Including Multiple Implantation Steps Patents (Class 438/519)
-
Patent number: 11211248Abstract: A method for p-type doping of a silicon carbide layer includes first implantation step of implanting aluminum dopants into a preselected region of the silicon carbide layer by ion implantation, an annealing step of annealing the silicon carbide layer after performing the first implantation step, a second implantation step of implanting beryllium dopants into the preselected region by ion implantation before the annealing step. A ratio of the total aluminum dose in the first implantation step to the total beryllium dose in the second implantation step is in a range between 0.1 and 10.Type: GrantFiled: February 28, 2019Date of Patent: December 28, 2021Assignee: ABB Power Grids Switzerland AGInventors: Giovanni Alfieri, Vinoth Sundaramoorthy
-
Patent number: 10727304Abstract: In an edge termination structure portion, first and second JTE regions are disposed concentrically surrounding an active region. Between the first and second JTE regions, a p-type electric field relaxation region is disposed that includes a first subregion and a second subregion alternately and repeatedly arranged concentrically surround a periphery of the first JTE region. An average impurity concentration of the electric field relaxation region is higher that the impurity concentration of the first JTE region adjacent on the inner side and lower than the impurity concentration of the second JTE region adjacent on the outer side. First subregions have widths that decrease the farther outward they are arranged. Second subregions have widths that are substantially the same independent of position. The first subregions and the first JTE region have equal impurity concentrations. The second subregions and the second JTE region have equal impurity concentrations.Type: GrantFiled: June 19, 2019Date of Patent: July 28, 2020Assignee: FUJI ELECTRIC CO., LTD.Inventor: Shoji Kitamura
-
Patent number: 10374043Abstract: In an edge termination structure portion, first and second JTE regions are disposed concentrically surrounding an active region. Between the first and second JTE regions, a p-type electric field relaxation region is disposed that includes a first subregion and a second subregion alternately and repeatedly arranged concentrically surround a periphery of the first JTE region. An average impurity concentration of the electric field relaxation region is higher that the impurity concentration of the first JTE region adjacent on the inner side and lower than the impurity concentration of the second JTE region adjacent on the outer side. First subregions have widths that decrease the farther outward they are arranged. Second subregions have widths that are substantially the same independent of position. The first subregions and the first JTE region have equal impurity concentrations. The second subregions and the second JTE region have equal impurity concentrations.Type: GrantFiled: December 1, 2016Date of Patent: August 6, 2019Assignee: FUJI ELECTRIC CO., LTD.Inventor: Shoji Kitamura
-
Patent number: 10304743Abstract: A semiconductor device according to this embodiment includes a semiconductor layer, a plurality of diffusion layers in the semiconductor layer, a gate insulating film, a gate electrode, first contacts, and second contacts. The gate insulating film is on the semiconductor layer between the plurality of diffusion layers. The gate electrode is on the gate insulating film. The first contacts include silicide layers of the same material which are on the gate electrode and the diffusion layers respectively, and first metal layers on the silicide layers. The second contacts are on the first contacts.Type: GrantFiled: September 12, 2016Date of Patent: May 28, 2019Assignee: TOSHIBA MEMORY CORPORATIONInventors: Naomi Fukumaki, Masaaki Hatano, Seiichi Omoto
-
Patent number: 9419133Abstract: P+ type regions and a p-type region are selectively disposed in a surface layer of a silicon carbide substrate base. The P+ type region is disposed in a breakdown voltage structure portion surrounding an active region. The P+ type region is disposed in the active region to make up a JBS structure. The p-type region surrounds the P+ type region to make up a junction termination (JTE) structure. A Schottky electrode forms a Schottky junction with an n-type silicon carbide epitaxial layer. The Schottky electrode overhangs an interlayer insulation film covering a portion of the P+ type region and the p-type region and this overhanging portion acts as a field plate. This enables the provision of a semiconductor device configured by using a wide band gap semiconductor capable of maintaining a high breakdown voltage with high reliability, and a method of fabricating thereof.Type: GrantFiled: March 18, 2013Date of Patent: August 16, 2016Assignee: FUJI ELECTRIC CO., LTD.Inventors: Akimasa Kinoshita, Takashi Tsuji, Kenji Fukuda
-
Patent number: 9029250Abstract: A method for producing semiconductor regions including impurities includes forming a trench in a first surface of a semiconductor body. Impurity atoms are implanted into a bottom of the trench. The trench is extended deeper into the semiconductor body, thereby forming a deeper trench. Impurity atoms are implanted into a bottom of the deeper trench.Type: GrantFiled: September 24, 2013Date of Patent: May 12, 2015Assignee: Infineon Technologies Austria AGInventors: Jens Peter Konrath, Ronny Kern, Hans-Joachim Schulze
