Forming Contacts Of Differing Depths Into Semiconductor Substrate Patents (Class 438/620)
  • Patent number: 8101515
    Abstract: Methods of manufacturing semiconductor devices are provided in which a first contact plug is formed on a first active region in a substrate and a second contact plug is formed on a second active region in the substrate. A height of an upper surface of the second contact plug from the substrate is greater than a height of an upper surface of the first contact plug from the substrate. A third contact plug is formed on the second contact plug. A first spacer is formed on a side surface of the third contact plug. A third interlayer insulation layer is formed that covers the third contact plug. The third interlayer insulation layer is patterned to form a third opening that exposes the first contact plug. A fourth contact plug is formed in the third opening that is electrically connected to the first contact plug.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: January 24, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joon-ho Sung, Ju-yong Lee, Mi-kyung Park, Tae-young Chung
  • Patent number: 8097535
    Abstract: The present invention relates to a semiconductor device with nanowire-type interconnect elements and a method for fabricating the same. The device comprises a metal structure with at least one self-assembled metal dendrite and forming an interconnect element (424) between a first and a second metal structure.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: January 17, 2012
    Assignee: NXP B.V.
    Inventors: Kevin Cooper, Srdjan Kordic
  • Patent number: 8097534
    Abstract: On an etching target film formed on a substrate, a three-layer resist is laminated. This three-layer resist includes an organic film and a resist film developed into a resist pattern. Through the resist pattern, the organic film is etched into a mask pattern through which the etching target film will be etched. The organic film is etched with plasma which is obtained by exciting a process gas containing carbon dioxide and hydrogen to the plasma state. This scheme makes it possible to form a high perpendicularity mask pattern in the organic film.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: January 17, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Shuhei Ogawa, Shin Hirotsu
  • Patent number: 8093149
    Abstract: A semiconductor wafer and a manufacturing method for a semiconductor device are provided, which prevent peeling-off of films and pattern skipping in a wafer edge portion. A silicone substrate has formed thereon gate structures in active regions isolated by a trench isolation film; a contact interlayer film; and a multilayer interconnection structure formed by alternate laminations of low-k via interlayer films, i.e., V layers, and low-k interconnect interlayer films, i.e., M layers. In a Fine layer ranging from first to fifth interlayer films, the M layers are removed from the wafer edge portion, but the V layers are not removed therefrom. Further, the contact interlayer film is not removed from the wafer edge portion.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: January 10, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Kazuo Tomita
  • Patent number: 8080461
    Abstract: A method of making a thin film resistor includes: forming a doped region in a semiconductor substrate; forming a dielectric layer over the substrate; forming a thin film resistor over the dielectric layer; forming a contact hole in the dielectric layer before annealing the thin film resistor, wherein the contact hole exposes a portion of the doped region; and performing rapid thermal annealing on the thin film resistor after forming the contact hole.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: December 20, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Der-Chyang Yeh, Hsun-Chung Kuang, Ming Chyi Liu, Chung-Yi Yu, Chih-Ping Chao, Alexander Kalnitsky
  • Patent number: 8071473
    Abstract: An object of the present invention is to obtain a favorable etching shape in etching an organic film formed on a substrate. A semiconductor device manufacturing method according to the present invention comprises the steps of: etching with plasma a silicon-containing film and transferring a pattern of a pattern mask stacked on the silicon-containing film onto the silicon-containing film to form a patterned silicon-containing film; removing the pattern mask using plasma to expose the surface of the silicon-containing film; and etching the surface of the organic film through the patterned silicon-containing film by use of oxygen active species in plasma to form a concave portion on the organic film. Thereafter, the silicon-containing film is sputtered to form silicon-containing protection films on the inner wall surfaces of the concave portion. The concave portion is further etched in its depth direction through the patterned silicon-containing film by use of oxygen active species in plasma.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: December 6, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Kazuki Narishige, Koichi Nagakura
  • Patent number: 8062975
    Abstract: Through substrate vias (TSVs) are provided after substantially all high temperature operations needed to form a device region (26) of a first thickness (27) proximate the front surface (23) of a substrate wafer (20, 20?) by: (i) from the front surface (23), forming comparatively shallow vias (30, 30?) of a first aspect ratio containing first conductors (36, 36?) extending preferably through the first thickness (27) but not through the initial wafer (20) thickness (21), (ii) removing material (22?) from the rear surface (22) to form a modified wafer (20?) of smaller final thickness (21?) with a new rear surface (22?), and (iii) forming from the new rear surface (22?), much deeper vias (40, 40?) of second aspect ratios beneath the device region (26) with second conductors (56, 56?) therein contacting the first conductors (36, 36?), thereby providing front-to-back interconnections without substantially impacting wafer robustness during manufacturing and device region area.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: November 22, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul W. Sanders, Michael F. Petras, Chandrasekaram Ramiah
  • Patent number: 8034664
    Abstract: Provided is a three-dimensional aluminum package module including: an aluminum substrate; an aluminum oxide layer formed on the aluminum substrate and having at least one first opening of which sidewalls are perpendicular to an upper surface of the aluminum substrate; a semiconductor device mounted in the first opening using an adhesive; an organic layer covering the aluminum oxide layer and the semiconductor device; and a first interconnection line and a passive device circuit formed on the organic layer and the aluminum oxide layer.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: October 11, 2011
    Assignee: Wavenics Inc.
