formed. (c) On the n-type layer, an active layer made of a group III nitride compound semiconductor is formed. (d) On the active layer, a p-type layer made of a p-type group III nitride compound semiconductor is formed. (e) A support substrate is bonded above the p-type layer. (f) The growth substrate is peeled off at the boundary where the voids are produced. In the above step (a) or (b), the supply of at least part of the materials that form the layer is decreased, while heating, before the voids are closed.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: March 4, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Yasuyuki Shibata, Ji-Hao Liang
  • Patent number: 8664085
    Abstract: A composite-substrate manufacturing method is provided with: a step of carrying out implantation of ions through a surface of a bulk substrate composed of the nitride compound semiconductor; a step of setting said surface of the bulk substrate against the second substrate, and bonding the bulk substrate and the second substrate together to obtain a bonded substrate; a step of elevating the temperature of the bonded substrate to a first temperature; a step of sustaining the first temperature for a fixed time; and a step of producing a composite substrate by severing the remaining portion of the bulk substrate from the bonded substrate; characterized in that a predetermined formula as for the first temperature, the thermal expansion coefficient of the first substrate, and the thermal expansion coefficient of the second substrate is satisfied.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: March 4, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoko Maeda, Fumitaka Sato, Akihiro Hachigo, Seiji Nakahata
  • Patent number: 8664084
    Abstract: A method for making a thin-film element includes epitaxially growing a first crystalline layer on a second crystalline layer of a support where the second crystalline layer is a material different from the first crystalline layer, the first crystalline layer having a thickness less than a critical thickness. A dielectric layer is formed on a side of the first crystalline layer opposite to the support to form a donor structure. The donor structure is assembled with a receiver layer and the support is removed.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: March 4, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Chrystel Deguet, Laurent Clavelier
  • Patent number: 8664082
    Abstract: The invention pertains to a combination of a substrate and a wafer, wherein the substrate and the wafer are arranged parallel to one another and bonded together with the aid of an adhesive layer situated between the substrate and the wafer, and wherein the adhesive is chosen such that its adhesive properties are neutralized or at least diminished when a predetermined temperature is exceeded. According to the invention, the adhesive layer is only applied annularly between the substrate and the wafer in the edge region of the wafer.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: March 4, 2014
    Inventor: Erich Thallner
  • Patent number: 8658514
    Abstract: A manufacturing process for a semiconductor-on-insulator structure having reduced electrical losses and which includes a support substrate made of silicon, an oxide layer and a thin layer of semiconductor material, and a polycrystalline silicon layer interleaved between the support substrate and the oxide layer. The process includes a treatment capable of conferring high resistivity to the support substrate prior to formation of the polycrystalline silicon layer, and then conducting at least one long thermal stabilization on the structure at a temperature not exceeding 950° C. for at least 10 minutes.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: February 25, 2014
    Assignee: Soitec
    Inventors: Patrick Reynaud, Sébastien Kerdiles, Daniel Delprat
  • Publication number: 20140051229
    Abstract: A graphene lattice comprising an ordered array of graphene nanoribbons is provided in which each graphene nanoribbon in the ordered array has a width that is less than 10 nm. The graphene lattice including the ordered array of graphene nanoribbons is formed by utilizing a layer of porous anodized alumina as a template which includes dense alumina portions and adjacent amorphous alumina portions. The amorphous alumina portions are removed and the remaining dense alumina portions which have an ordered lattice arrangement are employed as an etch mask. After removing the amorphous alumina portions, each dense alumina portion has a width which is also less than 10 nm.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 20, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christos D. Dimitrakopoulos, Aaron D. Franklin, Joshua T. Smith
  • Publication number: 20140051230
    Abstract: The benefits of strained semiconductors are combined with silicon-on-insulator approaches to substrate and device fabrication.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 20, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Thomas A. Langdo, Anthony J. Lochtefeld, Richard Hammond, Matthew T. Currie, Eugene A. Fitzgerald
  • Patent number: 8652936