-
Patent number: 8981337Abstract: The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.Type: GrantFiled: September 3, 2013Date of Patent: March 17, 2015Assignee: Sandia CorporationInventors: David Bruce Burckel, Paul S. Davids, Paul J. Resnick, Bruce L. Draper
-
Patent number: 8955357Abstract: A method for embedding a dopant into a glass substrate is provided. The method may include the steps of applying the dopant to a surface of the glass substrate, positioning the glass substrate adjacent to a catalyst such that the dopant is intermediate the catalyst and the glass substrate, heating the glass substrate to a first temperature, operating a directed thermal energy source so as to generate thermal energy incident upon the dopant, reducing the temperature of the glass substrate to a second temperature below the first temperature, and holding the glass substrate at the second temperature for at least a period of time.Type: GrantFiled: March 13, 2014Date of Patent: February 17, 2015Assignee: Lighting Science Group CorporationInventors: Fredric S. Maxik, David E. Bartine, Theodore Scone, Sepehr Sadeh
-
Patent number: 8951898Abstract: According to one embodiment, a semiconductor device includes a first, a second, a third, a fourth, and a fifth semiconductor region, an insulating film, a control electrode, and a first and a second electrode. The first, the second, the third, the fourth and the fifth semiconductor region include silicon carbide. The first semiconductor region has a first impurity concentration, and has a first portion. The second semiconductor region is provided on the first semiconductor region. The third semiconductor region is provided on the second semiconductor region. The fourth semiconductor region is provided between the first portion and the second semiconductor region. The fourth semiconductor region is provided between the first portion and the third semiconductor region. The fifth semiconductor region includes a first region provided between the first portion and the second semiconductor region, and has a second impurity concentration higher than the first impurity concentration.Type: GrantFiled: February 4, 2014Date of Patent: February 10, 2015Assignee: Kabushiki Kaisha ToshibaInventors: Hiroshi Kono, Takashi Shinohe, Takuma Suzuki, Johji Nishio
-
Patent number: 8912082Abstract: Methods to form complementary implant regions in a workpiece are disclosed. A mask may be aligned with respect to implanted or doped regions on the workpiece. The mask also may be aligned with respect to surface modifications on the workpiece, such as deposits or etched regions. A masking material also may be deposited on the implanted regions using the mask. The workpiece may be a solar cell.Type: GrantFiled: March 23, 2011Date of Patent: December 16, 2014Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Nicholas P. T. Bateman, William T. Weaver, Paul Sullivan, John W. Graff
-
Publication number: 20140353683Abstract: In a semiconductor substrate preparation step, a semiconductor substrate which is made of SiC and in which a first semiconductor region of a first conductivity type is formed is prepared. In a second semiconductor region forming step, a second semiconductor region is formed by implanting an impurity of a second conductivity type into a first semiconductor region through multiple ion implantation steps while varying implantation depths of the respective multiple ion implantation steps. In the second semiconductor region forming step, a dose amount of the impurity when an implantation energy of multiple ion implantation steps is the largest is smaller than a dose amount of impurity when the implantation energy is not the largest.Type: ApplicationFiled: May 27, 2014Publication date: December 4, 2014Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATIONInventors: Hisashi ISHIMABUSHI, Tomohiro MIMURA, Narumasa SOEJIMA
-
Patent number: 8901649Abstract: A semiconductor device, an electrostatic discharge protection device and manufacturing method thereof are provided. The electrostatic discharge protection device includes a gate, a gate dielectric layer, an N-type source region, an N-type drain region, an N-type doped region and a P-type doped region. The gate dielectric layer is disposed on a substrate. The gate is disposed on the gate dielectric layer. The N-type source region and the N-type drain region are disposed in the substrate at two sides of the gate, respectively. The N-type doped region is disposed in the N-type drain region and connects to the top of the N-type drain region. The P-type doped region is disposed under the N-type drain region and connects to the bottom of the N-type drain region.Type: GrantFiled: September 21, 2011Date of Patent: December 2, 2014Assignee: MACRONIX International Co., Ltd.Inventors: Chieh-Wei He, Shih-Yu Wang, Qi-An Xu
-
