Subsequent Separation Into Plural Bodies (e.g., Delaminating, Dicing, Etc.) Patents (Class 438/458)
  • Patent number: 8637383
    Abstract: Methods of fabricating semiconductor structures include forming a plurality of openings extending through a semiconductor material and at least partially through a metal material and deforming the metal material to relax a remaining portion of the semiconductor material. The metal material may be deformed by exposing the metal material to a temperature sufficient to alter (i.e., increase) its ductility. The metal material may be formed from one or more of hafnium, zirconium, yttrium, and a metallic glass. Another semiconductor material may be deposited over the remaining portions of the semiconductor material, and a portion of the metal material may be removed from between each of the remaining portions of the semiconductor material. Semiconductor structures may be formed using such methods.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: January 28, 2014
    Assignee: Soitec
    Inventor: Christiaan J. Werkhoven
  • Patent number: 8637380
    Abstract: According to one embodiment, a method of manufacturing a semiconductor device including forming a metal film on aback surface of a glass substrate which supports a semiconductor substrate on a front surface thereof; forming a metal oxide film by oxidizing the whole or at least a portion of the metal film from the front surface; forming protective film, such as silicon nitride, on the metal oxide film; holding the front surface of the protective film with an electrostatic chuck; and forming a via for electrical connection in the semiconductor substrate while the front surface of the protective film is in contact with by the electrostatic chuck; then using a laser to delaminate the glass substrate from the semiconductor substrate.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: January 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsuko Sakata, Kazuyuki Higashi, Akiko Nomachi, Takeshi Ishizaki
  • Patent number: 8637970
    Abstract: An embodiment of the present invention relates to a chip package and fabrication method thereof, which includes a chip protection layer or an additional etching stop layer to cover conducting pads to prevent dicing residue from damaging or scratching the conducting pads. According to another embodiment, a chip protection layer, an additional etching stop layer formed thereon, or a metal etching stop layer level with conducting pads or combinations thereof may be used when etching an intermetal dielectric layer at a structural etching region and a silicon substrate to form an opening for subsequent semiconductor manufacturing processes.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: January 28, 2014
    Inventors: Chia-Lun Tsai, Chia-Ming Cheng, Long-Sheng Yeou
  • Patent number: 8633086
    Abstract: A method for forming a support structure for supporting and handling a semiconductor wafer containing vertical FETs formed at the front surface thereof is provided. In one embodiment, a semiconductor wafer is provided having a front surface and a rear surface, wherein the front surface comprises one or more dies separated by dicing lines. The wafer is thinned to a predetermined thickness. A plurality of patterned metal features are formed on a thinned rear surface to provide support for the wafer, wherein each of the plurality of patterned metal features covers substantially one die, leaving the dicing lines substantially uncovered. The wafer is thereafter diced along the dicing lines to separate the one or more dies for later chip packaging.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: January 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Alex Kalnitsky, Hsiao-Chin Tuan, Liang-Kai Han, Uway Tseng, Yuan-Chih Hsieh, Hung-Hua Lin
  • Patent number: 8633090
    Abstract: A method for forming an edge-chamfered substrate with a buried insulating layer is provided, which comprises the following steps: providing a first substrate (S10); forming an etching mask layer on surfaces of the first substrate, wherein said etching mask layer is formed on the whole surfaces of the first substrate (S11); chamfering a glazed surface of the first substrate and the etching mask layer thereon by the edge grinding (S12); by rotary etching, etching the first substrate which is exposed by the edge grinding on the etching mask layer (S13); providing a second substrate (S14); and bonding the first substrate to the second substrate with a buried insulating layer (S15). The method avoids the edge collapses and the changes of the warp degree in subsequent processes.
