Including Integrally Formed Optical Element (e.g., Reflective Layer, Luminescent Layer, Etc.) Patents (Class 438/69)
  • Publication number: 20120299139
    Abstract: Methods and devices that incorporate microlens arrays are disclosed. An image sensor includes a pixel layer and a dielectric layer. The pixel layer has a photodetector portion configured to convert light absorbed by the pixel layer into an electrical signal. The dielectric layer is formed on a surface of the pixel layer. The dielectric layer has a refractive index that varies along a length of the dielectric layer. A method for fabricating an image sensor includes forming an array of microlenses on a surface of the dielectric layer, emitting ions through the array of microlenses to implant the ions in the dielectric layer, and removing the array of microlenses from the surface of the dielectric layer.
    Type: Application
    Filed: November 29, 2011
    Publication date: November 29, 2012
    Inventors: Giovanni Margutti, Andrea Del Monte
  • Publication number: 20120301993
    Abstract: A method for generating electric power including the steps of: (a) preparing a solar cell having a condensing lens and a solar cell element, wherein the solar cell element includes an n-type GaAs layer, a p-type GaAs layer, a quantum tunneling layer, an n-type InGaP layer, a p-type InGaP layer, a p-type window layer, an n-side electrode, and a p-side electrode, and satisfies the following equation (I): d2<d1, d3<d1, 1 nanometer?d2?4 nanometers, 1 nanometer?d3?4 nanometers, d5<d4, d6<d4, 1 nanometer?d5?5 nanometers, 1 nanometer?d6?5 nanometers, 100 nanometers?w2, 100 nanometers?w3, 100 nanometers?w4, and 100 nanometers?w5 . . . (I); and (b) irradiating a region S which is included in the surface of the p-type window layer through the condensing lens with light to satisfy the following equation (II) in order to generate a potential difference between the n-side electrode and the p-side electrode: w6?w1 . . . (II).
    Type: Application
    Filed: June 1, 2012
    Publication date: November 29, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Akio MATSUSHITA, Akihiro ITOH, Tohru NAKAGAWA, Hidetoshi ISHIDA
  • Publication number: 20120301995
    Abstract: The invention relates to a method for local high-doping and contacting of a semiconductor structure which is a solar cell or a precursor of a solar cell and has a silicon semiconductor substrate (1) of a base doping type. The high-doping and contacting is effected by producing a plurality of local high-doping regions of the base doping type in the semiconductor substrate (1) on a contacting side (1a) of the semiconductor substrate and applying a metal contacting layer (7) to the contacting side (1a) or, if applicable, one or more intermediate layers wholly or partially covering the contacting side (1a), to form electrically conductive connections between the metal contacting layer (7) and the semiconductor substrate (1) at the high doping regions.
    Type: Application
    Filed: January 18, 2011
    Publication date: November 29, 2012
    Applicant: Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V.
    Inventors: Dominik Suwito, Jan Benick, Ulrich Jager
  • Publication number: 20120301994
    Abstract: An embodiment relates to a device comprising an optical pipe comprising a core and a cladding, the optical pipe being configured to separate wavelengths of an electromagnetic radiation beam incident on the optical pipe at a selective wavelength through the core and the cladding, wherein the core is configured to be both a channel to transmit the wavelengths up to the selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the core. Other embodiments relate to a compound light detector.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 29, 2012
    Applicant: ZENA TECHNOLOGIES, INC.
    Inventors: Thomas P.H.F. Wendling, Munib WOBER
  • Patent number: 8318579
    Abstract: A method for fabricating a semiconductor device includes steps as following. First, a substrate with an edge-mark is provided. The substrate has a front-side surface and a back-side surface opposite to each other. The front-side surface has an active region and a peripheral region with an alignment mark formed thereon. Next, an optical shielding layer is formed over the back-side surface of the substrate. Next, a first photo mask is aligned to the substrate by standing on the edge-mark. Next, a portion of the optical shielding layer corresponding with the alignment mark is removed by using the first photo mask. Next, a second photo mask is aligned to the substrate by standing on the alignment mark. Then, a portion of the optical shielding layer corresponding with the active region is removed to expose a portion of the substrate by using the second photo mask for forming an optical shielding pattern.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: November 27, 2012
    Assignee: United Microelectronics Corp.