    Inventors: Young-Se Kwon, Kyoung Min Kim
  • Patent number: 8030203
    Abstract: A semiconductor device and a method of forming a metal line of a semiconductor device includes a first insulating layer formed over a semiconductor substrate an etch-stop layer formed over the first insulating layer, contact holes formed by etching the etch-stop layer and the first insulating layer, Contact plugs formed within the contact holes and a second insulating layer formed over the contact plugs and the etch-stop layer. The second insulating layer is etched in order to form trenches through which the contact plugs are exposed. Metal lines are formed within the trenches. Accordingly, since a hard mask with a high dielectric constant does not remain between the metal lines, the capacitance of the metal lines can be reduced.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: October 4, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jin Gu Kim
  • Patent number: 8021918
    Abstract: An integrated circuit chip includes a silicon substrate, a first circuit in or over said silicon substrate, a second circuit device in or over said silicon substrate, a dielectric structure over said silicon substrate, a first interconnecting structure in said dielectric structure, a first pad connected to said first node of said voltage regulator through said first interconnecting structure, a second interconnecting structure in said dielectric structure, a second pad connected to said first node of said internal circuit through said second interconnecting structure, a passivation layer over said dielectric structure, wherein multiple opening in said passivation layer exposes said first and second pads, and a third interconnecting structure over said passivation layer and over said first and second pads.
    Type: Grant
    Filed: September 29, 2007
    Date of Patent: September 20, 2011
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee, Chien-Kang Chou
  • Patent number: 8004087
    Abstract: A multilayered wiring is formed in a prescribed area in an insulating film that is formed on a semiconductor substrate. Dual damascene wiring that is positioned on at least one layer of the multilayered wiring is composed of an alloy having copper as a principal component. The concentration of at least one metallic element contained in the alloy as an added component in vias of the dual damascene wiring is determined according to the differences in the width of the wiring of an upper layer where the vias are connected. Specifically, a larger wiring width in the upper layer corresponds to a higher concentration of at least one metallic element within the connected vias. Accordingly, increases in the resistance of the wiring are minimized, the incidence of stress-induced voids is reduced, and reliability can be improved.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: August 23, 2011
    Assignee: NEC Corporation
    Inventors: Mari Amano, Munehiro Tada, Naoya Furutake, Yoshihiro Hayashi
  • Patent number: 7960240
    Abstract: A buried thin film resistor having end caps defined by a dielectric mask is disclosed. A thin film resistor is formed on an integrated circuit substrate. A resistor protect layer is formed over the thin film resistor. First and second portions of a first dielectric material are formed over the resistor protect layer over the first and second ends of the thin film resistor. The resistor protect layer is then wet etched using the first and second portions of the first dielectric material as a hard mask. Then a second dielectric layer is deposited. A first via mask and etch process is used to etch vias down to the underlying portions of the resistor protect layer over the ends of the thin film resistor. A second via mask and etch process is used to etch substrate vias to an underlying conductor layer.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: June 14, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Rodney Hill, Victor Torres, Michael Burger, Terry L. Lines
  • Patent number: 7955967
    Abstract: A method of forming a high aspect ratio via opening through multiple dielectric layers, a high aspect ratio electrically conductive via, methods of forming three-dimension integrated circuits, and three-dimensional integrated circuits. The methods include forming a stack of at least four dielectric layers and etching the first and third dielectric layers with processes selective to the second and fourth dielectric layers, etching the second and third dielectric layers with processes selective to the first and second dielectric layers. Advantageously the process used to etch the third dielectric layer is not substantially selective to the first dielectric layer.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Douglas C. La Tulipe, Jr., Mark Todhunter Robson
  • Publication number: 20110101538