    Type: Grant
    Filed: July 10, 2010
    Date of Patent: January 21, 2014
    Assignees: Shanghai Simgui Technology Co., Ltd., Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Xiang Wang, Xing Wei, Miao Zhang, Chenglu Lin, Xi Wang
  • Patent number: 8633091
    Abstract: A chip package includes a substrate having a pad region, a device region, and a remained scribe region located at a periphery of the substrate; a signal and an EMI ground pads disposed on the pad region; a first and a second openings penetrating into the substrate to expose the signal and the EMI ground pads, respectively; a first and a second conducting layers located in the first and the second openings and electrically connecting the signal and the EMI ground pads, respectively, wherein the first conducting layer and the signal pad are separated from a periphery of the remained scribe region, and wherein a portion of the second conducting layer and/or the EMI ground pad extend(s) to a periphery of the remained scribe region; and a third conducting layer surrounding the periphery of the remained scribe region to electrically connect the second conducting layer and/or the EMI ground pad.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 21, 2014
    Inventors: Chia-Lun Tsai, Tsang-Yu Liu, Chia-Ming Cheng
  • Patent number: 8633089
    Abstract: An array of semiconductor components, comprising a first plurality of semiconductor components and a second plurality of semiconductor components held on a carrier, is bonded onto one or more substrates. The first plurality of semiconductor components is first located for pick-up by a transfer device, and each semiconductor component comprised in the first plurality of semiconductor components is picked up with the transfer device and is bonded onto a respective bonding position on the one or more substrates. After the first plurality of semiconductor components have been picked up and bonded, the carrier is rotated and the second plurality of semiconductor components is located for pick-up by the transfer device. Thereafter, each semiconductor component comprised in the second plurality of semiconductor components is picked up with the transfer device and is bonded onto a respective bonding position on the one or more substrates.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: January 21, 2014
    Assignee: ASM Assembly Automation Ltd
    Inventors: Man Chung Ng, Keung Chau
  • Patent number: 8633570
    Abstract: A method is demonstrated to form an SOI substrate having a silicon layer with reduced surface roughness in a high yield. The method includes the step of bonding a base substrate such as a glass substrate and a bond substrate such as a single crystal semiconductor substrate to each other, where a region in which bonding of the base substrate with the bond substrate cannot be performed is provided at the interface therebetween. Specifically, the method is exemplified by the combination of: irradiating the bond substrate with accelerated ions; forming an insulating layer over the bond substrate; forming a region in which bonding cannot be performed in part of the surface of the bond substrate; bonding the bond substrate and the base substrate to each other with the insulating layer therebetween; and separating the bond substrate from the base substrate, leaving a semiconductor layer over the base substrate.
    Type: Grant
    Filed: September 24, 2011
    Date of Patent: January 21, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Naoki Okuno
  • Patent number: 8629001
    Abstract: A semiconductor device includes: a first semiconductor element having a first terminal surface on which a first terminal is disposed and a first rear surface on which no terminal is disposed; a second semiconductor element having a second terminal surface on which a second terminal is disposed and a second rear surface on which no terminal is disposed, the second rear surface being bonded to the first rear surface; a terminal member having a surface set substantially flush with the second terminal surface; and a conductive wire connecting the terminal member and the first terminal.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: January 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Koichi Sugihara
  • Patent number: 8623744
    Abstract: A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with an HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: January 7, 2014
    Assignee: Sandia Corporation
    Inventors: Thomas P. Swiler, Ernest J. Garcia, Kathryn M. Francis
  • Patent number: 8624357
    Abstract: Described herein are composite semiconductor substrates for use in semiconductor device fabrication and related devices and methods. In one embodiment, a composite substrate includes: (1) a bulk silicon layer; (2) a porous silicon layer adjacent to the bulk silicon layer, wherein the porous silicon layer has a Young's modulus value that is no greater than 110.5 GPa; (3) an epitaxial template layer, wherein the epitaxial template layer has a root-mean-square surface roughness value in the range of 0.2 nm to 1 nm; and (4) a set of silicon nitride layers disposed between the porous silicon layer and the epitaxial template layer.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: January 7, 2014
    Assignee: The Regents of the University of California
    Inventors: Monali B. Joshi, Mark S. Goorsky
  • Publication number: 20140001486
    Abstract: According to the present invention, a composite semiconductor substrate (1) for epitaxial growth of a compound semiconductor material (1) comprises a ceramic semiconductor support layer (4), and a single crystalline epitaxial layer (3) formed of the compound semi-conductor material on the ceramic semiconductor support layer.