    Abstract: A method of forming an optoelectronic device comprising growing a first multi-layer 2 representing a reflector on a first substrate and a second multilayer 4 representing an active region on a second substrate, the first and second substrates being lattice mismatched, fusing the first multi-layer 2 to a third substrate 3, wherein the material of the third substrate 3 is lattice matched with respect to the material of the second multi-layer 4, removing the first substrate to expose the first multi-layer 2, and fusing the first multi-layer to the second multi-layer 4.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: February 18, 2014
    Assignee: Ecole Polytechnique Federale de Lausanne
    Inventors: Alexei Sirbu, Alexandru Mereuta, Andrei Caliman
  • Patent number: 8647964
    Abstract: A method for temporary wafer bonding employs a curable adhesive composition and a degradation agent combined with the curable adhesive composition. The adhesive composition may include (A) a polyorganosiloxane containing an average of at least two silicon-bonded unsaturated organic groups per molecule, (B) an organosilicon compound containing an average of at least two silicon-bonded hydrogen atoms per molecule in an amount sufficient to cure the composition, (C) a catalytic amount of a hydrosilylation catalyst, and (D) a base. The film prepared by curing the composition is degradable and removable by heating.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: February 11, 2014
    Assignee: Dow Corning Corporation
    Inventor: Brian Harkness
  • Patent number: 8647901
    Abstract: There is provided a method of forming a nitride semiconductor layer, including the steps of firstly providing a substrate on which a patterned epitaxy layer with a pier structure is formed. A protective layer is then formed on the patterned epitaxy layer, exposing a top surface of the pier structure. Next, a nitride semiconductor layer is formed over the patterned epitaxy layer connected to the nitride semiconductor layer through the pier structure, wherein the nitride semiconductor layer, the pier structure, and the patterned epitaxy layer together form a space exposing a bottom surface of the nitride semiconductor layer. Thereafter, a weakening process is performed to remove a portion of the bottom surface of the nitride semiconductor layer and to weaken a connection point between the top surface of the pier structure and the nitride semiconductor layer. Finally, the substrate is separated from the nitride semiconductor layer through the connection point.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: February 11, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Yih-Der Guo, Chih-Ming Lai, Jenq-Dar Tsay, Po-Chun Liu
  • Patent number: 8647963
    Abstract: A wafer is provided having a chip side and a non-chip side, the chip side comprising a plurality of semiconductor chips. A plurality of dies are provided, each of the dies is bonded to one of the plurality of semiconductor chips. One or more trenches are formed on the chip side of the wafer. The chip side of the wafer and the plurality of dies are encapsulated with a protecting material, the protecting material substantially filling the one or more trenches. The wafer is diced to separate it into individual semiconductor packages.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: February 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Hui Lee, William Cheng
  • Publication number: 20140038388
    Abstract: A manufacturing process for a semiconductor-on-insulator structure having reduced electrical losses and which includes a support substrate made of silicon, an oxide layer and a thin layer of semiconductor material, and a polycrystalline silicon layer interleaved between the support substrate and the oxide layer. The process includes a treatment capable of conferring high resistivity to the support substrate prior to formation of the polycrystalline silicon layer, and then conducting at least one long thermal stabilization on the structure at a temperature not exceeding 950° C. for at least 10 minutes.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 6, 2014
    Applicant: Soitec
    Inventors: Patrick REYNAUD, Sébastien KERDILES, Daniel DELPRAT
  • Patent number: 8643117
    Abstract: In an SOI-MISFET that operates with low power consumption at a high speed, an element area is reduced. While a diffusion layer region of an N-conductivity type MISFET region of the SOI type MISFET and a diffusion layer region of a P-conductivity type MISFET region of the SOI type MISFET are formed as a common region, well diffusion layers that apply substrate potentials to the N-conductivity type MISFET region and the P-conductivity type MISFET region are separated from each other by an STI layer. The diffusion layer regions that are located in the N- and P-conductivity type MISFET regions) and serve as an output portion of a CMISFET are formed as a common region and directly connected by silicified metal so that the element area is reduced.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: February 4, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Ryuta Tsuchiya, Nobuyuki Sugii, Yusuke Morita, Hiroyuki Yoshimoto, Takashi Ishigaki, Shinichiro Kimura
  • Patent number: 8643195
    Abstract: A semiconductor wafer, substrate, and bonding structure is disclosed that includes a device wafer that includes, for example, a plurality of light emitting diodes, a contact metal layer (or layers) on one side of the device wafer opposite the light emitting diodes, and a bonding metal system on the contact metal layer that predominates by weight in nickel and tin.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: February 4, 2014
    Assignee: Cree, Inc.
