Forming Array Of Gate Electrodes Patents (Class 438/587)
  • Patent number: 8642458
    Abstract: A method of fabricating a nonvolatile memory device includes providing an intermediate structure in which a floating gate and an isolation film are disposed adjacent to each other on a semiconductor substrate and a gate insulating film is disposed on the floating gate and the isolation film, forming a conductive film on the gate insulating film, and annealing the conductive film so that part of the conductive film on an upper portion of the floating gate flows down onto a lower portion of the floating gate and an upper portion of the isolation film.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: February 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-Hong Chung, Young-Hee Kim, In-Sun Yi, Han-Mei Choi
  • Patent number: 8637362
    Abstract: A memory array with data/bit lines extending generally in a first direction formed in an upper surface of a substrate and access transistors extending generally upward and aligned generally atop a corresponding data/bit line. The access transistors have a pillar extending generally upward with a source region formed so as to be in electrical communication with the corresponding data/bit line and a drain region formed generally at an upper portion of the pillar and a surround gate structure substantially completely encompassing the pillar in lateral directions and extending substantially the entire vertical extent of the pillar and word lines extending generally in a second direction and in electrical contact with a corresponding surround gate structure at at least a first surface thereof such that bias voltage applied to a given word line is communicated substantially uniformly in a laterally symmetric extent about the corresponding pillar via the surround gate structure.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: January 28, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 8637389
    Abstract: A method of making a memory array is provided that includes forming a layer over a substrate, forming features over the layer, forming sidewall spacers on each of the features, filling spaces between adjacent sidewall spacers with filler features, removing the sidewall spacers to leave the features and the filler features, and etching the layer using the features and the filler features as a mask to form pillar shaped nonvolatile memory cells. Numerous other aspects are provided.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: January 28, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Yung-Tin Chen, Steven J. Radigan
  • Patent number: 8635573
    Abstract: A device, and method of fabricating and/or designing such a device, including a first gate structure having a width (W) and a length (L) and a second gate structure separated from the first gate structure by a distance greater than: (?{square root over (W*W+L*L)})/10. The second gate structure is a next adjacent gate structure to the first gate structure. A method and apparatus for designing an integrated circuit including implementing a design rule defining the separation of gate structures is also described. In embodiments, the distance of separation is implemented for gate structures that are larger relative to other gate structures on the substrate (e.g., greater than 3 ?m2).
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: January 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hak-Lay Chuang, Ming Zhu, Po-Nien Chen, Bao-Ru Young
  • Publication number: 20140017886
    Abstract: A method of fabricating a semiconductor device includes forming a first set of gate electrodes over a substrate, adjacent gate electrodes of the first set of gate electrodes being separated by a first gap width, and having a first gate width. The method includes forming a second set of gate electrodes over the substrate, adjacent gate electrodes of the second set of gate electrodes being separated by a second gap width less than the first gap width, and having a second gate width greater than the first gate width. The method further includes forming a first set of spacer structures on sidewalls of the first and second sets of gate electrodes. The method further includes forming a second set of spacer structures abutting the first set of spacer structures and removing a subset of the second set of spacer structures over the sidewalls of the second set of gate electrodes.
    Type: Application
    Filed: September 20, 2013
    Publication date: January 16, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lee-Wee TEO, Ming ZHU, Hui-Wen LIN, Bao-Ru YOUNG, Harry-Hak-Lay CHUANG
  • Patent number: 8629048
    Abstract: A method of forming a pattern on a substrate includes forming longitudinally elongated first lines and first sidewall spacers longitudinally along opposite sides of the first lines elevationally over an underlying substrate. Longitudinally elongated second lines and second sidewall spacers are formed longitudinally along opposite sides of the second lines. The second lines and the second sidewall spacers cross elevationally over the first lines and the first sidewall spacers. The second sidewall spacers are removed from crossing over the first lines. The first and second lines are removed in forming a pattern comprising portions of the first and second sidewall spacers over the underlying substrate. Other methods are disclosed.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: January 14, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Vishal Sipani, Anton J. deVilliers
  • Publication number: 20140009211
    Abstract: Radio-frequency (RF) switch circuits are disclosed having transistor gate voltage compensation to provide improved switching performance. RF switch circuits include a plurality of field-effect transistors (FETs) connected in series between first and second nodes, each FET having a gate. A compensation network including a coupling circuit couples the gates of each pair of neighboring FETs.