    Type: Application
    Filed: March 14, 2012
    Publication date: January 2, 2014
    Applicants: PERFECT CRYSTALS LLC, OPTOGAN OY
    Inventors: Vladislav E. Bougrov, Maxim A. Odnoblyudov, Alexey Romanov, Vladimir Nikolaev
  • Publication number: 20140004684
    Abstract: The present invention provides a method for preparing a GOI chip structure, where, in the method, first, a SiGe on insulator (SGOI) chip structure is made by using a Smart-Cut technology, and then, germanium condensation technology is performed on the SGOI chip structure, so as to obtain a GOI chip structure. Because the SGOI made by the Smart-Cut technology basically has no misfit dislocation in an SGOI/BOX interface, the threading dislocation density of the GOI is finally reduced. A technique of the present invention is simple, the high-quality GOI chip structure can be implemented, and the germanium condensation technology is greatly improved. An ion implantation technology and an annealing technology are quite mature techniques in the current semiconductor industry, so that such a preparation method greatly improves the possibility of wide use of the germanium concentration technology in the semiconductor industry.
    Type: Application
    Filed: September 25, 2012
    Publication date: January 2, 2014
    Applicant: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY
    Inventors: Zengfeng Di, Lin Ye, Zhongying Xue, Miao Zhang
  • Publication number: 20140001642
    Abstract: Interposers for use in the fabrication of electronic devices include semiconductor-on-insulator structures having fluidic microchannels therein. The interposers may include a multi-layer body in which a semiconductor material is bonded to a substrate with a layer of dielectric material between the semiconductor material and the substrate. At least one fluidic microchannel may extend in a lateral direction through at least one of the layer of dielectric material and the semiconductor material. The interposers may include redistribution layers and electrical contacts on opposing sides thereof. Semiconductor structures include one or more semiconductor devices coupled with such interposers. Such interposers and semiconductor structures may be formed by fabricating a semiconductor-on-insulator type structure using a direct bonding method and defining one or more fluidic microchannels at a bonding interface during the direct bonding process.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Applicant: SOITEC
    Inventor: Mariam Sadaka
  • Publication number: 20140001604
    Abstract: Semiconductor structures are fabricated that include a semiconductor material bonded to a substrate with a layer of dielectric material between the semiconductor material and the substrate. At least one fluidic microchannel extends in a lateral direction through the layer of dielectric material between the semiconductor material and the substrate. The at least one fluidic microchannel includes at least one laterally extending section having a transverse cross-sectional shape entirely surrounded by the layer of dielectric material.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Applicant: SOITEC
    Inventor: Mariam Sadaka
  • Patent number: 8617962
    Abstract: The invention relates to finishing a substrate of the semiconductor-on-insulator (SeOI) type comprising an insulator layer buried between two semiconducting material layers. The method successively comprises routing the annular periphery of the substrate so as to obtain a routed substrate, and encapsulating the routed substrate so as to cover the routed side edge of the buried insulator layer by means of a semiconducting material.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: December 31, 2013
    Assignee: Soitec
    Inventors: Walter Schwarzenbach, Aziz Alami-Idrissi, Alexandre Chibko, Sebastien Kerdiles
  • Patent number: 8617964
    Abstract: A laser processing method for preventing particles from occurring from cut sections of chips obtained by cutting a silicon wafer is provided. An irradiation condition of laser light L for forming modified regions 77 to 712 is made different from an irradiation condition of laser light L for forming the modified regions 713 to 719 such as to correct the spherical aberration of laser light L in areas where the depth from the front face 3 of a silicon wafer 11 is 335 ?m to 525 ?m. Therefore, even when the silicon wafer 11 and a functional device layer 16 are cut into semiconductor chips from modified regions 71 to 719 acting as a cutting start point, twist hackles do not appear remarkably in the areas where the depth is 335 ?m to 525 ?m, whereby particles are hard to occur.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: December 31, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Takeshi Sakamoto, Kenichi Muramatsu
  • Publication number: 20130341721
    Abstract: Provided is a semiconductor wafer including a base wafer, a first insulating layer, and a semiconductor layer. Here, the base wafer, the first insulating layer and the semiconductor layer are arranged in an order of the base wafer, the first insulating layer and the semiconductor layer, the first insulating layer is made of an amorphous metal oxide or an amorphous metal nitride, the semiconductor layer includes a first crystal layer and a second crystal layer, the first crystal layer and the second crystal layer are arranged in an order of the first crystal layer and the second crystal layer in such a manner that the first crystal layer is positioned closer to the base wafer, and the electron affinity Ea1 of the first crystal layer is larger than the electron affinity Ea2 of the second crystal layer.