    Abstract: Embodiments of the invention provide a method of creating vias and trenches with different length. The method includes depositing a plurality of dielectric layers on top of a semiconductor structure with the plurality of dielectric layers being separated by at least one etch-stop layer; creating multiple openings from a top surface of the plurality of dielectric layers down into the plurality of dielectric layers by a non-selective etching process, wherein at least one of the multiple openings has a depth below the etch-step layer; and continuing etching the multiple openings by a selective etching process until one or more openings of the multiple openings that are above the etch-stop layer reach and expose the etch-stop layer. Semiconductor structures made thereby are also provided.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 5, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shom Ponoth, David V. Horak, Takeshi Nogami, Chih-Chao Yang
  • Patent number: 7935623
    Abstract: In a method for fabricating a semiconductor device, first, a first metal interconnect is formed in an interconnect formation region, and a second metal interconnect is formed in a seal ring region. Subsequently, by chemical mechanical polishing or etching, the upper portions of the first metal interconnect and the second metal interconnect are recessed to form recesses. A second insulating film filling the recesses is then formed above a substrate, and the upper portion of the second insulating film is planarized. Next, a hole and a trench are formed to extend halfway through the second insulating film, and ashing and polymer removal are performed. Subsequently to this, the hole and the trench are allowed to reach the first metal interconnect and the second metal interconnect.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: May 3, 2011
    Assignee: Panasonic Corporation
    Inventor: Shunsuke Isono
  • Patent number: 7919407
    Abstract: Described herein are novel, cost effective and scalable methods for integrating a CMOS level with a memory cell level to form a field induced MRAM device. The memory portion of the device includes N parallel word lines, which may be clad, overlaid by M parallel bit lines orthogonal to the word lines and individual patterned memory cells formed on previously patterned electrodes at the N×M intersections of the two sets of lines. The memory portion is integrated with a CMOS level and the connection between levels is facilitated by the formation of interconnecting vias between the N×M electrodes and corresponding pads in the CMOS level and by word line connection pads in the memory device level and corresponding metal pads in the CMOS level.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: April 5, 2011
    Assignee: MagIC Technologies, Inc.
    Inventors: Tom Zhong, Wai-Ming Johnson Kan, Daniel Liu, Adam Zhong, Chyu-Jiuh Torng
  • Patent number: 7915158
    Abstract: A method for forming an on-chip high frequency electro-static discharge device is described. In one embodiment, a wafer with a multi-metal level wiring is provided. The wafer includes a first dielectric layer with more than one electrode formed therein, a second dielectric layer disposed over the first dielectric layer with more than one electrode formed therein and more than one via connecting the more than one electrode in the first dielectric layer to a respective more than one electrode in the second dielectric layer. The more than one via is misaligned a predetermined amount with the more than one electrodes in the first dielectric layer and the second dielectric layer. The at least one of the misaligned vias forms a narrow gap with another misaligned via. A cavity trench is formed through the second dielectric layer between the narrow gap that separates the misaligned vias.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: March 29, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Xuefeng Liu, Anthony K. Stamper
  • Patent number: 7851349
    Abstract: A method for producing a connection electrode for a first semiconductor zone and a second semiconductor zone includes producing a trench extending through the first semiconductor zone right into the second semiconductor zone in such a way that the first semiconductor zone is uncovered at sidewalls of the trench and the second semiconductor zone is uncovered at least at a bottom of the trench. The method also includes applying a protective layer to a first one of the first and second semiconductor zones in the trench, and producing a first connection zone in the second of the two semiconductor zones, which is not covered by the protective layer. The method further includes depositing an electrode layer at least onto the sidewalls and the bottom of the trench for the purpose of producing the connection electrode.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: December 14, 2010
    Assignee: Infineon Technologies Austria AG
    Inventors: Walter Rieger, Paul Ganitzer, Oliver Haeberlen, Franz Hirler, Markus Zundel, Rudolf Zelsacher, Erwin Bacher
  • Patent number: 7846834