    Type: Application
    Filed: July 6, 2013
    Publication date: January 9, 2014
    Inventors: Anuj Madan, Fikret Altunkilic, Guillaume Alexandre Blin
  • Publication number: 20140008720
    Abstract: A method for fabricating an integrated circuit includes forming a first layer of a workfunction material in a first trench of a plurality of trench structures formed over a silicon substrate, the first trench having a first length and forming a second layer of a workfunction material in a second trench, the second trench having a second length that is longer than the first length. The method further includes depositing a low-resistance fill material onto the integrated circuit to fill any unfilled trenches with the low-resistance fill material and etching the low resistance fill material, the first layer, and the second layer to re-expose a portion of each trench of the plurality of trenches, while leaving a portion of each of the first layer, the second layer, and the low-resistance fill material in place. Still further, the method includes depositing a gate fill material into each re-exposed trench portion.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 9, 2014
    Applicants: International Business Machines Corporation, Globalfoundries Inc.
    Inventors: Ruilong Xie, Pranatharthi Haran Balasubramanian
  • Patent number: 8623716
    Abstract: A multi-gate semiconductor device and method for forming the same. A multi-gate semiconductor device is formed including a first fin of a first transistor formed on a semiconductor substrate having a first dopant type. The first transistor has a doped channel region of the first dopant type. The device also includes a second fin of a second transistor formed on the first dopant type semiconductor substrate. The second transistor has a doped channel region of a second dopant type. The device further includes a gate electrode layer of the second dopant type formed over the channel region of the first fin and a gate electrode layer of the first dopant type formed over the channel region of the second fin.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: January 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Ching Wang, Jon-Hsu Ho, Ching-Fang Huang, Wen-Hsing Hsieh, Tsung-Hsing Yu, Yi-Ming Sheu, Ken-Ichi Goto, Zhiqiang Wu
  • Patent number: 8618604
    Abstract: A semiconductor wafer has a main surface. A main chip region is formed on the main surface. A sub-chip region is smaller in area than the main chip region, and positioned on an edge side of the semiconductor wafer relative to the main chip region. The sub-chip region is identical to the main chip region in design pattern. Accordingly, a semiconductor device in which occurrence of a pattern failure at the edge of the wafer can be prevented when chips are arranged in the surface of the semiconductor wafer and a method of manufacturing the same can be obtained.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: December 31, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Atsushi Narazaki
  • Patent number: 8618616
    Abstract: A method for fabricating a FinFET structure includes fabricating a plurality of parallel fins overlying a semiconductor substrate, each of the plurality of parallel fins having sidewalls and forming an electrode over the semiconductor substrate and between the parallel fins. The electrode is configured to direct an electrical field into the fins, thereby affecting the threshold voltage of the FinFET structure.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: December 31, 2013
    Assignee: Globalfoundries, Inc.
    Inventor: Daniel Thanh Khac Pham
  • Patent number: 8617974
    Abstract: An improvement is achieved in the manufacturing yield of a semiconductor device including a plurality of field effect transistors having different characteristics over the same substrate. By combining anisotropic dry etching with isotropic wet etching or isotropic dry etching, three types of sidewalls having different sidewall lengths are formed. By reducing the number of anisotropic dry etching steps, in a third n-type MISFET region and a third p-type MISFET region where layout densities are high, it is possible to prevent a semiconductor substrate from being partially cut between n-type gate electrodes adjacent to each other, between the n-type gate electrode and a p-type gate electrode adjacent to each other, and the p-type gate electrodes adjacent to each other.