    Type: Application
    Filed: August 30, 2013
    Publication date: December 26, 2013
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, THE UNIVERSITY OF TOKYO
    Inventors: Takeshi AOKI, Hisashi YAMADA, Noboru FUKUHARA, Masahiko HATA, Masafumi YOKOYAMA, SangHyeon KIM, Mitsuru TAKENAKA, Shinichi TAKAGI, Tetsuji YASUDA
  • Publication number: 20130344679
    Abstract: A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.
    Type: Application
    Filed: March 8, 2013
    Publication date: December 26, 2013
    Inventors: Chi-Hwan Lee, Dong Rip Kim, Xiaolin Zheng
  • Patent number: 8609464
    Abstract: To provide a simple method for manufacturing a semiconductor device in which deterioration in characteristics due to electrostatic discharge is reduced, a plurality of element layers each having a semiconductor integrated circuit and an antenna are sealed between a first insulator and a second insulator; a layered structure having a first conductive layer formed on a surface of the first insulator, the first insulator, the element layers, the second insulator, and a second conductive layer formed on a surface of the second insulator is formed; and the first insulator and the second insulator are melted, whereby the layered structure is divided so as to include at least one of the semiconductor integrated circuits and one of the antennas.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: December 17, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiaki Oikawa, Hironobu Shoji, Shingo Eguchi
  • Patent number: 8609513
    Abstract: A method for manufacturing a semiconductor device includes the steps of: preparing a combined wafer; obtaining a first intermediate wafer by forming an active layer; obtaining a second intermediate wafer by forming a front-side electrode on the first intermediate wafer; supporting the second intermediate wafer by adhering an adhesive tape at the front-side electrode side; removing the supporting layer while supporting the second intermediate wafer using the adhesive tape; forming a backside electrode on the main surfaces of SiC substrates exposed by the removal of the supporting layer; adhering an adhesive tape at the backside electrode side and removing the adhesive tape at the front-side electrode side so as to support the plurality of SiC substrates using the adhesive tape; and obtaining a plurality of semiconductor devices by cutting the SiC substrates with the SiC substrates being supported by the adhesive tape provided at the backside electrode side.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: December 17, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Taku Horii
  • Patent number: 8609512
    Abstract: An improved method for singulation of compound electronic devices is presented. Compound electronic devices are manufactured by combining two or more substrates into an assembly containing multiple devices. Presented are methods for singulation of compound electronic devices using laser processing. The methods presented provide fewer defects such as cracking or chipping of the substrates while minimizing the width of the kerf and maintaining system throughput.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: December 17, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Peter Pirogovsky, Jeffery A. Albelo, James O'Brien, Yasu Osako
  • Patent number: 8609514
    Abstract: A process for transferring a thin film includes forming a layer of inclusions to create traps for gaseous compounds. The inclusions can be in the form of one or more implanted regions that function as confinement layers configured to trap implanted species. Further, the inclusions can be in the form of one or more layers deposited by a chemical vapor deposition, epitaxial growth, ion sputtering, or a stressed region or layer formed by any of the aforementioned processes. The inclusions can also be a region formed by heat treatment of an initial support or by heat treatment of a layer formed by any of the aforementioned processes, or by etching cavities in a layer. In a subsequent step, gaseous compounds are introduced into the layer of inclusions to form micro-cavities that form a fracture plane along which the thin film can be separated from a remainder of the substrate.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: December 17, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Hubert Moriceau, Michel Bruel, Bernard Aspar, Christophe Maleville
  • Patent number: 8609511
    Abstract: According to one embodiment, an insulation film is formed over the surface, backside, and sides of a first substrate. Next, the insulation film formed over the surface of the first substrate is removed. Then, a joining layer is formed over the surface of the first substrate, from which the insulation film has been removed. Subsequently, the first substrate is bonded to a second substrate via a joining layer.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: December 17, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Shirono, Kazumasa Tanida, Naoko Yamaguchi, Satoshi Hongo, Tsuyoshi Matsumura
  • Patent number: 8609456
    Abstract: The disclosure provides a method for fabricating a semiconductor layer having a textured surface, including: (a) providing a textured substrate; (b) forming at least one semiconductor layer on the textured substrate; (c) forming a metal layer on the semiconductor layer; and (d) conducting a thermal process to the textured substrate, the semiconductor layer and the metal layer, wherein the semiconductor layer is separated from the textured substrate by the thermal process to obtain the semiconductor layer having the metal layer and a textured surface.