    Abstract: A semiconductor structure is provided that includes a lower interconnect level including a first dielectric material having at least one conductive feature embedded therein; a dielectric capping layer located on the first dielectric material and some, but not all, portions of the at least one conductive feature; and an upper interconnect level including a second dielectric material having at least one conductively filled via and an overlying conductively filled line disposed therein, wherein the conductively filled via is in contact with an exposed surface of the at least one conductive feature of the first interconnect level by an anchoring area. Moreover, the conductively filled via and conductively filled line of the inventive structure are separated from the second dielectric material by a single continuous diffusion barrier layer. As such, the second dielectric material includes no damaged regions in areas adjacent to the conductively filled line.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: December 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Conal E. Murray
  • Patent number: 7807562
    Abstract: A circuit is provided which prevents dendrite formation on interconnects during semiconductor device processing due to a dendrite-forming current. The circuit includes a switch located in at least one of the dendrite-forming current paths. The switch is configured to be open or in the “off” state during processing, and is configured to be closed or in the “on” state after processing to allow proper functioning of the semiconductor device. The switch may include an nFET or pFET, depending on the environment in which it is used to control or prevent dendrite formation. The switch may be configured to change to the “closed” state when an input signal is provided during operation of the fabricated semiconductor device.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: October 5, 2010
    Assignee: International Business Machines Corporation
    Inventors: Douglas B. Hershberger, Steven H. Voldman, Michael J. Zierak
  • Patent number: 7807565
    Abstract: A method for forming a semiconductor device includes forming drain contact holes in a first interlayer insulating layer provided over a semiconductor substrate. First metal material is formed over the first interlayer insulating layer and fills the drain contact holes. A first metal layer formed by patterning the first metal material includes first lines and landing pads. Trenches formed in a second interlayer insulating layer formed over the patterned first metal material expose the landing pads. A second metal layer is formed by providing second metal material over the second interlayer insulating layer and filling the trenches. The second metal layer includes second lines within the trenches that contact the landing pads. The first and second metal layers define a first metal level of the semiconductor device. The first lines define odd-number lines of the first metal level, and the second lines define even-number lines of the first metal level.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: October 5, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Woo Yung Jung, Tae Kyung Kim, Eun Soo Kim
  • Patent number: 7803639
    Abstract: A method of forming vertical contacts in an integrated circuit that couple one or more metal lines in a given metallization level to first and second features occupying different levels in the integrated circuit comprises various processing steps. A first etch stop layer is formed overlying at least of portion of the first feature while a second etch stop layer is formed overlying at least a portion of the second feature. An ILD layer is formed overlying the first and second etch stop layers. A photolithographic mask is formed overlying the ILD layer. The photolithographic mask defines a first opening over the first feature and a second opening over the second feature. A first etch process etches a first hole in the ILD layer through the first opening in the photolithographic mask that lands on the first etch stop layer and etches a second hole in the ILD layer through the second opening that lands on the second etch stop layer.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: September 28, 2010
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Michael C. Gaidis, John P. Hummel, Sivananda K. Kanakasabapathy
  • Patent number: 7804158
    Abstract: An electronic device includes a substrate, an active circuit, and a shielding structure. The active circuit is formed on the substrate. The shielding structure is disposed surrounding the active circuit, and includes a first heavy ion-doped region, first metal stack, second heavy ion-doped region, second metal stack and top metal. The first heavy ion-doped is formed in the substrate and located at a first side of the active circuit. The first metal stack is formed on the first heavy ion-doped region of the substrate, wherein the first metal stack is connected to a ground voltage. The second heavy ion-doped region is formed in the substrate and located at a second side of the active circuit. The second metal stack is formed on the second heavy ion-doped region of the substrate. The top metal is formed on the first metal stack and second metal stack and passing over the active circuit.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: September 28, 2010
    Assignee: MaxRise Inc.