    Type: Grant
    Filed: October 28, 2012
    Date of Patent: December 31, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yasushi Ishii, Hiraku Chakihara, Kentaro Saito
  • Patent number: 8617996
    Abstract: Methods for removal of fins from a semiconductor structure are provided. A fin liner is applied to the fins. The fin liner is then removed from the fins that are to be removed. The fin liner is of a material that is selective compared to the semiconductor fins. Hence, the fins can be removed without significant damage to the fin liner. The subsets of fins that are to be removed are then removed, while the fin liner protects the adjacent fins that are to be kept.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: December 31, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Min-hwa Chi, Honglian Shen, Changyong Xiao
  • Patent number: 8610176
    Abstract: An apparatus fabricated using a standard cell architecture including devices having different voltage thresholds may include a first set of polylines associated with a first channel length, where each polyline within the first set of polylines is separated by a substantially constant pitch. The apparatus may further include a second set of polylines associated with a second channel length and aligned with the first set of polylines, where each polyline within the second set of polylines is laterally separated by the substantially constant pitch. The apparatus may further include a first active region below the first set of polylines, and a second active region below the second set of polylines, where the first active region and the second active region are separated by a distance of less than 170 nm.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: December 17, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Prayag B. Patel, Pratyush Kamal, Foua Vang, Chock H. Gan, Pr Chidambaram, Chethan Swamynathan
  • Patent number: 8610205
    Abstract: In one general aspect, an apparatus can include a shield dielectric disposed within a trench aligned along an axis within an epitaxial layer of a semiconductor, and a shield electrode disposed within the shield dielectric and aligned along the axis. The apparatus can include a first inter-poly dielectric having a portion intersecting a plane orthogonal to the axis where the plane intersects the shield electrode, and a second inter-poly dielectric having a portion intersecting the plane and disposed between the first inter-poly dielectric and the shield electrode. The apparatus can also include a gate dielectric having a portion disposed on the first inter-poly dielectric.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: December 17, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Dean E. Probst
  • Publication number: 20130323887
    Abstract: Semiconductor devices including a plurality of thyristor-based memory cells, each having a cell size of 4F2, and methods for forming the same are provided. The thyristor-based memory cells each include a thyristor having vertically superposed regions of alternating dopant types, and a control gate. The control gate may be electrically coupled with one or more of the thyristors and may be operably coupled to a voltage source. The thyristor-based memory cells may be formed in an array on a conductive strap, which may function as a cathode or a data line. A system may be formed by integrating the semiconductor devices with one or more memory access devices or conventional logic devices, such as a complementary metal-oxide-semiconductor (CMOS) device.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 5, 2013
    Applicant: Micron Technology, Inc.
    Inventor: Sanh D. Tang
  • Patent number: 8598028
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a first gate structure over an iso region of a substrate and a second gate structure over a dense region of the substrate. The dense region has a greater pattern density than the iso region. The first and second gate structures each have a respective hard mask disposed thereon. The method includes removing the hard masks from the first and second gate structures. The removal of the hard mask from the second gate structure causes an opening to be formed in the second gate structure. The method includes performing a deposition process followed by a first polishing process to form a sacrificial component in the opening. The method includes performing a second polishing process to remove the sacrificial component and portions of the first and second gate structures.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: December 3, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Che-Hao Tu, Chi-Jen Liu, Tzu-Chung Wang, Weilun Hong, Ying-Tsung Chen, Liang-Guang Chen
  • Publication number: 20130309856
    Abstract: Semiconductor devices and methods of their fabrication are disclosed. One method includes forming a semiconductor device structure including a plurality of dummy gates and a dielectric gap filling material with a pre-determined aspect ratio that is between the dummy gates. An etch resistant nitride layer is applied above the dielectric gap filling material to maintain the aspect ratio of the gap filling material. In addition, the dummy gates are removed by implementing an etching process. Further, replacement gates are formed in regions of the device structure previously occupied by the dummy gates.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: HEMANTH JAGANNATHAN, SANJAY MEHTA, CHUN-CHEN YEH
  • Patent number: 8586462