Patent number: 8900962Abstract: According to one embodiment, a method is disclosed for manufacturing a semiconductor device. The method can include forming a base region and an emitter region in a front surface of a semiconductor layer. The method can include forming a first impurity implantation region by implanting first impurity of a first conductivity type into a back surface of the semiconductor layer. The method can include selectively forming a second impurity implantation region by selectively implanting second impurity of a second conductivity type into the first impurity implantation region. In addition, the method can include irradiating the first impurity implantation region and the second impurity implantation region with laser light. A peak of impurity concentration profile in a depth direction of at least one of the first impurity implantation region and the second impurity implantation region before irradiation with the laser light is adjusted to a depth of 0.05 ?m or more and 0.Type: GrantFiled: March 21, 2011Date of Patent: December 2, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Daisuke Yamashita, Etsuo Hamada, Hideki Nozaki, Hironobu Shibata
-
Patent number: 8860119Abstract: A nonvolatile memory device includes a substrate including a surface, a channel layer formed on the surface of the substrate, which protrudes perpendicularly from the surface, and a plurality of interlayer dielectric layers and a plurality of gate electrode layers alternately stacked along the channel layer, wherein the plurality of gate electrode layers protrude from the plurality of interlayer dielectric layers.Type: GrantFiled: September 5, 2012Date of Patent: October 14, 2014Assignee: SK Hynix Inc.Inventors: Min-Soo Kim, Dong-Sun Sheen, Seung-Ho Pyi, Sung-Jin Whang
-
Publication number: 20140291695Abstract: A silicon carbide device includes an epitaxial silicon carbide layer including a first conductivity type and a buried lateral silicon carbide edge termination region located within the epitaxial silicon carbide layer including a second conductivity type. The buried lateral silicon carbide edge termination region is covered by a silicon carbide surface layer including the first conductivity type.Type: ApplicationFiled: March 26, 2013Publication date: October 2, 2014Applicant: Infineon Technologies AGInventors: Hans-Joachim Schulze, Christian Hecht, Roland Rupp, Rudolf Elpelt
-
Patent number: 8822315Abstract: A method is disclosed for treating a silicon carbide substrate for improved epitaxial deposition thereon and for use as a precursor in the manufacture of devices such as light emitting diodes. The method includes the steps of implanting dopant atoms of a first conductivity type into the first surface of a conductive silicon carbide wafer having the same conductivity type as the implanting ions at one or more predetermined dopant concentrations and implant energies to form a dopant profile, annealing the implanted wafer, and growing an epitaxial layer on the implanted first surface of the wafer.Type: GrantFiled: December 22, 2004Date of Patent: September 2, 2014Assignee: Cree, Inc.Inventors: Davis Andrew McClure, Alexander Suvorov, John Adam Edmond, David Beardsley Slater, Jr.
-
Patent number: 8796123Abstract: An impurity of a first conductivity type is implanted onto a silicon carbide substrate through an opening in a mask layer. First and second films made of first and second materials respectively are formed. It is sensed that etching of the first material is performed during anisotropic etching, and then anisotropic etching is stopped. An impurity of a second conductivity type is implanted onto the silicon carbide substrate through the opening narrowed by the first and second films. Thus, the impurity regions can be formed in an accurately self-aligned manner.Type: GrantFiled: June 5, 2012Date of Patent: August 5, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventors: Shunsuke Yamada, Takeyoshi Masuda
-
Patent number: 8778788Abstract: A semiconductor structure includes a III-nitride substrate with a first side and a second side opposing the first side. The III-nitride substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a III-nitride epitaxial structure including a first III-nitride epitaxial layer coupled to the first side of the III-nitride substrate and a plurality of III-nitride regions of a second conductivity type. The plurality of III-nitride regions have at least one III-nitride epitaxial region of the first conductivity type between each of the plurality of III-nitride regions. The semiconductor structure further includes a first metallic structure electrically coupled to one or more of the plurality of III-nitride regions and the at least one III-nitride epitaxial region. A Schottky contact is created between the first metallic structure and the at least one III-nitride epitaxial region.Type: GrantFiled: October 11, 2011Date of Patent: July 15, 2014Assignee: Avogy, Inc.Inventors: Andrew P. Edwards, Hui Nie, Isik C. Kizilyalli, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
-
Patent number: 8765583Abstract: An improved method of tilting a mask to perform a pattern implant of a substrate is disclosed. The mask has a plurality of apertures, and is placed between the ion source and the substrate. The mask and substrate are tilted at a first angle relative to the incoming ion beam. After the substrate is exposed to the ion beam, the mask and substrate are tilted at a second angle relative to the ion beam and a subsequent implant step is performed. Through the selection of the aperture size and shape, the cross-section of the mask, the distance between the mask and the substrate and the number of implant steps, a variety of implant patterns may be created. In some embodiments, the implant pattern includes heavily doped horizontal stripes with lighter doped regions between the stripes. In some embodiments, the implant pattern includes a grid of heavily doped regions.Type: GrantFiled: February 17, 2011Date of Patent: July 1, 2014Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Benjamin Riordon, Nicholas Bateman, Atul Gupta