    Inventor: Hsin-Ping Wu
  • Patent number: 8318526
    Abstract: A manufacturing method for manufacturing a light-sensing structure is provided. The manufacturing method includes the steps as follows. (a) A circuit layer is formed on an upper surface of a first substrate, wherein the first substrate includes at least one light-sensing device and the circuit layer includes at least one device structure and at least one release feature that is made of metal and is formed on part of the light-sensing device and the device structure. (b) A first light-filtering layer is formed on part of the circuit layer. (c) The release feature is removed by a wet-etching process.
    Type: Grant
    Filed: January 30, 2011
    Date of Patent: November 27, 2012
    Assignee: Memsor Corporation
    Inventors: Siew-Seong Tan, Yi-Hsiang Chiu, Jen-Chieh Chen
  • Publication number: 20120291859
    Abstract: A photovoltaic device and methods of manufacturing a photovoltaic device are disclosed. A photovoltaic device includes a first photovoltaic cell, a second photovoltaic cell, a semiconductor layer, and a doped layer. The second photovoltaic cell is in electrical communication with the first photovoltaic cell. The semiconductor layer includes a textured portion. The doped layer is configured to create a back surface field, the doped layer disposed between a proximal layer of the second photovoltaic cell and the semiconductor layer.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 22, 2012
    Inventors: Christopher Vineis, Martin U. Pralle, James E. Carey
  • Publication number: 20120292726
    Abstract: An entry slit panel for a push-broom hyperspectral camera is formed at least partly from a silicon wafer on which at least one companion sensor is fabricated, whereby the companion sensor is co-planar with the slit and detects light imaged on the panel but not on the slit. In embodiments, the companion sensor is a panchromatic sensor or a sensor that detects light outside the wavelength range of the camera. At least a region of the wafer is back-thinned to a thickness appropriate for a diffraction slit. The slit can be etched or laser cut through the thinned region, or formed between the wafer and another wafer or a conventional blade. The wafer can be back-coated or metalized to ensure its opacity across the camera's wavelength range. The companion sensor can be located relative to the slit to detect scene features immediately before or after the hyperspectral camera.
    Type: Application
    Filed: January 24, 2012
    Publication date: November 22, 2012
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Thomas H. Wallace
  • Patent number: 8314470
    Abstract: According to one embodiment, a solid-state imaging device includes a semiconductor substrate of a first conductive type having a diffusion layer region provided on a surface thereof, a diffusion layer of the first conductive type for a pixel separation whose bottom portion is formed at the deepest position of the diffusion layer region in a pixel region, and a first deep diffusion layer of the first conductive type provided at the deepest position of the diffusion layer region in a first peripheral logic region for electrically connecting the semiconductor substrate and the first peripheral logic region and having a first concentration gradient equal to that of the diffusion layer for pixel separation.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: November 20, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hidetoshi Koike
  • Publication number: 20120287297
    Abstract: A solid-state imaging device includes: a photoelectric conversion device; a wire grid polarizer provided on the photoelectric conversion device; and a conductive film electrically connecting conductive layers provided in the photoelectric conversion device to the wire grid polarizer.
    Type: Application
    Filed: April 26, 2012
    Publication date: November 15, 2012
    Applicant: SONY CORPORATION
    Inventor: Keiki Fukuda
  • Patent number: 8304279
    Abstract: An LED package having an anodized insulation layer which increases heat radiation effect to prolong the lifetime LEDs and maintains high luminance and high output, and a method therefor. The LED package includes an Al substrate having a reflecting region and a light source mounted on the substrate and connected to patterned electrodes. The package also includes an anodized insulation layer formed between the patterned electrodes and the substrate and a lens covering over the light source of the substrate. The Al substrate provides superior heat radiation effect of the LED, thereby significantly increasing the lifetime and light emission efficiency of the LED.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: November 6, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young Ki Lee, Seog Moon Choi, Sang Hyun Shin
  • Patent number: 8304850
    Abstract: An infrared (IR) radiation sensor device (27) includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) temperature-sensitive elements connected within a dielectric stack (3) of the chip, the first temperature-sensitive element (7) being more thermally insulated from a substrate (2) than the second temperature-sensitive element (8). Bonding pads (28A) on the chip (1) are coupled to the first and second temperature-sensitive elements. Bump conductors (28) are bonded to the bonding pads (28A), respectively, for physically and electrically connecting the radiation sensor chip (1) to corresponding mounting conductors (23A). A diffractive optical element (21,22,23,31,32 or 34) is integrated with a back surface (25) of the radiation sensor chip (1) to direct IR radiation toward the first temperature-sensitive element (7).