    Abstract: Disclosed are a method of manufacturing a field-effect transistor. The disclosed method includes: providing a semiconductor substrate; forming a source ohmic metal layer on one side of the semiconductor substrate; forming a drain ohmic metal layer on another side of the semiconductor substrate; forming a gate electrode between the source ohmic metal layer and the drain ohmic metal layer, on an upper portion of the semiconductor substrate; forming an insulating film on the semiconductor substrate's upper portion including the source ohmic metal layer, the drain ohmic metal layer and the gate electrode; and forming a plurality of field electrodes on an upper portion of the insulating film, wherein the insulating film below the respective field electrodes has different thicknesses.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: November 19, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hokyun Ahn, Jong-Won Lim, Hyung Sup Yoon, Byoung-Gue Min, Sang-Heung Lee, Hae Cheon Kim, Eun Soo Nam
  • Patent number: 8586436
    Abstract: Provided is a method and device that includes providing for a plurality of differently configured gate structures on a substrate. For example, a first gate structure associated with a transistor of a first type and including a first dielectric layer and a first metal layer; a second gate structure associated with a transistor of a second type and including a second dielectric layer, a second metal layer, a polysilicon layer, the second dielectric layer and the first metal layer; and a dummy gate structure including the first dielectric layer and the first metal layer.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: November 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jin-Aun Ng, Ming Zhu, Chi-Wen Liu
  • Patent number: 8581308
    Abstract: A device for storing embedded charge includes a first insulator and at least one second insulator. The first insulator has at least two outer surfaces and has a band gap of less than about 5.5 eV. The second insulator is deposited on at least each of the at least two outer surfaces of the first insulator to form at least one interface for storing charge between the first and second insulators. The second insulator has a band gap of more than about 6.0 eV.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: November 12, 2013
    Assignee: Rochester Institute of Technology
    Inventor: Michael D. Potter
  • Patent number: 8581322
    Abstract: A method for making a nonvolatile memory device includes the following steps. A conductive structure is formed, wherein the conductive structure has a first top portion. The first top portion is converted into a second top portion having a domed surface.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: November 12, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Chi-Pin Lu, Jung-Yu Hsieh, Ling-Wuu Yang
  • Patent number: 8575013
    Abstract: Semiconductor devices and related fabrication methods are provided. An exemplary fabrication method involves forming a pair of gate structures having a dielectric region disposed between a first gate structure of the pair and a second gate structure of the pair, and forming a voided region in the dielectric region between the first gate structure and the second gate structure. The first and second gate structures each include a first gate electrode material, wherein the method continues by removing the first gate electrode material to provide second and third voided regions corresponding to the gate structures and forming a second gate electrode material in the first voided region, the second voided region, and the third voided region.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: November 5, 2013
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Peter Baars, Matthias Goldbach
  • Publication number: 20130288472
    Abstract: A method of fabricating a semiconductor device comprises forming a first and a second parallel field regions in a substrate, the parallel field regions are extended in a first direction, forming a first and a second gate capping layer in a first and a second gate trench formed in the substrate respectively, removing the gate capping layers partially so that a first landing pad hole is expanded to overlap the gate capping layers buried in the substrate partially, forming a landing pad material layer in the first space, and forming a bit line contact landing pad by planarizing the landing pad material layer to the level of top surfaces of the capping layers.
    Type: Application
    Filed: February 7, 2013
    Publication date: October 31, 2013
    Inventors: Jay-Bok Choi, Yoo-Sang Hwang, Ah-Young Kim, Ye-Ro Lee, Gyo-Young Jin, Hyeong-sun Hong
  • Patent number: 8563410
    Abstract: A method for fabricating a semiconductor device is disclosed. The method includes forming at least one material layer over a substrate; performing an end-cut patterning process to form an end-cut pattern overlying the at least one material layer; transferring the end-cut pattern to the at least one material layer; performing a line-cut patterning process after the end-cut patterning process to form a line-cut pattern overlying the at least one material layer; and transferring the line-cut pattern to the at least one material layer.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: October 22, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Te S. Lin, Meng Jun Wang, Ya Hui Chang, Hui Ouyang
  • Publication number: 20130270644
    Abstract: Gate structures and methods of manufacturing is disclosed. The method includes forming a continuous replacement gate structure within a trench formed in dielectric material. The method further includes segmenting the continuous replacement gate structure into separate replacement gate structures. The method further includes forming insulator material between the separate replacement gate structures.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 17, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. ANDERSON, Edward J. NOWAK
  • Publication number: 20130256804