    Type: Grant
    Filed: September 9, 2012
    Date of Patent: December 17, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Teng-Yu Wang, Chien-Hsun Chen, Chen-Hsun Du, Chung-Yuan Kung
  • Publication number: 20130328174
    Abstract: A method of edge protecting bonded semiconductor wafers. A second semiconductor wafer and a first semiconductor wafer are attached by a bonding layer/interface and the second semiconductor wafer undergoes a thinning process. As a part of the thinning process, a first protective layer is applied to the edges of the second and first semiconductor wafers. A third semiconductor wafer is attached to the second semiconductor wafer by a bonding layer/interface and the third semiconductor wafer undergoes a thinning process. As a part of the thinning process, a second protective layer is applied to the edges of the third semiconductor wafer and over the first protective layer. The first, second and third semiconductor wafers form a wafer stack. The wafer stack is diced into a plurality of 3D chips while maintaining the first and second protective layers.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 12, 2013
    Applicant: International Business Machines Corporation
    Inventors: Douglas C. La Tulipe, JR., Spyridon Skordas, Tuan A. Vo, Kevin R. Winstel
  • Patent number: 8601657
    Abstract: In a piezoelectric device and a method of manufacturing thereof, after an ion implanted portion is formed in a piezoelectric single crystal substrate by implantation of hydrogen ions, an interlayer of a metal is formed on a rear surface of the piezoelectric single crystal substrate. In addition, a support member is bonded to the piezoelectric single crystal substrate with the interlayer interposed therebetween. A composite piezoelectric body in which the ion implanted portion is formed is heated at about 450° C. to about 700° C. to oxidize the metal of the interlayer so as to decrease the conductivity thereof. Accordingly, the conductivity of the interlayer is decreased, so that a piezoelectric device having excellent resonance characteristics is provided.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: December 10, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Korekiyo Ito
  • Patent number: 8604545
    Abstract: Methods for manufacturing a semiconductor substrate and a semiconductor device by which a high-performance semiconductor element can be formed are provided. A single crystal semiconductor substrate including an embrittlement layer and a base substrate are bonded to each other with an insulating layer interposed therebetween, and the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment to fix a single crystal semiconductor layer over the base substrate. Next, a plurality of regions of a monitor substrate are irradiated with laser light under conditions of different energy densities, and carbon concentration distribution and hydrogen concentration distribution in a depth direction of each region of the single crystal semiconductor layer which has been irradiated with the laser light is measured.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 10, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Masaki Koyama, Motoki Nakashima
  • Patent number: 8603896
    Abstract: A method for transferring a monocrystalline semiconductor layer onto a support substrate by implanting species in a donor substrate; bonding the donor substrate to the support substrate; and fracturing the donor substrate to transfer the layer onto the support substrate; wherein a portion of the monocrystalline layer to be transferred is rendered amorphous, without disorganizing the crystal lattice of a second portion of the layer, with the portions being, respectively, a surface portion and a buried portion of the monocrystalline layer; and wherein the amorphous portion is recrystallized at a temperature below 500° C., with the crystal lattice of the second portion serving as a seed for recrystallization.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: December 10, 2013
    Assignee: Soitec
    Inventors: Gweltaz Gaudin, Carlos Mazure
  • Publication number: 20130323906
    Abstract: A method of manufacturing a thin-film bonded substrate used for semiconductor devices. The method includes the steps of epitaxially growing an epitaxial growth layer on a first substrate of a bulk crystal, cleaving the first substrate, thereby leaving a crystal thin film on the epitaxial growth layer, the crystal thin film being separated out of the first substrate, and bonding a second substrate to the crystal thin film, the chemical composition of the second substrate being different from the chemical composition of the first substrate. It is possible to preclude a conductive barrier layer of the related art, prevent a reflective layer from malfunctioning due to high-temperature processing, and essentially prevent cracks due to the difference in the coefficients of thermal expansion between heterogeneous materials that are bonded to each other.
    Type: Application
    Filed: May 28, 2013
    Publication date: December 5, 2013
    Applicant: SAMSUNG CORNING PRECISION MATERIALS CO., LTD.