    Inventor: Hwey-Ching Chien
  • Patent number: 7786553
    Abstract: Method of fabricating thin-film transistors in which contact with connecting electrodes becomes reliable. When contact holes are formed, the bottom insulating layer is subjected to a wet etching process, thus producing undercuttings inside the contact holes. In order to remove the undercuttings, a light etching process is carried out to widen the contact holes. Thus, tapering section are obtained, and the covering of connection wiring is improved.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: August 31, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hongyong Zhang
  • Patent number: 7772065
    Abstract: A semiconductor memory device includes diffusion regions formed in an active region; cell contacts connected to the diffusion regions, respectively; pillars connected to the cell contacts, respectively; a bit line connected to the pillar; capacitor contacts connected to the pillars, respectively; and storage capacitors connected to the capacitor contacts, respectively. Accordingly, the pillars exist between the cell contacts and the capacitor contacts, and thus, depths of the capacitor contacts are made correspondingly shorter. Therefore, it becomes possible to prevent occurrence of shorting defects while decreasing resistance values of the capacitor contacts.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: August 10, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Masahiko Ohuchi
  • Patent number: 7772111
    Abstract: A method of fabricating a semiconductor device includes the steps of forming a via-hole in an interlayer insulation film such that a metal interconnection pattern formed underneath the interlayer insulation film is exposed at a bottom of the via-hole, forming a conductive barrier film on the interlayer insulation film so as to cover a sidewall surface of the via-hole and the exposed metal interconnection pattern in conformity with a shape of the via-hole and forming a metal film on the conductive barrier film, wherein there is provided a preprocessing step, after the step of forming the via-hole but before the step of forming the conductive barrier film, of processing the interlayer insulation film including the sidewall surface of the via-hole and a bottom surface of the via-hole, with plasma containing hydrogen having energy not causing sputtering of the metal interconnection pattern.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: August 10, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Taro Ikeda, Tadahiro Ishizaka, Masamichi Hara
  • Patent number: 7767567
    Abstract: Gate stacks of an array of memory cells and a plurality of select transistors are formed above a carrier, the gate stacks being separated by spacers. An opening is formed between the spacers in an area that is provided for a source line. A sacrificial layer is applied to fill the opening and is subsequently patterned. Interspaces are filled with a planarizing layer of dielectric material. The residues of the sacrificial layer are removed and an electrically conductive material is applied to form a source line.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: August 3, 2010
    Assignee: Qimonda AG
    Inventors: Josef Willer, Franz Hofmann
  • Patent number: 7754598
    Abstract: Method for making a coreless packaging substrate are disclosed in the present invention. The coreless packaging substrate is made by first providing a metal adhesion layer having a melting point lower than that of the substrate, and removing a core board connected with the substrate therefrom through melting the metal adhesion layer. In addition, the disclosed packaging substrate further includes a circuit built-up structure of which has the electrical pads embedded under a surface. The disclosed packaging substrate can achieve the purposes of reducing the thickness, increasing circuit layout density, and facilitating the manufacturing of the substrate.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: July 13, 2010
    Assignee: Phoenix Precision Technology Corporation
    Inventors: Wei-Hung Lin, Zao-Kuo Lai
  • Patent number: 7745323
    Abstract: Disclosed herein is a metal interconnection structure of a semiconductor device, comprising lower metal interconnection layers disposed on a semiconductor substrate, a buffer layer made of a metal oxide disposed thereon, an intermetallic dielectric layer made of a low-k material disposed on the buffer layer of the metal oxide, and an upper metal interconnection layer disposed on the intermetallic dielectric layer and electrically connected through the intermetallic dielectric layer and buffer layer to the lower metal interconnection layers.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: June 29, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Dong-Su Park, Su Ho Kim
  • Publication number: 20100155785