    Abstract: According to one exemplary implementation, an integrated circuit (IC) includes a first memory cell transistor of a read only memory (ROM) array, the first memory cell transistor including a first metal gate of a first work function and having a first threshold voltage. The IC also includes a second memory cell transistor of the ROM array, the second memory cell transistor including a second metal gate of a second work function and having a second threshold voltage. The first memory cell transistor and the second memory cell transistor can be of a first conductivity type. Furthermore, the first memory cell transistor can include a first high-k gate dielectric and the second memory cell transistor can include a second high-k gate dielectric.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: BROADCOM CORPORATION
    Inventor: Wei Xia
  • Patent number: 8546252
    Abstract: A structure and method to create a metal gate having reduced threshold voltage roll-off. A method includes: forming a gate dielectric material on a substrate; forming a gate electrode material on the gate dielectric material; and altering a first portion of the gate electrode material. The altering causes the first portion of the gate electrode material to have a first work function that is different than a second work function associated with a second portion of the gate electrode material.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: October 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak, Jed H. Rankin
  • Patent number: 8541284
    Abstract: A method of manufacturing a semiconductor device includes forming a plurality of strings spaced a first distance from each other, each string including first preliminary gate structures spaced a second distance, smaller than the first distance, between second preliminary gate structures, forming a first insulation layer to cover the first and second preliminary gate structures, forming an insulation layer structure to fill a space between the strings, forming a sacrificial layer pattern to partially fill spaces between first and second preliminary gate structures, removing a portion of the first insulation layer not covered by the sacrificial layer pattern to form a first insulation layer pattern, reacting portions of the first and second preliminary gate structures not covered by the first insulation layer pattern with a conductive layer to form gate structures, and forming a capping layer on the gate structures to form air gaps between the gate structures.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: September 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae-Hwang Sim
  • Patent number: 8541826
    Abstract: A memory array structure and a method for forming the same are provided. The memory array structure comprises: a substrate; a plurality of memory cells, each memory cell including a vertical transistor, of which a gate structure is formed in a first trench extending in a first direction; a plurality of word lines in the first direction, each word line formed in the first trench; a plurality of bit lines in a second direction, each bit line formed in lower sides of a semiconductor pillars; a plurality of body lines in the first direction, each body line having a first portion formed on the gate electrodes and a second portion covering a part of a top surface of semiconductor pillar for providing a substrate contact to vertical channel regions; and a plurality of data storage device contacts.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: September 24, 2013
    Assignee: Tsinghua University
    Inventors: Liyang Pan, Haozhi Ma
  • Publication number: 20130242645
    Abstract: Memory cells are described with cross-coupled inverters including unidirectional gate conductors. Gate conductors for access transistors may also be aligned with a long axis of the inverter gate conductor. Contacts of one inverter in a cross-coupled pair may be aligned with a long axis of the other inverter's gate conductor. Separately formed rectangular active regions may be orthogonal to the gate conductors across pull up, pull down and access transistors. Separate active regions may be formed such that active regions associated with an access transistor and/or a pull up transistor are noncontiguous with, and narrower than, an active region associated with a pull down transistor of the inverter. The major components of 6T SRAM, and similar, memory cell topologies may be formed essentially from an array of rectangular lines, including unidirectional gate conductors and contacts, and unidirectional rectangular active regions crossing gate conductors of the inverters and access transistors.
    Type: Application
    Filed: July 20, 2011
    Publication date: September 19, 2013
    Applicant: University of Virginia Patent Foundation
    Inventors: Benton H. Calhoun, Randy W. Mann
  • Publication number: 20130234245
    Abstract: A super junction structural semiconductor device with a substantially rectangle-shaped first region, and a second region surrounding the periphery of the first region; trench gate MOSFET units in the first region comprising a plurality of trench gate regions and a first plurality of pillars; a body region between the trench gate regions and the first plurality of pillars; a second plurality of pillars in the second region extending along a corresponding side of the first region comprising a plurality of lateral pillars and a plurality of longitudinal pillars, wherein in a corner part of the second region, ends of the plurality of lateral pillars and ends of the plurality of longitudinal pillars are stagger and separated apart from each other.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 12, 2013
    Applicant: Chengdu Monolithic Power Systems Co., Ltd.