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: November 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Kalin V. Lazarov, Walter B. Meinel
  • Publication number: 20120273907
    Abstract: An image sensor includes: a substrate having a plurality of unit pixel region; a light receiving element formed in the substrate at the unit pixel region; an interlayer dielectric layer formed over the substrate; a lightguide formed in the interlayer dielectric layer for the light receiving element; a light focusing pattern formed over the interlayer dielectric layer at the pixel region; a planarization layer formed over the substrate and covering the light focusing pattern; and a lens formed over the planarization layer at the pixel region.
    Type: Application
    Filed: January 17, 2012
    Publication date: November 1, 2012
    Inventor: Youn-Sub LIM
  • Publication number: 20120273910
    Abstract: The finding that with a reasonable effort a layer thickness and/or refractive index variation may be acquired which realizes different internal optical path lengths for impinging radiation whereby fluctuation of spectral sensitivity of the photodetector is reduced is used to provide image sensors with a less fluctuating spectral sensitivity with respect to different wavelengths, or photodetectors with a small fluctuation of the spectral sensitivity from photodetector to photodetector with respect to defined wavelengths, with a reasonable effort.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 1, 2012
    Inventors: Frank Hochschulz, Stefan Dreiner, Uwe Paschen, Holger Vogt
  • Publication number: 20120276678
    Abstract: A solar cell includes a substrate layer and a plurality of nanowires grown outwardly from the substrate layer, at least two of the nanowires including a plurality of sub-cells. The solar cell also includes one or more light guiding layers formed of a transparent, light scattering material and filling the area between the plurality of nanowires.
    Type: Application
    Filed: June 28, 2012
    Publication date: November 1, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Siegfried F. Karg
  • Patent number: 8299556
    Abstract: A multi-junction opto-electronic device including a stack of wavelength selective absorption layers is proposed. The absorption layers include each a first layer with a grating of a specific pitch defining the wavelength of the incident light to be absorbed within a subjacent second electrically active layer itself on a third electrically inactive layer. The second electrically active layer within the different absorption layers is in electrical connection with lateral contacts to extract the electrical charge carriers generated by the absorbed incident light within the active layer. The grating within the first layer of the absorption layers is defined by periodic stripes of specific width depending on the wavelength to be absorbed by the respective absorption layers. The period of the stripes alignment is defined by the pitch of the grating. Advantageously, ordinary silicon technology can be used.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Matthias Fertig, Thomas Pflueger, Thomas Morf, Nikolaj Moll
  • Patent number: 8300144
    Abstract: A camera module includes a circuit board; a lens electrically connected to the circuit board; a adjusting base disposed on the circuit board and having at least two through-hole disposed adjacent to opposite sides of the lens; at least two fixed posts; at least two adjusting screw respectively passing through the through-holes of the adjusting base so as to be secured in the fixed posts; and at least two springs respectively encircling the adjusting screws, wherein two ends of each spring are positioned against the adjusting base and one of the fixed post respectively.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: October 30, 2012
    Assignee: Quanta Computer Inc.
    Inventors: Wen-Ji Tsai, Bo-Ren Yan, Ying-Chieh Hu, Jung-Wen Chang
  • Publication number: 20120266950
    Abstract: A solar battery includes a polymer resin layer on a solar cell and an upper substrate on the polymer resin layer. A pattern is formed in the polymer resin layer.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 25, 2012
    Applicant: LG INNOTEK CO., LTD.