    Inventors: Donghyun Kim, Dong-Woon Kim, Mikyoung Kim, MinJu Kim, A-Ra Kim, Hyunjoon Kim, Joong Won Shur, Kwang-Je Woo, Bohyun Lee, JongPil Jeon, Kyungsub Jung
  • Patent number: 8598013
    Abstract: To provide a method for manufacturing an SOI substrate provided with a semiconductor layer which can be used practically even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like is used. The semiconductor layer is transferred to a supporting substrate by the steps of irradiating a semiconductor wafer with ions from one surface to form a damaged layer; forming an insulating layer over one surface of the semiconductor wafer; attaching one surface of the supporting substrate to the insulating layer formed over the semiconductor wafer and performing heat treatment to bond the supporting substrate to the semiconductor wafer; and performing separation at the damaged layer into the semiconductor wafer and the supporting substrate. The damaged layer remaining partially over the semiconductor layer is removed by wet etching and a surface of the semiconductor layer is irradiated with a laser beam.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: December 3, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hideto Ohnuma, Yoichi Iikubo, Yoshiaki Yamamoto, Kenichiro Makino
  • Patent number: 8598014
    Abstract: Presented is a method for producing an optoelectronic component. The method includes separating a semiconductor layer based on a III-V-compound semiconductor material from a substrate by irradiation with a laser beam having a plateau-like spatial beam profile, where individual regions of the semiconductor layer are irradiated successively.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: December 3, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Michael Fehrer, Berthold Hahn, Volker Härle, Stephan Kaiser, Frank Otte, Andreas Plössl
  • Publication number: 20130316488
    Abstract: A stressor layer used in a controlled spalling method is removed through the use of a cleave layer that can be fractured or dissolved. The cleave layer is formed between a host semiconductor substrate and the metal stressor layer. A controlled spalling process separates a relatively thin residual host substrate layer from the host substrate. Following attachment of a handle substrate to the residual substrate layer or other layers subsequently formed thereon, the cleave layer is dissolved or otherwise compromised to facilitate removal of the stressor layer. Such removal allows the fabrication of a bifacial solar cell.
    Type: Application
    Filed: May 26, 2012
    Publication date: November 28, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Keith E. Fogel, Bahman Hekmatshoartabari, Paul A. Lauro, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 8592950
    Abstract: A semiconductor device is made by providing a first semiconductor wafer having semiconductor die. A gap is made between the semiconductor die. An insulating material is deposited in the gap. A portion of the insulating material is removed to form a first through hole via (THV). A conductive lining is conformally deposited in the first THV. A solder material is disposed above the conductive lining of the first THV. A second semiconductor wafer having semiconductor die is disposed over the first wafer. A second THV is formed in a gap between the die of the second wafer. A conductive lining is conformally deposited in the second THV. A solder material is disposed above the second THV. The second THV is aligned to the first THV. The solder material is reflowed to form the conductive vias within the gap. The gap is singulated to separate the semiconductor die.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: November 26, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Linda Pei Ee Chua, Byung Tai Do
  • Patent number: 8592252
    Abstract: A semiconductor wafer contains a plurality of semiconductor die. The semiconductor wafer is diced to separate the semiconductor die. The semiconductor die are transferred onto a carrier. A die extension region is formed around a periphery of the semiconductor die on the carrier. The carrier is removed. A plurality of through hole vias (THV) is formed in first and second offset rows in the die extension region. A conductive material is deposited in the THVs. A first RDL is formed between contact pads on the semiconductor die and the THVs. A second RDL is formed on a backside of the semiconductor die in electrical contact with the THVs. An under bump metallization is formed in electrical contact with the second RDL. Solder bumps are formed on the under bump metallization. The die extension region is singulated to separate the semiconductor die.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: November 26, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Henry Descalzo Bathan, Zigmund Ramirez Camacho, Lionel Chien Hui Tay, Arnel Senosa Trasporto
  • Publication number: 20130309843