    Inventors: Rongyao Ma, Tiesheng Li, Donald Disney, Lei Zhang
  • Publication number: 20130237044
    Abstract: A method of manufacturing metal gates comprises the steps of: forming a plurality of parallel trenches on a substrate; forming sequentially a conductive layer and a protective layer on the surfaces of the substrate and trenches; removing the protective layer and conductive layer on the surface of the substrate and the protective layer on the bottom walls of the trenches through anisotropic etching to retain only the protective layer and conductive layer on the side walls; and finally removing the conductive layer not covered by the protective layer through isotropic etching to retain only the protective layer and conductive layer on the side walls so that two insulating gates are respectively formed on the side walls. Thus no isolation material is needed to be disposed at the bottom of the trenches, and the problem of excessive etching to the trenches that results in undesirable insulation can be averted.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Inventors: Hsiao-chia CHEN, Chien-hua TSAI
  • Patent number: 8530942
    Abstract: According to one embodiment, a semiconductor device, including a semiconductor layer including a first region and a second region isolated from the first region, a source in a surface of the first region, a drain in a surface of the second region, a back-gate in the surface of the first region, an end of a drain side of the back-gate being located closer to the drain side than an end of the drain side of the source, a gate insulator on a surface of the semiconductor layer between the first region and the second region, a gate electrode on the gate insulator, a source electrode being contacted to both the source and the back-gate, and a drain electrode being contacted to the drain area.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: September 10, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tsubasa Yamada
  • Publication number: 20130228844
    Abstract: A nonvolatile semiconductor memory device according to an embodiment includes a plurality of cell array layers, each cell array layer including: a plurality of semiconductor layers that extends in a first direction; gate insulating layers; a plurality of floating gates arranged in the first direction; inter-gate insulating layers; and a plurality of control gates that extends in a second direction intersecting semiconductor layers, and faces the floating gates via the inter-gate insulating layers, in which, in the cell array layers adjacent each other in a stacking direction, the control gates of a lower cell array layer and the control gates of the an upper cell array layer are intersecting each other, and the floating gates within the lower cell array layer and the semiconductor layers within the upper cell array layer are aligned in position with each other.
    Type: Application
    Filed: August 31, 2012
    Publication date: September 5, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Satoshi NAGASHIMA, Fumitaka Arai, Hisataka Meguro
  • Publication number: 20130228842
    Abstract: A semiconductor storage device includes a semiconductor substrate. A first insulating film is provided on the semiconductor substrate. A charge storage layer includes a first part provided on the first insulating film, an intermediate insulating film provided on the first part, and a second part provided on the intermediate insulating film, and is capable of storing electric charges. A second insulating film is provided on an upper surface and a side surface of the charge storage layer. A control gate is opposed to the upper surface and the side surface of the charge storage layer via the second insulating film, and is configured to control a voltage of the charge storage layer. The intermediate insulating film is recessed in comparison with side surfaces of the first and second parts on the side surface of the charge storage layer.
    Type: Application
    Filed: August 31, 2012
    Publication date: September 5, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Takahiro Kotou, Hideto Takekida, Minori Kajimoto
  • Patent number: 8518757
    Abstract: A strained semiconductor structure and method of making the structure. The method includes: forming a pad layer on a top surface of a silicon layer of a substrate, the substrate comprising the silicon layer separated from a supporting substrate by a buried oxide layer; forming openings in the pad layer and etching trenches through the silicon layer to the buried oxide layer in the openings to form silicon regions from the silicon layer; forming spacers on the entirety of sidewalls of the silicon regions exposed in the trenches; forming oxide regions in corners of the silicon regions proximate to both the sidewalls and the buried oxide layer to form strained silicon regions, the oxide regions not extending to the pad layer; and removing at least a portion of the spacers and filling remaining spaces in the trenches with silicon to form filled regions abutting the strained silicon region.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: August 27, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brent Alan Anderson, Edward Joseph Nowak
  • Patent number: 8518812
    Abstract: Some embodiments include methods of forming contacts. A row of projections may be formed over a semiconductor substrate. The projections may include a plurality of repeating components of an array, and a terminal projection. The terminal projection may have a sacrificial material spaced from semiconductor material of the substrate by a dielectric structure. An electrically conductive line may be formed along the row. The line may wrap around an end of the terminal projection and bifurcate into two branches that are along opposing sides of the repeating components. The individual branches may have regions spaced from the sacrificial material by segments of gate dielectric. The sacrificial material may be removed, together with the segments of gate dielectric, to form a contact opening. An electrically conductive contact may be formed within the contact opening and directly against the regions of the branches.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: August 27, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Marcello Mariani, Micaela Gabriella Tomasini