    Inventor: Dong Keun Lee
  • Publication number: 20120267741
    Abstract: A solid-state imaging device includes: a light receiving portion formed on a semiconductor substrate; a multilayer structure formed on the semiconductor substrate, that includes an interlayer insulating film and a first concave portion at a position corresponding to the light receiving portion; and an optical waveguide formed in the first concave portion. The optical waveguide includes a first film and a second film formed sequentially from a side of the multilayer structure. The first film covers a side face and a bottom face of the first concave portion and includes a second concave portion. The second film is in contact with the first film and fills up the second concave portion. The thickness of the first film formed on the side face of the first concave portion is thinner at a top portion of the first concave portion than at the bottom portion thereof.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 25, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: SHIGERU SUZUKI, HIROFUMI OHNAKA, KOUICHI YAMAMOTO
  • Publication number: 20120267742
    Abstract: The present invention achieves an optical characteristic exhibiting excellent sensitivity or the like, by increasing the opening dimension of an optical waveguide without changing the interconnection layout, so that the optical waveguide can surely be filled with a film having high refractive index. Pixel portion A of a solid-state imaging device includes photodiode PD formed on a semiconductor substrate; a first insulating film including a concave portion above photodiode PD; and a second insulating film formed on the first insulating film such that the concave portion is filled with the second insulating film. Peripheral circuit portion B of the solid-state imaging device includes an internal interconnection formed in the first insulating film and a pad electrode formed on the internal interconnection to be electrically connected to the internal interconnection. The pad electrode is formed on the second insulating film.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 25, 2012
    Applicant: PANASONIC CORPORATION
    Inventor: HISASHI YANO
  • Patent number: 8293560
    Abstract: A method of manufacturing a photoelectric conversion device, comprises forming a first insulating film on a semiconductor substrate, forming a gate electrode by forming an electrically conductive layer on the first insulating film and patterning the electrically conductive layer, etching an exposed surface of the first insulating film, forming a charge accumulation region of a photoelectric converter by implanting impurity ions of a first conductivity type into the semiconductor substrate through a thinned portion of the first insulating film formed by the etching, removing the thinned portion, forming a second insulating film covering the semiconductor substrate and the gate electrode, and forming a surface region of the photoelectric converter by implanting impurity ions of a second conductivity type opposite to the first conductivity type into the semiconductor substrate through the second insulating film.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: October 23, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Katsunori Hirota
  • Patent number: 8293122
    Abstract: A method for fabricating a semiconductor device with improved bonding ability is disclosed. The method comprises providing a substrate having a front surface and a back surface; forming one or more sensor elements on the front surface of the substrate; forming one or more metallization layers over the front surface of the substrate, wherein forming a first metallization layer comprises forming a first conductive layer over the front surface of the substrate; removing the first conductive layer from a first region of the substrate; forming a second conductive layer over the front surface of the substrate; and removing portions of the second conductive layer from the first region and a second region of the substrate, wherein the first metallization layer in the first region comprises the second conductive layer and the first metallization layer in the second region comprises the first conductive layer and the second conductive layer.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: October 23, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Jyh-Ming Hung, Pao-Tung Chen
  • Patent number: 8293563
    Abstract: Disclosed herein is a method for making a semiconductor device including the steps of: forming a light-receiving portion for carrying out photoelectric conversion in a semiconductor substrate; forming an insulating film to cover a light-receiving side of the semiconductor substrate; forming a metallic light-shielding film to partly cover the insulating film in correspondence to the light-receiving portion; and heating the metallic light-shielding film by irradiation of the metallic light-shielding film with a microwave to permit selective annealing of a laminated portion with the metallic light-shielding film in the insulating film.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: October 23, 2012
    Assignee: Sony Corporation
    Inventor: Susumu Hiyama
  • Patent number: 8293565
    Abstract: A manufacturing method for a solid-state imaging device according to an embodiment of the present invention includes a step of forming a transparent resin layer above a principal surface of a semiconductor substrate, a step of exposing the transparent resin layer to light by using a grating mask having a first transmission region and a second transmission region having a higher transmittance of the light than the first transmission region in mutually separate positions, a step of forming first resin patterns and second resin patterns lower than the first resin patterns in mutually separate positions, and a step of forming first microlenses and second microlenses lower than the first microlenses.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: October 23, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hajime Ootake
  • Publication number: 20120260971
    Abstract: A method of fabricating a III-V solar cell package includes providing a solar cell having a first side and an opposite second side, forming a first insulating layer on the first side of the solar cell, forming a second insulating layer on the second side of the solar cell, forming a light-transmitting layer on the first insulating layer, forming a protection layer on the second insulating layer, and laminating the light-transmitting layer and the protection layer so as to attach the first insulating layer to the light-transmitting layer and the solar cell and to attach the second insulating layer to the protection layer and the solar cell, thereby forming a flexible solar cell package since the insulating layers, the light-transmitting layer and the protection layer are all flexible.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 18, 2012
    Applicant: EVERPHOTON ENERGY CORP.