-
Publication number: 20140147997Abstract: According to one embodiment, a semiconductor device includes a first, a second, a third, a fourth, and a fifth semiconductor region, an insulating film, a control electrode, and a first and a second electrode. The first, the second, the third, the fourth and the fifth semiconductor region include silicon carbide. The first semiconductor region has a first impurity concentration, and has a first portion. The second semiconductor region is provided on the first semiconductor region. The third semiconductor region is provided on the second semiconductor region. The fourth semiconductor region is provided between the first portion and the second semiconductor region. The fourth semiconductor region is provided between the first portion and the third semiconductor region. The fifth semiconductor region includes a first region provided between the first portion and the second semiconductor region, and has a second impurity concentration higher than the first impurity concentration.Type: ApplicationFiled: February 4, 2014Publication date: May 29, 2014Applicant: KABUSHIKI KAISHA TOSHIBAInventors: Hiroshi KONO, Takashi SHINOHE, Takuma SUZUKI, Johji NISHIO
-
Patent number: 8703522Abstract: A stratified photodiode for high resolution CMOS image sensors implemented with STI technology is provided. The photodiode includes a semi-conductive layer of a first conductivity type, multiple doping regions of a second conductivity type, multiple doping regions of the first conductivity type, and a pinning layer. The multiple doping regions of the second conductivity type are formed to different depths in the semi-conductive layer. The multiple doping regions of the first conductivity type are disposed between the multiple doping regions of the second conductivity type and form multiple junction capacitances without full depletion. In particular, the stratified doping arrangement allows the photodiode to have a small size, high charge storage capacity, low dark current, and low operation voltages.Type: GrantFiled: July 31, 2012Date of Patent: April 22, 2014Assignee: Intellectual Ventures II LLCInventor: Jaroslav Hynecek
-
Patent number: 8679959Abstract: The present invention relates generally to methods for high throughput and controllable creation of high performance semiconductor substrates for use in devices such as high sensitivity photodetectors, imaging arrays, high efficiency solar cells and the like, to semiconductor substrates prepared according to the methods, and to an apparatus for performing the methods of the invention.Type: GrantFiled: September 3, 2009Date of Patent: March 25, 2014Assignee: Sionyx, Inc.Inventors: James E. Carey, Xia Li, Nathaniel J. McCaffrey
-
Patent number: 8652954Abstract: A method for manufacturing a silicon carbide semiconductor device includes the step of forming a mask pattern of a silicon oxide film by removing a portion of the silicon oxide film by means of etching employing a gas containing oxygen gas and at least one fluorine compound gas selected from a group consisting of CF4, C2F6, C3F8, and SF6.Type: GrantFiled: January 17, 2012Date of Patent: February 18, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventors: Naoki Ooi, Hiromu Shiomi
-
Patent number: 8633080Abstract: A semiconductor device includes a region in a semiconductor substrate having a top surface with a first charge storage layer on the top surface. A first conductive line is on the first charge storage layer. A second charge storage layer is on the top surface. A second conductive line is on the second charge storage layer. A third charge storage layer is on the top surface. A third conductive line is on the third charge storage layer. A fourth charge storage layer has a first side adjoining a first sidewall of the first conductive line and a second side adjoining a first sidewall of the second conductive line. A fifth charge storage layer has a first side adjoining a second sidewall of the second conductive line and a second side adjoining a first sidewall of the third conductive line. Source and drain regions are formed in the substrate on either side of the semiconductor device.Type: GrantFiled: January 12, 2011Date of Patent: January 21, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Mark D. Hall, Mehul D. Shroff
-
Patent number: 8530313Abstract: In according with the present invention, a semiconductor device is formed as follows. A contact insulation layer is deposited on the top surface of said silicon layer. A contact mask is applied and following with a dry oxide etching to remove the contact insulation layer from contact open areas. The silicon layer is implanted with a source dopant through the contact open areas and the source dopant is diffused to form source regions, thereby a source mask is saved. A dry silicon etch is carried out to form trenched source-body contacts in the contact open areas, penetrating through the source regions and extending into the body regions.Type: GrantFiled: September 29, 2011Date of Patent: September 10, 2013Assignee: Force Mos Technology Co., Ltd.Inventor: Fu-Yuan Hsieh
-