  • Patent number: 8513105
    Abstract: An integrated circuit constructed according to an arrangement of logic blocks, with one or more logic blocks including transistors of a different threshold voltage than in other logic blocks. Spacing between neighboring active regions of different threshold voltages is minimized by constraining the angle of implant for the threshold adjust implant, and by constraining the thickness of the mask layer used with that implant. These constraints ensure adequate implant of dopant into the channel region while blocking the implant into channel regions not subject to the threshold adjust, while avoiding shadowing from the mask layer. Efficiency is attained by constraining the direction of implant to substantially perpendicular to the run of the gate electrodes in the implanted regions.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: August 20, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory Charles Baldwin, James Walter Blatchford
  • Patent number: 8507997
    Abstract: A mask read-only memory (ROM) includes parallel doping lines of a second conductivity type formed in a substrate of a first conductivity type, a first insulation film formed on the doping lines and the substrate, conductive pads fainted on the first insulation film, a second insulation film formed on the first insulation film and the conductive pads, parallel wires formed on the second insulation film extending perpendicular to the doping lines, contact plugs formed in the first insulation film that connect the doping lines to the conductive pads, and vias formed in the second insulation film that connect the conductive pads to the wires, wherein crossings of the doping lines and the wires define memory cells, contact plugs and vias are formed in memory cells of a first type, and at least one of the contact plug and via are missing from memory cells of a second type.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: August 13, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Jin Yang, Yong-Tae Kim, Hyuck-Soo Yang, Jung-Ho Moon
  • Patent number: 8507380
    Abstract: A method of forming contact openings in the fabrication of integrated circuitry includes forming a mask which includes at least one of photoresist and amorphous carbon received over a plurality of spaced conductive line constructions. The conductive line constructions include insulative caps and insulative sidewalls. The mask includes a plurality of spaced lines and trench spaces between adjacent of the spaced lines. The spaced lines and the trench spaces angle relative to the conductive line constructions. The trench spaces are received over node locations which are received between adjacent of the conductive line constructions. The at least one of photoresist and amorphous carbon is treated with a plasma to reduce lateral width of the spaced lines and to increase lateral width of the trench spaces. After the treating, contact openings are etched to the node locations selectively relative to the insulative caps and the insulative sidewalls.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: August 13, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Mark Kiehlbauch, Anton deVilliers
  • Patent number: 8501607
    Abstract: A method is provided for forming FinFETS with improved alignment features. Embodiments include forming on a Si substrate pillars of TEOS on poly-Si; conformally depositing a first TEOS liner over the entire substrate; etching the first TEOS liner and substrate through the pillars, forming first trenches; filling the first trenches and spaces between the pillars with an oxide; removing the TEOS from the pillars and the oxide therebetween; removing the poly-Si; conformally depositing a second TEOS liner over the entire Si substrate; etching the second TEOS liner and Si between the oxide, forming second trenches having a larger depth than the first trenches; filling the second trenches with oxide; removing the oxide and the first and second TEOS liners down to an upper surface of the Si substrate; and recessing the oxide below the upper surface of the Si substrate.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: August 6, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Werner Juengling
  • Patent number: 8497198
    Abstract: A semiconductor process is described as follows. A plurality of dummy patterns is formed on a substrate. A mask material layer is conformally formed on the substrate, so as to cover the dummy patterns. The mask material layer has an etching rate different from that of the dummy patterns. A portion of the mask material layer is removed, so as to form a mask layer on respective sidewalls of each dummy pattern. An upper surface of the mask layer and an upper surface of each dummy pattern are substantially coplanar. The dummy patterns are removed. A portion of the substrate is removed using the mask layer as a mask, so as to form a plurality of fin structures and a plurality of trenches alternately arranged in the substrate. The mask layer is removed.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 30, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chih-Chien Liu, Chin-Fu Lin, Teng-Chun Tsai
  • Publication number: 20130187235