    Inventors: Yee-Lee Chen, Yu-Pei Huang, Wen-Bin Yang, Pei-Hsuan Wu
  • Patent number: 8288193
    Abstract: The present disclosure uses ammonia plasma for nitrification and for further forming a barrier pattern on a substrate. Then, a selective emitter is fabricated by forming light doping and heavy doping at one time through diffusion into the substrate. Therein, a plurality of trenches for obtaining a front contact is formed at the same time on forming the barrier pattern. Thus, the fabrication process is simplified and the cost is reduced for fabricating a selective emitter solar cell.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: October 16, 2012
    Assignee: National Tsing Hua University
    Inventors: Yung-Hsien Wu, Li-Karn Wang, Feng-Der Chin
  • Publication number: 20120256095
    Abstract: In a radiation detector, a scintillator converts radiations penetrating through a sensor panel to light, and the light is detected by a photosensor in the sensor panel. A reflector layer including a specular reflection and retro-reflection layers is provided on the opposite side of the scintillator to the sensor panel. The specular reflection layer specularly reflects short-wavelength components of the light from the scintillator, and lets long-wavelength components of the light pass through it. The photosensor can detect the short-wavelength components efficiently at positions close to their origins because they are guided along columnar crystals of the scintillator. Since long-wavelength components are less refrangible and tend to deviate from their origins, causing crosstalk, the retro-reflection layer retroreflects the long-wavelength components toward the sensor panel, so that the long-wavelength components also reach the sensor panel at positions close to their origins.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 11, 2012
    Applicant: FUJIFILM CORPORATION
    Inventors: Haruyasu NAKATSUGAWA, Yasuhisa KANEKO
  • Publication number: 20120256093
    Abstract: A radiation detecting device is manufactured by a method that includes forming a scintillator layer on a substrate carrying a plurality of photodetectors and a plurality of convex patterns each including a plurality of convexities, the plurality of convex patterns coinciding with the respective photodetectors, the scintillator layer being formed in such a manner as to extend over the plurality of convex patterns; and forming a crack in a portion of the scintillator layer that coincides, in a stacking direction, with a gap between adjacent ones of the convex patterns by cooling the substrate carrying the scintillator layer. The plurality of convex patterns satisfy specific conditions.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 11, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Ryoko Ueyama, Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den
  • Publication number: 20120258562
    Abstract: A method of production of a CIS-based thin film solar cell comprises the steps of forming an alkali control layer on a high strain point glass substrate, forming a back surface electrode layer on the alkali control layer, forming a CIS-based light absorption layer on the back surface electrode layer, and forming an n-type transparent conductive film on the CIS-based light absorption layer, wherein the alkali control layer is formed to a thickness which allows heat diffusion of the alkali metal which is contained in the high strain point glass substrate to the CIS-based light absorption layer and, furthermore, the CIS-based light absorption layer has an alkali metal added to it from the outside in addition to heat diffusion from the high strain point glass substrate.
    Type: Application
    Filed: December 14, 2010
    Publication date: October 11, 2012
    Applicant: SHOWA SHELL SEKIYU K. K.
    Inventors: Hideki Hakuma, Tetsuya Aramoto, Yoshiyuki Chiba, Yoshiaki Tanaka
  • Publication number: 20120258563
    Abstract: Disclosed herein is a solid-state image pickup device including: a trench formed in an insulating film above a light-receiving portion; a first waveguide core portion provided on an inner wall side of the trench; a second waveguide core portion filled in the trench via the first waveguide core portion; and a rectangular lens formed of the same material as that of the second waveguide core portion and provided integrally with the second waveguide core portion.