Patent number: 8492250Abstract: A method for forming a polysilicon layer includes forming an amorphous silicon layer over a substrate, performing a first thermal treatment of the amorphous silicon layer by performing an implantation with a gas that includes silicon (Si), and performing a second thermal treatment on the thermally treated layer at a temperature higher than a temperature of the first thermal treatment.Type: GrantFiled: September 1, 2011Date of Patent: July 23, 2013Assignee: Hynix Semiconductor Inc.Inventor: Eun-Jung Ko
-
Patent number: 8487280Abstract: A first species is implanted into an entire surface of a workpiece and helium is implanted into this entire surface with a non-uniform dose. The first species may be, for example, hydrogen, helium, or nitrogen. The helium has a higher dose at a portion of a periphery of the workpiece. When the workpiece is split, this split is initiated at the periphery with the higher dose. The non-uniform dose may be formed by altering a scan speed of the workpiece or an ion beam current of the helium. In one instance, the non-uniform dose of the helium is larger than a uniform dose of the hydrogen.Type: GrantFiled: October 21, 2010Date of Patent: July 16, 2013Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Gary E. Dickerson, Julian G. Blake
-
Patent number: 8476133Abstract: A trenched field effect transistor is provided that includes (a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body.Type: GrantFiled: January 11, 2010Date of Patent: July 2, 2013Assignee: Fairchild Semiconductor CorporationInventors: Brian Sze-Ki Mo, Duc Chau, Steven Sapp, Izak Bencuya, Dean Edward Probst
-
Patent number: 8461028Abstract: A method and semiconductor device for synthesizing graphene using ion implantation of carbon. Carbon is implanted in a metal using ion implantation. After the carbon is distributed in the metal, the metal is annealed and cooled in order to precipitate the carbon from the metal to form a layer of graphene on the surface of the metal. The metal/graphene surface is then transferred to a dielectric layer in such a manner that the graphene layer is placed on top of the dielectric layer. The metal layer is then removed. Alternatively, recessed regions are patterned and etched in a dielectric layer located on a substrate. Metal is later formed in these recessed regions. Carbon is then implanted into the metal using ion implantation. The metal may then be annealed and cooled in order to precipitate the carbon from the metal to form a layer of graphene on the metal's surface.Type: GrantFiled: October 8, 2012Date of Patent: June 11, 2013Assignee: Board of Regents, The University of Texas SystemInventors: Luigi Colombo, Robert M. Wallace, Rodney S. Ruoff
-
Patent number: 8460977Abstract: A method of forming an electronic device, including forming a preliminary buffer layer on a drift layer, forming a first layer on the preliminary buffer layer, selectively etching the first layer to form a first mesa that exposes a portion of the preliminary buffer layer, and selectively etching the exposed portion of the preliminary buffer layer to form a second mesa that covers a first portion of the drift layer, that exposes a second portion of the drift layer, and that includes a mesa step that protrudes from the first mesa. Dopants are selectively implanted into the drift layer adjacent the second mesa to form a junction termination region in the drift layer. Dopants are selectively implanted through a horizontal surface of the mesa step into a portion of the drift layer beneath the mesa step to form a buried junction extension in the drift layer.Type: GrantFiled: December 28, 2011Date of Patent: June 11, 2013Assignee: Cree, Inc.Inventors: Qingchun Zhang, Anant K. Agarwal
-
Patent number: 8409975Abstract: A method for decreasing polysilicon gate resistance in a carbon co-implantation process which includes: depositing a first salicide block layer on a formed gate of a MOS device and etching it to form a first spacer of a side surface of the gate of the MOS device; performing a P-type heavily doped boron implantation process and a thermal annealing treatment, so as to decrease the resistance of the polysilicon gate; removing said first spacer, performing a lightly doped drain process, and performing a carbon co-implantation process at the same time, so as to form ultra-shallow junctions at the interfaces between a substrate and source region and drain region below the gate; re-depositing a second salicide block layer on the gate and etching the mask to form a second spacer; forming a self-aligned silicide on the surface of the MOS device. The invention can decrease the resistance of the P-type polysilicon gate.Type: GrantFiled: December 29, 2011Date of Patent: April 2, 2013Assignee: Shanghai Huali Microelectronics CorporationInventor: Liujiang Yu
-
Patent number: 8377807Abstract: Defects in a semiconductor substrate due to ion implantation are minimized by forming an implant region in the semiconductor substrate and subjecting the semiconductor substrate to a first anneal to recrystallize the semiconductor substrate. The semiconductor substrate is subjected to a second anneal to suppress diffusion of implanted ions in the semiconductor substrate. The first anneal being at a lower temperature and longer duration than the second anneal.Type: GrantFiled: September 30, 2010Date of Patent: February 19, 2013Assignee: Suvolta, Inc.Inventors: Lucian Shifren, Taiji Ema
-