    Abstract: The present disclosure involves a FinFET. The FinFET includes a fin structure formed over a substrate. A gate dielectric layer is least partially wrapped around a segment of the fin structure. The gate dielectric layer contains a high-k gate dielectric material. The FinFET includes a polysilicon layer conformally formed on the gate dielectric layer. The FinFET includes a metal gate electrode layer formed over the polysilicon layer. The present disclosure provides a method of fabricating a FinFET. The method includes providing a fin structure containing a semiconductor material. The method includes forming a gate dielectric layer over the fin structure, the gate dielectric layer being at least partially wrapped around the fin structure. The method includes forming a polysilicon layer over the gate dielectric layer, wherein the polysilicon layer is formed in a conformal manner. The method includes forming a dummy gate layer over the polysilicon layer.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 25, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yuan-Sheng Huang, Tzu-Yen Hsieh, Ming-Ching Chang, Chao-Cheng Chen, Chia-Jen Chen
  • Patent number: 8486840
    Abstract: A method includes making a target feature of an integrated circuit by providing a main layer over a substrate, depositing a first mask layer over the main layer, patterning the first mask layer, forming sidewall spacers with a width (w) in adjoining sidewalls of the patterned first mask layer and exposing a top area of the patterned first mask layer, selectively removing the first mask layer and exposing a portion of the main layer between the sidewall spacers, depositing a second mask layer over the main layer between the sidewall spacers, selectively removing the sidewall spacers to form an opening and exposing another portion of the main layer in the opening, etching the main layer through the opening to form the target feature.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: July 16, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jhon Jhy Liaw
  • Patent number: 8487397
    Abstract: An integrated circuit with a self-aligned contact includes a substrate with a transistor formed thereover, a dielectric spacer, a protection barrier, and a conductive layer. The transistor includes a mask layer and a pair of insulating spacers formed on opposite sides of the mask layer. The dielectric spacer partially covers at least one of the insulating spacers of the transistor. The protection barrier is formed over the dielectric spacer. The conductive layer is formed over the mask layer, the protection barrier, the dielectric spacer, the insulating spacer and the dielectric spacer as a self-aligned contact for contacting a source/drain region of the transistor.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: July 16, 2013
    Assignee: Nanya Technology Corporation
    Inventors: Jar-Ming Ho, Yi-Nan Chen, Hsien-Wen Liu
  • Patent number: 8486817
    Abstract: A method for forming a level of a tridimensional structure on a first support in which components are formed, including the steps of forming, on a second semiconductor support, a single-crystal semiconductor substrate with an interposed thermal oxide layer; placing the free surface of the single-crystal semiconductor substrate on the upper surface of the first support; eliminating the second semiconductor support; and thinning down the thermal oxide layer down to a thickness capable of forming a gate insulator.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: July 16, 2013
    Assignees: STMicroelectronics S.A., STMicroelectronics (Crolles 2) SAS, Commissariat à l'Énergies Atomique et aux Énergies Alternatives
    Inventors: Perceval Coudrain, Philippe Coronel, Nicolas Buffet
  • Publication number: 20130175631
    Abstract: A semiconductor chip has shapes on a particular level that are small enough to require a first mask and a second mask, the first mask and the second mask used in separate exposures during processing. A circuit on the semiconductor chip requires close tracking between a first and a second FET (field effect transistor). For example, the particular level may be a gate shape level. Separate exposures of gate shapes using the first mask and the second mask will result in poorer FET tracking (e.g., gate length, threshold voltage) than for FETs having gate shapes defined by only the first mask. FET tracking is selectively improved by laying out a circuit such that selective FETs are defined by the first mask. In particular, static random access memory (SRAM) design benefits from close tracking of six or more FETs in an SRAM cell.
    Type: Application
    Filed: January 6, 2012
    Publication date: July 11, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Derick G. Behrends, Todd A. Christensen, Travis R. Hebig, Michael Launsbach, Daniel M. Nelson
  • Publication number: 20130170302
    Abstract: A non-volatile semiconductor memory device comprises a semiconductor substrate and a plurality of gate structures formed on a cell region of the semiconductor substrate. The plurality of gate structures include: a first select-gate structure and a second select-gate structure disposed on the cell region, the first select-gate structure and the second select-gate structure spaced apart from each other, and a plurality of cell gate structures disposed between the first select-gate structure and the second select-gate structure. At least one of the select-gate structures comprises plural select gates.
    Type: Application
    Filed: December 29, 2011
    Publication date: July 4, 2013
    Inventors: Sung-Min Hong, Tae-Kyung Kim, Woosung Choi
  • Publication number: 20130161716
    Abstract: A non-volatile semiconductor memory device comprises a semiconductor substrate and a plurality of gate structures formed on a cell region of the semiconductor substrate. The plurality of gate structures include a first select-gate and a second select-gate disposed on the cell region, the first select-gate and the second select-gate spaced apart from each other. A plurality of cell gate structures are disposed between the first select-gate and the second select-gate. The first select-gate and an adjacent cell gate structure have no air gap defined therebetween. At least a pair of adjacent cell gate structures have an air gap defined therebetween.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae-Kyung KIM, Woosung CHOI