    Inventors: David B. Slater, Jr., John A. Edmond, Hua-Shuang Kong
  • Patent number: 8642444
    Abstract: Disclosed herein is a method of manufacturing a bonded substrate, including the steps of: forming a first bonding layer on a surface on one side of a semiconductor substrate; forming a second bonding layer on a surface on one side of a support substrate; adhering the first bonding layer and the second bonding layer to each other; a heat treatment for bonding the first bonding layer and the second bonding layer to each other; and thinning the semiconductor substrate from a surface on the other side of the semiconductor substrate to form a semiconductor layer.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: February 4, 2014
    Assignee: Sony Corporation
    Inventor: Nobutoshi Fujii
  • Patent number: 8642443
    Abstract: The present invention relates to the field of semiconductor manufacturing. More specifically, it relates to a method of forming islands of at least partially relaxed strained material on a target substrate including the steps of forming islands of the strained material over a side of a first substrate; bonding the first substrate, on the side including the islands of the strained material, to the target substrate; and after the step of bonding splitting the first substrate from the target substrate and at least partially relaxing the islands of the strained material by a first heat treatment.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: February 4, 2014
    Assignee: Soitec
    Inventor: Romain Boulet
  • Publication number: 20140030836
    Abstract: A method of fabricating an electronic device includes providing a silicon carbide or diamond-like carbon donor body and implanting ions into a first surface of the donor body to define a cleave plane. After implanting, an epitaxial layer is formed on the first surface, and a temporary carrier is coupled to the epitaxial layer. A lamina is cleaved from the donor body at the cleave plane, and the temporary carrier is removed from the lamina. In some embodiments a light emitting diode or a high electron mobility transistor is fabricated from the lamina and epitaxial layer.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 30, 2014
    Applicant: Twin Creeks Technologies, Inc.
    Inventors: Venkatesan Murali, Steve Babayan, Christopher J. Petti
  • Publication number: 20140030870
    Abstract: Method of making a bonded SOS substrate with a semiconductor film on or above a sapphire substrate by implanting ions from a surface of the semiconductor substrate to form an ion-implanted layer; activating at least a surface of one of the sapphire substrate and the semiconductor substrate from which the ions have been implanted; bonding the surface of the semiconductor substrate and the surface of the sapphire substrate at a temperature of from 50° C. to 350° C.; heating the bonded substrates at a maximum temperature of from 200° C. to 350° C.; and irradiating visible light from a sapphire substrate side or a semiconductor substrate side to the ion-implanted layer of the semiconductor substrate to make the interface of the ion-implanted layer brittle at a temperature of the bonded body higher than the temperature at which the surfaces were bonded, to transfer the semiconductor film to the sapphire substrate.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 30, 2014
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Shoji Akiyama, Atsuo Ito, Yuji Tobisaka, Makoto Kawai
  • Patent number: 8637381
    Abstract: Aspects of the invention provide for preventing undercuts during wafer etch processing and enhancing back-gate to channel electrical coupling. In one embodiment, aspects of the invention include a semiconductor structure, including: a high-k buried oxide (BOX) layer atop a bulk silicon wafer, the high-k BOX layer including: at least one silicon nitride layer; and a high-k dielectric layer; and a silicon-on-insulator (SOI) layer positioned atop the high-k BOX layer.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Effendi Leobandung, Dae-Gyu Park, Shom S. Ponoth, Zhibin Ren, Ghavam G. Shahidi, Leathen Shi
  • Patent number: 8637969
    Abstract: A method of forming a semiconductor package having a large capacity and a reduced or minimized volume includes: attaching a semiconductor substrate on a support substrate using an adhesive layer, wherein the semiconductor substrate includes a plurality of first semiconductor chips and a chip cutting region, wherein first and second ones of the plurality of first semiconductor chips are separated each other by the chip cutting region, and the semiconductor substrate includes a first surface on which an active area is formed and a second surface opposite to the first surface; forming a first cutting groove having a first kerf width, between the first and second ones of the plurality of first semiconductor chips, so that the semiconductor substrate is separated into a plurality of first semiconductor chips; attaching a plurality of second semiconductor chips corresponding to the first semiconductor chips, respectively, to the plurality of first semiconductor chips; forming a molding layer so as to fill the first
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: January 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Teak-hoon Lee, Won-keun Kim, Dong-hyeon Jang, Ho-geon Song, Sung-jun Im
  • Patent number: 8637379
    Abstract: A description is given of a method. In one embodiment the method includes providing a semiconductor chip with semiconductor material being exposed at a first surface of the semiconductor chip. The semiconductor chip is placed over a carrier with the first surface facing the carrier. An electrically conductive material is arranged between the semiconductor chip and the carrier. Heat is applied to attach the semiconductor chip to the carrier.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: January 28, 2014
    Assignee: Infineon Technologies AG
    Inventors: Hannes Eder, Ivan Nikitin, Manfred Schneegans, Jens Goerlich, Karsten Guth, Alexander Heinrich