    Abstract: Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The memory cell contains a pair of first bit lines and a pair of second bit lines. The first and second bit lines can be formed by an implant process using first and second spacers that have different lateral lengths from each other. The spacers can be used to offset the implants, thereby controlling the lateral lengths of the bit lines.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Applicant: SPANSION LLC
    Inventors: Huaqiang Wu, Hiro Kinoshita, Ning Cheng, Arturo Ruiz, Jihwan Choi
  • Patent number: 7741212
    Abstract: A semiconductor device and method for manufacturing the same are provided, capable of narrowing feature size by utilizing the property of oxidation of a material. In one method, a polysilicon layer can be patterned into a fine pattern up to a critical dimension using a photolithography process. Then the patterned polysilicon layer can be oxidized, thereby narrowing the gap between adjacent polysilicon patterns and narrowing the polysilicon patterns through the oxidation process. The narrowed polysilicon patterns and/or the narrowed gap between adjacent polysilicon patterns can be used to form vias or trenches in the substrate (or layer) below the polysilicon layer having a width narrower than the critical dimension.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: June 22, 2010
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Eun Soo Jeong
  • Patent number: 7732321
    Abstract: A method for adding an additional layer to an integrated circuit, the method including providing an integrated circuit having an interconnect layer, depositing, over substantially all of an exposed surface of the integrated circuit, an additional layer of material whose conductivity can be altered, and selectively altering the conductivity of a first portion of the additional layer by selective annealing, to produce a sub-circuit in the additional layer, the sub-circuit being in operative electrical communication with the integrated circuit. Related apparatus and methods are also described.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: June 8, 2010
    Assignee: NDS Limited
    Inventor: John Fleming Walker
  • Patent number: 7732323
    Abstract: Methods of manufacturing semiconductor devices are provided in which a first contact plug is formed on a first active region in a substrate and a second contact plug is formed on a second active region in the substrate. A height of an upper surface of the second contact plug from the substrate is greater than a height of an upper surface of the first contact plug from the substrate. A third contact plug is formed on the second contact plug. A first spacer is formed on a side surface of the third contact plug. A third interlayer insulation layer is formed that covers the third contact plug. The third interlayer insulation layer is patterned to form a third opening that exposes the first contact plug. A fourth contact plug is formed in the third opening that is electrically connected to the first contact plug.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: June 8, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joon-ho Sung, Ju-yong Lee, Mi-kyung Park, Tae-young Chung
  • Patent number: 7713862
    Abstract: Provided is a method for manufacturing a printed wiring board, which can enhance the peel strength between an insulating layer and a conductive pattern by a two-step process, that is, a semi-hardening and full-hardening of the insulating layer. In the method for manufacturing the printed wiring board having one or more layers of a conductive pattern and an insulating pattern, an insulating pattern is formed on an insulating substrate, and at least one of the insulating substrate and the insulating pattern is semi-hardened. A conductive pattern is formed on the insulating substrate and/or the insulating pattern, thereby providing a stack structure. Then, a thermal treatment is performed on the stack structure to fully harden the semi-hardened insulating substrate and/or insulating pattern, and the conductive pattern is fired.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: May 11, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd
    Inventors: Hye Jin Cho, Jae Woo Joung, Sung II Oh
  • Patent number: 7709369
    Abstract: A method for forming a contact in a semiconductor device includes opening a contact hole exposing a surface of a substrate, performing a first post treatment to form a rough portion at a bottom surface of the contact hole, and performing a second post treatment. The first post treatment includes using a fluorocarbon gas and the second post treatment includes using a nitrogen trifluoride (NF3) gas.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: May 4, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jung-Seock Lee, Ky-Hyun Han
  • Patent number: 7704874