Patent number: 8372709Abstract: A method of forming a semiconductor device includes forming an interfacial layer on a semiconductor substrate, forming a high-k dielectric on the interfacial layer, forming a barrier metal on the high-k dielectric, forming a poly-silicon layer on the barrier metal, patterning the interfacial layer, the high-k dielectric, the barrier metal and the poly-silicon to form a gate stack forming spacers, extension regions, sidewalls and source/drain regions, forming an interlayer dielectric on the gate stack, etching off a portion of the interlayer dielectric to expose the poly-silicon layer, forming an impurity metal layer, which includes an impurity metal having a barrier effect to the diffusive material, and a metal layer including a diffusive material, on the poly-silicon layer and converting the poly-Si layer into a silicide containing the impurity metal. The barrier metal includes a titanium nitride (TiN) or a tantalum nitride (TaN).Type: GrantFiled: August 14, 2012Date of Patent: February 12, 2013Assignee: Renesas Electronics CorporationInventor: Hiroshi Sunamura
-
Patent number: 8343815Abstract: A tunnel field effect transistor (TFET) includes a source region, the source region comprising a first portion of a nanowire; a channel region, the channel region comprising a second portion of the nanowire; a drain region, the drain region comprising a portion of a silicon pad, the silicon pad being located adjacent to the channel region; and a gate configured such that the gate surrounds the channel region and at least a portion of the source region.Type: GrantFiled: May 11, 2010Date of Patent: January 1, 2013Assignee: International Business Machines CorporationInventors: Sarunya Bangsaruntip, Isaac Lauer, Amlan Majumdar, Jeffrey Sleight
-
Publication number: 20120315746Abstract: An impurity of a first conductivity type is implanted onto a silicon carbide substrate through an opening in a mask layer. First and second films made of first and second materials respectively are formed. It is sensed that etching of the first material is performed during anisotropic etching, and then anisotropic etching is stopped. An impurity of a second conductivity type is implanted onto the silicon carbide substrate through the opening narrowed by the first and second films. Thus, the impurity regions can be formed in an accurately self-aligned manner.Type: ApplicationFiled: June 5, 2012Publication date: December 13, 2012Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventors: Shunsuke YAMADA, Takeyoshi MASUDA
-
Patent number: 8318571Abstract: A method for forming a MOS device with an ultra shallow lightly doped diffusion region includes providing a gate dielectric layer overlying a substrate surface region, forming a gate structure overlying the gate dielectric layer, performing a first implant process using a germanium species to form an amorphous region within an LDD region using the gate structure as a mask, and performing a second implant process in the LDD region using a P-type impurity and a carbon species. A first thermal process activates the P-type impurity in the LDD region, forming side wall spacers overlying the gate structure, and performing a third implant process using a first impurity to form active source/drain regions in a vicinity of the surface region adjacent to the gate structure using the gate structure and the spacers as a mask. A second thermal process then activates the first impurity in the active source/drain regions.Type: GrantFiled: October 24, 2008Date of Patent: November 27, 2012Assignee: Semiconductor Manufacturing International (Shanghai) CorporationInventor: Chia Hao Lee
-
Patent number: 8298889Abstract: An electronic device can include a first layer having a primary surface, a well region lying adjacent to the primary surface, and a buried doped region spaced apart from the primary surface and the well region. The electronic device can also include a trench extending towards the buried doped region, wherein the trench has a sidewall, and a sidewall doped region along the sidewall of the trench, wherein the sidewall doped region extends to a depth deeper than the well region. The first layer and the buried region have a first conductivity type, and the well region has a second conductivity type opposite that of the first conductivity type. The electronic device can include a conductive structure within the trench, wherein the conductive structure is electrically connected to the buried doped region and is electrically insulated from the sidewall doped region. Processes for forming the electronic device are also described.Type: GrantFiled: December 10, 2008Date of Patent: October 30, 2012Assignee: Semiconductor Components Industries, LLCInventors: Jaume Roig-Guitart, Peter Moens, Marnix Tack
-
Patent number: 8293629Abstract: Embodiments of a process for forming a photodetector region in a CMOS pixel by dopant implantation, the process comprising masking a photodetector area of a surface of a substrate for formation of the photodetector region, positioning the substrate at a plurality of twist angles, and at each of the plurality of twist angles, directing dopants at the photodetector area at a selected tilt angle. Embodiments of a CMOS pixel comprising a photodetector region formed in a substrate, the photodetector region comprising overlapping first and second dopant implants, wherein the overlap region has a different dopant concentration than the non-overlapping parts of the first and second implants, a floating diffusion formed in the substrate, and a transfer gate formed on the substrate between the photodetector and the transfer gate. Other embodiments are disclosed and claimed.Type: GrantFiled: April 6, 2010Date of Patent: October 23, 2012Assignee: OmniVision Technologies, Inc.Inventors: Duli Mao, Hsin-Chih Tai, Vincent Venezia, Yin Qian, Howard E. Rhodes