    Type: Application
    Filed: June 14, 2012
    Publication date: October 11, 2012
    Applicant: SONY CORPORATION
    Inventors: Akiko Ogino, Yukihiro Sayama, Takayuki Shoya, Masaya Shimoji
  • Patent number: 8283655
    Abstract: In layered structures, channel regions and light-interactive regions can include the same semiconductive polymer material, such as with an organic polymer. A light-interactive region can be in charge-flow contact with a contacting electrode region, and a channel region can, when conductive, provide an electrical connection between the contacting electrode region and other circuitry. For example, free charge carriers can be generated in the light-interactive region, resulting in a capacitively stored signal level; the signal level can be read out to other circuitry by turning on a transistor that includes the channel region. In an array of photosensing cells with organic thin film transistors, an opaque insulating material can be patterned to cover a data line and channel regions of cells along the line, but not extend entirely over the cells' light-interactive regions.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: October 9, 2012
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Michael L. Chabinyc, Tse Nga Ng
  • Publication number: 20120252153
    Abstract: Some embodiments include methods of forming semiconductor constructions in which a semiconductor material sidewall is along an opening, a protective organic material is over at least one semiconductor material surface, and the semiconductor material sidewall and protective organic material are both exposed to an etch utilizing at least one fluorine-containing composition. The etch is selective for the semiconductor material relative to the organic material, and reduces sharpness of at least one projection along the semiconductor material sidewall. In some embodiments, the opening is a through wafer opening, and subsequent processing forms one or more materials within such through wafer opening to form a through wafer interconnect. In some embodiments, the opening extends to a sensor array, and the protective organic material is comprised by a microlens system over the sensor array. Subsequent processing may form a macrolens structure across the opening.
    Type: Application
    Filed: June 12, 2012
    Publication date: October 4, 2012
    Applicant: Micron Technology, Inc.
    Inventors: Swarnal Borthakur, Richard L. Stocks
  • Publication number: 20120252154
    Abstract: A backside illuminated image sensor includes a light receiving element disposed in a first substrate, an interlayer insulation layer disposed on the first substrate having the light receiving element, an align key spaced apart from the light receiving element and passing through the interlayer insulation layer and the first substrate, a plurality of interconnection layers disposed on the interlayer insulation layer in a multi-layered structure, wherein the backside of the lowermost interconnection layer is connected to the align key, a passivation layer covering the interconnection layers, a pad locally disposed on the backside of the first substrate and connected to the backside of the align key, a light anti-scattering layer disposed on the backside of the substrate having the pad, and a color filter and a microlens disposed on the light anti-scattering layer to face the light receiving element.
    Type: Application
    Filed: June 18, 2012
    Publication date: October 4, 2012
    Applicant: Intellectual Ventures II LLC
    Inventor: SUNG-GYU PYO
  • Publication number: 20120247541
    Abstract: A coloured photovoltaic module and method for its production, where the module includes: a photovoltaic cell; and an appearance modifying film, encapsulant or glazing; where the appearance modifying film, encapsulant or glazing includes: a light-control film; graphic material; a phosphor; a dichroic film; nano-particles; micro-dots; metal flakes; paint; an additive material for 3-D printing, Selective Laser Augmentation (SLA) or Selective Laser Sintering (SLS); or any combination thereof.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 4, 2012
    Applicant: ATS AUTOMATION TOOLING SYSTEMS INC.
    Inventor: Gerald R. WOOTTON
  • Publication number: 20120240975
    Abstract: A photoelectric conversion device includes: a porous electrode and a counter electrode provided on a substrate; an electrolyte layer provided between the porous electrode and the counter electrode; a collecting wiring line provided on a face of the substrate on which the porous electrode is provided; and a light guiding structure provided on the light incidence side of the substrate.
    Type: Application
    Filed: March 12, 2012
    Publication date: September 27, 2012
    Applicant: Sony Corporation
    Inventor: Akira Ono
  • Publication number: 20120241891
    Abstract: Techniques are disclosed for creating optical systems and assemblies that provide increased field of view (FOV) for light detection by coupling a flip-chip light sensor directly to a condenser lens. According to certain embodiments of the invention, an optical assembly can include a condenser lens with a substantially flat surface optically contacted with a substantially flat surface of a substrate of a flip-chip light sensor. The thickness of the substrate is such that the active area of the light sensor is disposed on a focal plane of the optical system. This enables accurate light detection and increased FOV over conventional techniques.