    Abstract: According to an exemplary embodiment, a method for fabricating a frontside through-wafer via in a processed wafer includes forming a through-wafer via opening through at least one interlayer dielectric layer in a through-wafer via region of the processed wafer. The method further includes extending the through-wafer via opening through a substrate to a target depth. The method further includes forming a first conductive layer in the through-wafer via opening and over a through-wafer via pad, which is situated over the at least one interlayer dielectric layer. The first conductive layer in the through-wafer via opening forms an electrical connection between the substrate and the through-wafer via pad. The method further includes forming a second conductive layer on the backside surface of the processed wafer, where the second conductive layer is in electrical contact with the first conductive layer and the substrate.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: April 27, 2010
    Assignee: Newport Fab, LLC
    Inventors: Arjun Kar-Roy, Marco Racanelli, David J. Howard
  • Patent number: 7704871
    Abstract: An integrated circuit structure including multiple thin film resistors having different sheet resistances and TCRs includes a first oxide layer (2) formed on a semiconductor substrate (1), a first thin film resistor (3) disposed on the first oxide layer (2), and a second oxide layer (14) disposed over the first oxide layer (2) and first thin film resistor (3). A second thin film resistor (15) is formed on the second oxide layer (14) and a third oxide layer (16) is formed over the second thin film resistor (15) and the second oxide layer (14). Interconnect metallization elements (12A,B & 22A,B) disposed on at least one of the second (14) and third (16) oxide layers electrically contact the circuit element (4), terminals of the first thin film resistor (3), and terminals of the second thin film resistor (15), respectively, through corresponding contact openings through at least one of the second (14) and third (16) oxide layers.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: April 27, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Eric W Beach
  • Patent number: 7696541
    Abstract: A structure, method and a design structure for preventing latchup in a gate array. The design structure including: a NFET gate array and a PFET gate array in a substrate; an electrically conductive through via extending from a bottom surface of the substrate toward a top surface of the substrate the NFET gate array and PFET gate array, the through via electrically contacting the P-well.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: April 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Phillip Francis Chapman, David S. Collins, Steven H. Voldman
  • Patent number: 7691737
    Abstract: A method of deprocessing a semiconductor structure is provided. The method involves removing one or more interlevel dielectric layers and one or more metal components from a frontside of the semiconductor structure. By removing the interlevel dielectric layer and the metal component, the exposed portion of the semiconductor structure can be subjected to an inspection for defects and/or other characteristics by using an inspection tool. The inspection can aid in defect reduction strategies, among other things, when applied to new technology ramp, monitoring of baseline wafer starts, customer returns, etc.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: April 6, 2010
    Assignee: Spansion LLC
    Inventors: Charles Ray Mathews, Alex Bierwag, Stuart Litwin
  • Patent number: 7678704
    Abstract: To form a semiconductor device, an insulating layer is formed over a conductive region and a pattern transfer layer is formed over the insulating layer. The pattern transfer layer is patterned in the reverse tone of a layout of recesses to be formed in the insulating layer such that the pattern transfer layer remains over regions where the recesses are to be formed. A mask material is formed over the insulating layer and is aligned with the pattern transfer layer. Remaining portions of the pattern transfer layer are removed and recesses are etched in the insulating layer using the mask material as a mask.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: March 16, 2010
    Assignee: Infineon Technologies AG
    Inventors: Veit Klee, Roman Knoefler, Uwe Paul Schroeder
  • Publication number: 20100059866
    Abstract: A semiconductor device has a vertically offset bond on trace (BOT) interconnect structure. The vertical offset is achieved by forming a first conductive layer extending above a surface of a carrier. The first conductive layer is pressed into a surface of a substrate so that the first conductive layer is recessed below the surface of the substrate. The carrier is removed. A second conductive layer is formed above the surface of the substrate to create the vertical offset between the first and second conductive layers. The vertical offset is about 20 micrometers. A conductive via is formed through the substrate. Bond wire bumps are formed on the first and second conductive layers. The bond wire bumps are about 10 micrometers in height. A seed layer is formed over the carrier prior to forming the first conductive layer and removed after forming the second conducive layer.
    Type: Application
    Filed: September 10, 2008
    Publication date: March 11, 2010
    Applicant: STATS CHIPPAC, LTD.