-
Patent number: 8288255Abstract: ZnTe is implanted with a first species selected from Group III and a second species selected from Group VII. This may be preformed using sequential implants, implants of the first species and second species that are at least partially simultaneous, or a molecular species comprising an atom selected from Group III and an atom selected from Group VII. The implants may be performed at an elevated temperature in one instance between 70° C. and 800° C.Type: GrantFiled: February 2, 2012Date of Patent: October 16, 2012Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Xianfeng Lu, Ludovic Godet, Anthony Renau
-
Patent number: 8278197Abstract: The invention provides a method to enhance the programmability of a prompt-shift device, which reduces the programming time to sub-millisecond times, by altering the extension and halo implants, instead of simply omitting the same from one side of the device as is the case in the prior art prompt-shift devices. The invention includes an embodiment in which no additional masks are employed, or one additional mask is employed. The altered extension implant is performed at a reduced ion dose as compared to a conventional extension implant process, while the altered halo implant is performed at a higher ion dose than a conventional halo implant. The altered halo/extension implant shifts the peak of the electrical field to under an extension dielectric spacer.Type: GrantFiled: May 30, 2008Date of Patent: October 2, 2012Assignee: International Business Machines CorporationInventors: Matthew J. Breitwisch, Roger W. Cheek, Jeffrey B. Johnson, Chung H. Lam, Beth A. Rainey, Michael J. Zierak
-
Patent number: 8278711Abstract: A substrate having semiconductor material and a surface that supports a gate electrode and defines a surface normal direction is provided. The substrate can include a drift region including a first dopant type. A well region can be disposed adjacent to the drift region and proximal to the surface, and can include a second dopant type. A termination extension region can be disposed adjacent to the well region and extend away from the gate electrode, and can have an effective concentration of second dopant type that is generally less than that in the well region. An adjust region can be disposed between the surface and at least part of the termination extension region. An effective concentration of second dopant type may generally decrease when moving from the termination extension region into the adjust region along the surface normal direction.Type: GrantFiled: November 23, 2010Date of Patent: October 2, 2012Assignee: General Electric CompanyInventors: Ramakrishna Rao, Stephen Daley Arthur, Peter Almern Losee, Kevin Dean Matocha
-
Patent number: 8258052Abstract: A method of manufacturing a silicon carbide semiconductor device according to the present invention includes the steps of (a) forming an implantation mask made up of a plurality of unit masks on a silicon carbide semiconductor layer, and (b) implanting predetermined ion in the silicon carbide semiconductor layer at a predetermined implantation energy by using the implantation mask. In the step (a), the implantation mask is formed such that a length from any point in the unit mask to an end of the unit mask can be equal to or less than a scattering length obtained when the predetermined ion is implanted in silicon carbide at the predetermined implantation energy and the implantation mask can have a plurality of regions different from each other in terms of a size and an arrangement interval of the unit masks.Type: GrantFiled: October 6, 2010Date of Patent: September 4, 2012Assignee: Mitsubishi Electric CorporationInventors: Koji Okuno, Yoichiro Tarui
-
Patent number: 8247286Abstract: One embodiment of inventive concepts exemplarily described herein may be generally characterized as a semiconductor device including an isolation region within a substrate. The isolation region may define an active region. The active region may include an edge portion that is adjacent to an interface of the isolation region and the active region and a center region that is surrounded by the edge portion. The semiconductor device may further include a gate electrode on the active region and the isolation region. The gate electrode may include a center gate portion overlapping a center portion of the active region, an edge gate portion overlapping the edge portion of the active region, and a first impurity region of a first conductivity type within the center gate portion and outside the edge portion. The semiconductor device may further include a gate insulating layer disposed between the active region and the gate electrode.Type: GrantFiled: February 25, 2010Date of Patent: August 21, 2012Assignee: Samsung Electronics Co., Ltd.Inventor: Dong-Ryul Chang
-