    Type: Application
    Filed: September 22, 2011
    Publication date: September 27, 2012
    Applicant: Cubic Corporation
    Inventors: Tony Maryfield, Richard Trissel, Michael Roes
  • Publication number: 20120234373
    Abstract: A photovoltaic device includes a reflection region configured to direct light multiple times at a photoelectric material. Charge separation occurs in the photoelectric material when light is reflected at a thin reflector and part of the light's electric field penetrates the reflector into the photoelectric material. The charge separation is typically used to provide an electric current to a load.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 20, 2012
    Inventor: Steven M. Colby
  • Publication number: 20120234390
    Abstract: A solar cell device has a back cover member, which includes a surface area and a back area, and a plurality of photovoltaic regions disposed overlying the surface area of the back cover member. The plurality of photovoltaic regions may occupy a total photovoltaic spatial region. The device has an encapsulating material overlying a portion of the back cover member and a front cover member coupled to the encapsulating material. An interface region is provided along at least a peripheral region of the back cover member and the front cover member. A sealed region is formed on at least the interface region to form an individual solar cell from the back cover member and the front cover member. The total photovoltaic spatial region/the surface area of the back cover may be at a ratio of about 0.80 and less for the individual solar cell.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 20, 2012
    Applicant: Solaria Corporation
    Inventor: Kevin R. GIBSON
  • Publication number: 20120234366
    Abstract: Disclosed is a method for producing and for connecting in series photovoltaic elements to form a solar module, and a solar module.
    Type: Application
    Filed: April 21, 2010
    Publication date: September 20, 2012
    Inventors: Andreas Lambertz, Stefan Haas
  • Publication number: 20120235028
    Abstract: Apparatuses capable of and techniques for detecting the visible light spectrum are provided.
    Type: Application
    Filed: May 31, 2012
    Publication date: September 20, 2012
    Applicant: UNIVERSITY OF SEOUL INDUSTRY COOPERATION FOUNDATION
    Inventor: Doyeol AHN
  • Patent number: 8263852
    Abstract: A heat sink has a number of fixing frames. The fixing frames are soldered with of solar cell devices. And, the fixing frames are defined with insulating ink. Hence, the fixing frames can be used for insulating and locating the of a solar cell devices. Besides, with the insulating ink, solar cells of the solar cell devices are prevented from being contacted with the heat sink. As a result, a good electrical property is obtained on assembling and using the solar cell devices.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: September 11, 2012
    Assignee: Atomic Energy Council—Institute of Nuclear Energy Research
    Inventors: Zun-Hao Shih, Hwen-Fen Hong, Kuo-Hsin Lin
  • Patent number: 8263971
    Abstract: The OLED display device includes a first stack and a second stack that are separated from each other between an anode electrode and a cathode electrode, with a charge generation layer sandwiched between the first stack and the second stack, each of the first stack and the second stack having an emission layer. The first stack includes a blue emission layer formed between the anode electrode and the CGL. The second stack includes a fluorescent green emission layer and a phosphorescent red emission layer formed between the cathode electrode and the CGL. The blue emission layer includes one of a fluorescent blue emission layer and a phosphorescent blue emission layer.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: September 11, 2012
    Assignee: LG Display Co., Ltd.
    Inventor: Sung Hoon Pieh
  • Publication number: 20120225516
    Abstract: A method for fabricating an image sensor is provided. A substrate is provided, and then a plurality of photoresist patterns is formed on the substrate. The photoresist patterns are arranged in a first array, wherein a top view of each photoresist pattern has a substantially square shape and a distance between two neighboring photoresist patterns decreases from a center of the first array toward an edge of the first array. Then, a thermal reflow step is performed to convert the photoresist patterns into a plurality of microlenses arranged in a second array.
    Type: Application
    Filed: May 11, 2012
    Publication date: September 6, 2012
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Cheng-Yu HSIEH
  • Publication number: 20120225515
    Abstract: Various laser processing schemes are disclosed for producing various types of hetero-junction and homo-junction solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional.