    Inventors: KiYoun Jang, SungSoo Kim, YongHee Kang
  • Patent number: 7674704
    Abstract: The present invention provides a semiconductor device capable of suppressing an increase in electrical resistance of a narrow interconnect, while keeping reliability of a wide interconnect from being degraded. A semiconductor device comprises a plurality of interconnect layers, and an interconnect in at least one interconnect layer among the plurality of interconnect layers contains an impurity, and the wider the interconnect in the at least one interconnect layer is, the higher concentration of the impurity the interconnect contains.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: March 9, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Toshiyuki Takewaki
  • Patent number: 7674712
    Abstract: A method of patterning a substrate by mechanically locating a first masking film over the substrate; removing one or more first opening portions in first locations in the first masking film to form one or more first masking portions in the first masking film. First materials are deposited over the substrate in the first locations to form first patterned areas before mechanically locating a second masking film over the substrate and first masking portions. One or more second opening portions are removed from second locations, different from the first locations, in both the second masking film and the first masking portions to form one or more second masking portions. Second materials are deposited over the substrate in the second locations to form second patterned areas.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: March 9, 2010
    Inventor: Ronald S. Cok
  • Patent number: 7670925
    Abstract: A semiconductor device is disclosed that includes multiple logic circuit cells having respective logic circuits formed therein; and multiple interconnects connected to the corresponding logic circuit cells. At least one of the interconnects has an opening formed therein so as to have an opening ratio different from one or more of the opening ratios of the remaining interconnects.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: March 2, 2010
    Assignee: Fujitsu Limited
    Inventors: Hideki Kitada, Takahiro Kimura
  • Patent number: 7670943
    Abstract: The present invention provides an enhanced interconnect structure with improved reliability. The inventive interconnect structure has enhanced mechanical strength of via contacts provided by embedded metal liners. The embedded metal liners may be continuous or discontinuous. Discontinuous embedded metal liners are provided by a discontinuous interface at the bottom of the via located within the interlayer dielectric layer.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: March 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Griselda Bonilla, Shyng-Tsong Chen, Kelly Malone
  • Patent number: 7666782
    Abstract: A wire structure, having: a first insulating layer having a lower layer trench formed in an outer surface thereof; a first diffusion preventing film formed on an inner surface of the lower layer trench; a lower layer wire filled in the lower layer trench over the first diffusion preventing film; an interlayer diffusion preventing film formed on the lower layer wire, the interlayer diffusion preventing film made of a high melt point metal or a high melt point metal compound; a second insulating layer formed over the first insulating layer and the interlayer diffusion preventing film, a second insulating layer having a via hole that penetrates through the second insulating layer and the interlayer diffusion preventing film so as to reach the lower layer wire; a conductive second diffusion preventing film formed on an inner surface of the via hall; a conductor filled in the via hole over the second diffusion preventing film, and an adhering film made of the material that forms the interlayer diffusion preventing
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: February 23, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Tsuneo Fujiki
  • Patent number: 7662710
    Abstract: Providing through-wafer interconnections in a semiconductor wafer includes forming a sacrificial membrane in a pre-existing semiconductor wafer, depositing metallization over one side of the wafer so as to cover exposed portions of the sacrificial membrane facing the one side of the wafer, removing exposed portions of the sacrificial membrane facing the other side of the wafer, and depositing metallization over the other side of the wafer so as to contact the previously deposited metallization. Techniques also are disclosed for providing capacitive and other structures using thin metal membranes.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: February 16, 2010
    Assignee: Hymite A/S
    Inventor: Lior Shiv
  • Patent number: 7662709
    Abstract: An improved surface mounting method applied in a semiconductor package process is provided, wherein the method comprises the following steps: First a substrate having at least one pad set on one surface of the substrate is provided. Then a mask having at least one opening associated with one of the at least one pad is set on the substrate, wherein each opening is separated into a plurality of sub-openings by a segregator to expose the pad. Subsequently, a printing process is conducted to form a conductive layer on each pad. After removing the mask, a passive device is set on the conductive layer over the pad, and a heating treatment is conducted to fix the passive device on the pad.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: February 16, 2010
    Assignee: Advanced Semiconductor Engineering Inc.
    Inventors: Pai-Chou Liu, Wen-Shin Lin, Sheng-Hong Cheng, Yu-Hsin Lee, Ming-Chia Hsieh, Kuan-Hung Yeh, Chia-Wei Chang, Tsung-Chi Chen
  • Patent number: 7659202
    Abstract: A method performed on a wafer having multiple chips each including a doped semiconductor and substrate involves etching an annulus trench, metalizing an inner and an outer perimeter side wall of the annulus trench, etching a via trench into the wafer, making a length of the via trench electrically conductive, thinning a surface of the substrate.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: February 9, 2010
    Inventor: John Trezza
  • Patent number: 7655560
    Abstract: The invention provides a wiring board having a small-scale and high-performance functional circuit while realizing a multi-layer wiring with a small number of steps. In addition, the invention provides a semiconductor device in which a display device is integrated with such high-performance functional circuit on the same substrate. According to the invention, first to third wirings, first and second interlayer insulating films and first and second contact holes are formed over a substrate having an insulating surface. The second wiring is wider than the first wiring, or the third wiring is wider than the first wiring or the second wiring. The second contact hole has a larger diameter than the first contact hole.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: February 2, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yoshiyuki Kurokawa