Patent number: 8242005Abstract: A first species is directed through a first mask with a first aperture and a second mask with a second aperture. The first aperture and second aperture may be different shapes or have different spacing. The first species may be implanted in pattern defining non-implanted regions surrounded by implanted regions. These implanted regions are a sum of said first ion species implanted through said first aperture and said second aperture. Thus, the non-implanted regions are surrounded by the implanted regions formed using the first mask and second mask. The first species also may deposit on or etch the workpiece.Type: GrantFiled: January 24, 2011Date of Patent: August 14, 2012Assignee: Varian Semiconductor Equipment Associates, Inc.Inventor: Justin M. Ricci
-
Publication number: 20120202340Abstract: ZnTe is implanted with a first species selected from Group III and a second species selected from Group VII. This may be performed using sequential implants, implants of the first species and second species that are at least partially simultaneous, or a molecular species comprising an atom selected from Group III and an atom selected from Group VII. The implants may be performed at an elevated temperature in one instance between 70° C. and 800° C.Type: ApplicationFiled: February 4, 2011Publication date: August 9, 2012Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.Inventors: Xianfeng LU, Ludovic GODET, Anthony RENAU
-
Publication number: 20120202341Abstract: ZnTe is implanted with a first species selected from Group III and a second species selected from Group VII. This may be preformed using sequential implants, implants of the first species and second species that are at least partially simultaneous, or a molecular species comprising an atom selected from Group III and an atom selected from Group VII. The implants may be performed at an elevated temperature in one instance between 70° C. and 800° C.Type: ApplicationFiled: February 2, 2012Publication date: August 9, 2012Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.Inventors: Xiangfeng LU, Ludovic GODET, Anthony RENAU
-
Patent number: 8232162Abstract: A method of forming a deep trench structure for a semiconductor device includes forming a mask layer over a semiconductor substrate. An opening in the mask layer is formed by patterning the mask layer, and a deep trench is formed in the semiconductor substrate using the patterned opening in the mask layer. A sacrificial fill material is formed over the mask layer and into the deep trench. A first portion of the sacrificial fill material is recessed from the deep trench and a first dopant implant forms a first doped region in the semiconductor substrate. A second portion of the sacrificial fill material is recessed from the deep trench and a second dopant implant forms a second doped region in the semiconductor substrate, wherein the second doped region is formed underneath the first doped region such that the second doped region and the first doped region are contiguous with each other.Type: GrantFiled: September 13, 2010Date of Patent: July 31, 2012Assignee: International Business Machines CorporationInventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang, Yanli Zhang
-
Publication number: 20120184092Abstract: A method for manufacturing a silicon carbide semiconductor device includes the step of forming a mask pattern of a silicon oxide film by removing a portion of the silicon oxide film by means of etching employing a gas containing oxygen gas and at least one fluorine compound gas selected from a group consisting of CF4, C2F6, C3F8, and SF6.Type: ApplicationFiled: January 17, 2012Publication date: July 19, 2012Applicant: Sumitomo Electric Industries, Ltd.Inventors: Naoki OOI, Hiromu Shiomi
-
Patent number: 8216923Abstract: An improved, lower cost method of processing substrates, such as to create solar cells is disclosed. In addition, a modified substrate carrier is disclosed. The carriers typically used to carry the substrates are modified so as to serve as shadow masks for a patterned implant. In some embodiments, various patterns can be created using the carriers such that different process steps can be performed on the substrate by changing the carrier or the position with the carrier. In addition, since the alignment of the substrate to the carrier is critical, the carrier may contain alignment features to insure that the substrate is positioned properly on the carrier. In some embodiments, gravity is used to hold the substrate on the carrier, and therefore, the ions are directed so that the ion beam travels upward toward the bottom side of the carrier.Type: GrantFiled: October 1, 2010Date of Patent: July 10, 2012Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Nicholas Bateman, Kevin Daniels, Atul Gupta, Russell Low, Benjamin Riordon, Robert Mitchell, Steven Anella
-
Patent number: 8202789Abstract: Various masks for use with ion implantation equipment are disclosed. In one embodiment, the masks are formed by assembling a collection of segments and spacers to create a mask having the desired configuration. This collection of parts is held together with a carrier or frame. In another embodiment, a panel is formed by machining open-ended slots into a substrate, so as to form a comb-shaped device. Two such panels may be connected together to form a mask. In other embodiments, the panels may be used sequentially in an ion implantation process to create interdigitated back contacts. In another embodiment, multiple masks are overlaid so as to create implant patterns that cannot be created effectively using a single mask.Type: GrantFiled: September 8, 2009Date of Patent: June 19, 2012Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Steven M. Anella, William Weaver