    Type: Application
    Filed: December 30, 2011
    Publication date: September 6, 2012
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M. Moslehi, Virendra V. Rana
  • Publication number: 20120222723
    Abstract: A solar concentrator module (80) employs a luminescent concentrator material (82) between photovoltaic cells (86) having their charge-carrier separation junctions (90) parallel to front surfaces (88) of photovoltaic material 84 of the photovoltaic cells (86). Intercell areas (78) covered by the luminescent concentrator material (82) occupy from 2 to 50% of the total surface area of the solar concentrator modules (80). The luminescent concentrator material (82) preferably employs quantum dot heterostructures, and the photovoltaic cells (86) preferably employ low-cost high-efficiency photovoltaic materials (84), such as silicon-based photovoltaic materials.
    Type: Application
    Filed: November 2, 2011
    Publication date: September 6, 2012
    Applicant: Spectrawatt, Inc.
    Inventors: Alex C. Mayer, Shawn R. Scully, Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Oun Ho Park, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Patent number: 8257996
    Abstract: The present invention relates to a method of fabricating a radiation detector comprising a photosensitive sensor assembly (1, 4), a scintillator (6) that converts the radiation into radiation to which the photosensitive sensor assembly (1, 4) is sensitive, the scintillator (6) being fastened by adhesive bonding to the sensor assembly, the sensor assembly comprising a substrate (4) and several attached sensors (1), the sensors (1) each having two faces (11, 12), a first face (11) of which is bonded to the substrate (4) and a second face (12) of which is bonded to the scintillator (6). The method consists in linking the following operations: the sensors (1) are deposited via their second face (12) on an adhesive film (13); and the sensors (1) are bonded via their first face (11) to the substrate (4).
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: September 4, 2012
    Assignee: Trixell S.A.S.
    Inventors: Gérard Vieux, Jean-Michel Vignolle, Pierre Rohr, David Couder, Dubois Sébastien
  • Publication number: 20120217404
    Abstract: A method of manufacturing a radiological image detection apparatus having: a scintillator that emits fluorescence upon exposure to radiation; and a photodetecting unit disposed on a radiation entrance side of the scintillator, the method includes: a photodetecting unit production process for layering on a substrate a protective member that exhibits low radiation absorbency than that exhibited by the substrate and forming a thin film portion that detects the fluorescence as an electric signal on the protective member, thereby producing the photodetecting unit; a substrate peel-removal process for peeling and eliminating the substrate from the protective member; and an integration process for integrating the previously-produced scintillator and the photodetecting unit before or after the substrate peel-removal process.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 30, 2012
    Applicant: FUJIFILM CORPORATION
    Inventors: Naoto IWAKIRI, Haruyasu NAKATSUGAWA
  • Publication number: 20120217602
    Abstract: A solid-state imaging device includes a plurality of photoelectric conversion portions each provided in a semiconductor substrate and receives incident light through a light sensing surface, and a pixel separation portion provided to electrically separate a plurality of pixels. At least a pinning layer and a light shielding layer are provided in an inner portion of a trench provided on a side portion of each of the photoelectric conversion portions in an incident surface side, the trench includes a first trench and a second trench formed to be wider than the first trench in a portion shallower than the first trench, the pinning layer is formed in an inner portion of the first trench to cover an inside surface of the second trench, and the light shielding layer is formed to bury an inner portion of the second trench at least via the pinning layer.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 30, 2012
    Applicant: SONY CORPORATION
    Inventor: Takayuki Enomoto
  • Patent number: 8252614
    Abstract: At least one exemplary embodiment is directed to a solid state image sensor including at least one antireflective layer and/or non rectangular shaped wiring layer cross section to reduce dark currents and 1/f noise.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: August 28, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toru Koizumi, Akira Okita, Tetsuya Itano, Sakae Hashimoto, Ryuichi Mishima
  • Patent number: 8252695
    Abstract: Disclosed herein is a method for manufacturing a micro-electromechanical structure. The method includes the following steps. A circuitry layer having a release feature is formed on an upper surface of a first substrate. A passive layer is formed on the circuitry layer without covering the release feature. The release feature is removed to expose the first substrate by a wet etching process. A portion of the exposed first substrate is anisotropically etched. A second substrate is disposed above the circuitry layer. A cavity is formed in the lower surface of the first substrate. The cavity is filled with a polymeric material. A portion of the first substrate under the microstructure is removed to release the micro-electromechanical structure.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: August 28, 2012
    Assignee: Memsor Corporation
    Inventor: Siew-Seong Tan