    Abstract: A bonded SOS substrate having a semiconductor film on or above a surface of a sapphire substrate is obtained by a method with the steps of implanting ions from a surface of a semiconductor substrate to form an ion-implanted layer; activating at least a surface from which the ions have been implanted; bonding the surface of the semiconductor substrate and the surface of the sapphire substrate at a temperature of 50° C. to 350° C.; heating the bonded substrates at a maximum temperature from 200° C. to 350° C. to form a bonded body; and irradiating visible light from a sapphire substrate side or a semiconductor substrate side to the ion-implanted layer of the semiconductor substrate for embrittling an interface of the ion-implanted layer, while keeping the bonded body at a temperature higher than the temperature at which the surfaces of the semiconductor substrate and the sapphire substrate were bonded.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 21, 2013
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Shoji Akiyama, Atsuo Ito, Yuji Tobisaka, Makoto Kawai
  • Publication number: 20130307031
    Abstract: According to an embodiment, a semiconductor structure includes a first monocrystalline semiconductor portion having a first lattice constant in a reference direction; a second monocrystalline semiconductor portion having a second lattice constant in the reference direction, which is different to the first lattice constant, on the first monocrystalline semiconductor portion; and a metal layer formed on and in contact with the second monocrystalline semiconductor portion.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Mathias Plappert, Hans-Joachim Schulze
  • Patent number: 8587025
    Abstract: A method for forming a laterally varying n-type doping concentration is provided. The method includes providing a semiconductor wafer with a first surface, a second surface arranged opposite to the first surface and a first n-type semiconductor layer having a first maximum doping concentration, implanting protons of a first maximum energy into the first n-type semiconductor layer, and locally treating the second surface with a masked hydrogen plasma. Further, a semiconductor device is provided.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: November 19, 2013
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina
  • Patent number: 8586450
    Abstract: A semiconductor device includes a first wafer having at least one first integrated-circuit chip and a first support layer surrounding the first integrated circuit chip. A first electrical-connection layer is placed on a frontside of the first wafer and includes a first electrical-connection network. A second wafer is placed on a frontside of the first electrical-connection layer. The second wafer includes at least one second integrated-circuit chip and a second support layer surrounding the second integrate circuit chip. The second integrated circuit chip has an active side facing the first electrical-connection layer, and one or more through-holes filled with a conductor forming electrical-connection vias. A second electrical-connection layer is placed on the backside of the second wafer and includes a second electrical-connection network.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: November 19, 2013
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventor: Eric Saugier
  • Publication number: 20130302970
    Abstract: A method of transferring a layer from a donor substrate onto a receiving substrate comprises ionic implantation of at least one species into the donor substrate and forming a layer of concentration of the species intended to form microcavities or platelets; bonding the donor substrate with the receiving substrate by wafer bonding; and splitting at high temperature to split the layer in contact with the receiving substrate by cleavage, at a predetermined cleavage temperature, at the layer of microcavities or platelets formed in the donor substrate. The method further comprises, after the first implantation step and before the splitting step, ionic implantation of silicon ions into the donor substrate to form a layer of concentration of silicon ions in the donor substrate, the layer of concentration of silicon ions at least partially overlapping the layer of concentration of the species intended to form microcavities or platelets.
    Type: Application
    Filed: November 23, 2011
    Publication date: November 14, 2013
    Applicant: SOITEC
    Inventors: Nicolas Daix, Konstantin Bourdelle
  • Publication number: 20130302969
    Abstract: A ring adhesive tape having an annular adhesive layer in a peripheral area thereof is attached to the front side of a wafer having a device area and a peripheral area surrounding the device area. The annular adhesive layer of the ring adhesive tape is positioned so as to correspond to the peripheral marginal area of the wafer, so that the annular adhesive layer does not adhere to the device area. In peeling the ring adhesive tape from the front side of the wafer after forming modified layers inside the wafer, it is possible to prevent damage to the device area due to the adhesive force of the annular adhesive layer.
    Type: Application
    Filed: April 25, 2013
    Publication date: November 14, 2013
    Applicant: Disco Corporation
    Inventor: Karl PRIEWASSER
  • Patent number: 8580617
    Abstract: The thermosetting die-bonding film of the present invention is used in manufacturing a semiconductor device, has at least an epoxy resin, a phenol resin, and an acrylic copolymer, and the ratio X/Y is 0.7 to 5 when X represents a total weight of the epoxy resin and the phenol resin and Y represents a weight of the acrylic copolymer.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: November 12, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Yuki Sugo, Sadahito Misumi, Takeshi Matsumura
  • Patent number: 8575741
    Abstract: There is provided a method of removing trap levels and defects, which are caused by stress, from a single crystal silicon thin film formed by an SOI technique. First, a single crystal silicon film is formed by using a typical bonding SOI technique such as Smart-Cut or ELTRAN. Next, the single crystal silicon thin film is patterned to form an island-like silicon layer, and then, a thermal oxidation treatment is carried out in an oxidizing atmosphere containing a halogen element, so that an island-like silicon layer in which the trap levels and the defects are removed is obtained.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: November 5, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8575003
    Abstract: Presented is a method for producing an optoelectronic component. The method includes separating a semiconductor layer based on a III-V-compound semiconductor material from a substrate by irradiation with a laser beam having a plateau-like spatial beam profile, where individual regions of the semiconductor layer are irradiated successively.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: November 5, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Michael Fehrer, Berthold Hahn, Volker Härle, Stephan Kaiser, Frank Otte, Andreas Plössl
  • Patent number: 8575010
    Abstract: The invention relates to a method for fabricating a semiconductor substrate by providing a silicon on insulator type substrate that includes a base, an insulating layer and a first semiconductor layer, doping the first semiconductor layer to thereby obtain a modified first semiconductor layer, and providing a second semiconductor layer with a different dopant concentration than the modified first semiconductor layer over or on the modified first semiconductor layer. With this method, an improved dopant concentration profile can be achieved through the various layers which makes the substrates in particular more suitable for various optoelectronic applications.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: November 5, 2013
    Assignee: Soitec
    Inventors: Alexis Drouin, Bernard Aspar, Christophe Desrumaux, Olivier Ledoux, Christophe Figuet
  • Patent number: 8573469
    Abstract: A method of fabricating and transferring a micro device and an array of micro devices to a receiving substrate are described. In an embodiment, an electrically insulating layer is utilized as an etch stop layer during etching of a p-n diode layer to form a plurality of micro p-n diodes. In an embodiment, an electrically conductive intermediate bonding layer is utilized during the formation and transfer of the micro devices to the receiving substrate.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: November 5, 2013
    Assignee: LuxVue Technology Corporation
    Inventors: Hsin-Hua Hu, Andreas Bibl, John A. Higginson, Hung-Fai Stephen Law
  • Patent number: 8574929
    Abstract: A method to form a monolithic 3D device including: processing a first layer including first mono-crystal transistors; transferring a second mono-crystal layer on top of the first layer including first mono-crystal transistors by using ion-cut layer transfer; and repairing the damage caused by the ion-cut by using optical annealing.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: November 5, 2013
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Deepak Sekar, Brian Cronquist
  • Patent number: 8575004
    Abstract: The present invention related to a lift-off structure adapted to a substrate having a photoelectric device, the structure comprising: a buffer layer, forming on the substrate; an upper sacrificial layer, forming on the buffer layer; an etch stop layer, forming on the upper sacrificial layer, and the photoelectric device structure forming on the etch stop layer.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: November 5, 2013
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Yu-Li Tsai, Chih-Hung Wu, Jei-Li Ho, Chao-Huei Huang, Min-De Yang
  • Patent number: 8575005
    Abstract: A method of manufacturing an electronic device on a plastic substrate includes: providing a carrier as a rigid support for the electronic device; providing a metallic layer on the carrier; forming the plastic substrate on the metallic layer, the metallic layer guaranteeing a temporary bonding of the plastic substrate to the carrier; forming the electronic device on the plastic substrate; and releasing the carrier from the plastic substrate. Releasing the carrier comprises immersing the electronic device bonded to the carrier in a oxygenated water solution that breaks the bonds between the plastic substrate and the metallic layer.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: November 5, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Corrado Accardi, Stella Loverso, Sebastiano Ravesi, Noemi Graziana Sparta
  • Patent number: 8575722
    Abstract: A method for producing a semiconductor wafer having a multilayer film, in production of a semiconductor device by the steps of forming a porous layer on a surface of a semiconductor wafer by changing a surface portion into the porous layer, forming a semiconductor film on a surface of the porous layer to produce a semiconductor wafer having a multilayer film, fabricating a device on the semiconductor film, and producing the semiconductor device by delaminating the semiconductor film along the porous layer, the semiconductor film having the device formed thereon, including flattening the semiconductor wafer after delaminating and reusing the flattened semiconductor wafer, the method further including a thickness adjusting step of adjusting a whole thickness of the semiconductor wafer having a multilayer film to be produced by reusing the semiconductor wafer so as to satisfy a predetermined standard.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: November 5, 2013
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Kiyoshi Mitani, Tsuyoshi Ohtsuki, Toru Takahashi, Wei Feig Qu