Selectively Etching Substrate Possessing Multiple Layers Of Differing Etch Characteristics Patents (Class 438/738)
  • Patent number: 7776644
    Abstract: For fabricating a phase change memory cell, a layer of phase change material and a layer of a first electrode material are deposited. In addition, the first electrode material is patterned using an etchant including a low-reactivity halogen element such as bromine or iodine to form a first electrode. By using the low-reactivity halogen element, change to the composition of the phase change material and formation of undercut and deleterious halogen by-product are avoided.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: August 17, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong Cho, Seung-Pil Chung, Young-Jae Kim
  • Publication number: 20100200938
    Abstract: Certain MEMS devices include layers patterned to have tapered edges. One method for forming layers having tapered edges includes the use of an etch leading layer. Another method for forming layers having tapered edges includes the deposition of a layer in which the upper portion is etchable at a faster rate than the lower portion. Another method for forming layers having tapered edges includes the use of multiple iterative etches. Another method for forming layers having tapered edges includes the use of a liftoff mask layer having an aperture including a negative angle, such that a layer can be deposited over the liftoff mask layer and the mask layer removed, leaving a structure having tapered edges.
    Type: Application
    Filed: February 8, 2010
    Publication date: August 12, 2010
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventor: Chun-Ming Wang
  • Patent number: 7772126
    Abstract: An interlayer is disposed on a pattern surface of a substrate. A buried hard mask may be provided on the interlayer. The buried hard mask includes a template opening having a template length along a line axis and a template width perpendicular thereto. The buried hard mask is filled with a fill material. A top mask is provided above the filled buried hard mask. The top mask includes a trim opening crossing the template opening and having a trim width along the line axis that is smaller than the template length. By etching the fill material and the interlayer using the top and buried hard mask a process section of the pattern surface may be exposed such that a target length and width of the process section result from the template and the trim widths. The planar dimensions of the process section may be decoupled from each other.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: August 10, 2010
    Assignee: Qimonda AG
    Inventor: Lars Bach
  • Patent number: 7754552
    Abstract: A hard mask may be formed and maintained over a polysilicon gate structure in a metal gate replacement technology. The maintenance of the hard mask, such as a nitride hard mask, may protect the polysilicon gate structure 14 from the formation of silicide or etch byproducts. Either the silicide or the etch byproducts or their combination may block the ensuing polysilicon etch which is needed to remove the polysilicon gate structure and to thereafter replace it with an appropriate metal gate technology.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: July 13, 2010
    Assignee: Intel Corporation
    Inventors: Chris E. Barns, Justin K. Brask, Mark Doczy
  • Patent number: 7754591
    Abstract: A method for forming a fine pattern of a semiconductor device include forming a stack structure including a 1st layer hard mask film to a nth layer hard mask film (n is an integer ranging from 2 or more) over an underlying layer formed over a semiconductor substrate. The nth layer hard mask film, the top layer, is selectively etched to obtain a first hard mask pattern of the nth layer. A second hard mask pattern of the nth layer is formed between the first hard mask patterns of the nth layer. A (n?1)th layer hard mask film is etched using the first and the second hard mask pattern of the nth layer as etching masks. The (c) step to the (d) step repeat to form the first and the second hard mask patterns of the 1st layer over the underlying layer. And, the underlying layer is etched using the first and second hard mask patterns of the 1st layer as etching masks.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: July 13, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae Chang Jung
  • Patent number: 7749913
    Abstract: A first silicon containing film, an organic material film, a second silicon containing film are formed. The second silicon containing film is patterned to have a narrow width pattern and a wide width pattern. The organic material film is patterned to have a narrow width pattern and a wide width pattern. A side wall is formed on a side surface of the second silicon containing film and the organic material film by coating with a third silicon containing film. The narrow width pattern of the second silicon containing film is removed by using a mask that covers the second silicon containing film patterned to have a wide width pattern and the side wall. Finally, the organic material film is removed.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: July 6, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuhiro Omura, Keisuke Kikutani, Yutaka Okamoto
  • Patent number: 7745344
    Abstract: A method for integrating Non-Volatile Memory (NVM) circuitry with logic circuitry is provided. The method includes depositing a first layer of gate material over the NVM area and the logic area of the substrate. The method further includes depositing multiple adjoining sacrificial layers comprising nitride, oxide and nitride (ARC layer) overlying each other. The multiple adjoining sacrificial layers are used to pattern select gate and control gate of memory transistor in the NVM area, and the ARC layer of the multiple adjoining sacrificial layers is used to pattern gate of logic transistor in the logic area.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: June 29, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Gowrishankar L. Chindalore
  • Patent number: 7737044
    Abstract: A method of manufacturing a solid state imaging device having photoelectric conversion devices, the method including: 1) forming a plurality of color filters differing in color from each other, 2) forming a transparent resin layer on the color filters, 3) forming an etching control layer on the transparent resin layer, the etching control layer being enabled to be etched at a different etching rate from the etching rate of the transparent resin layer, 4) forming a lens master on the etching control layer by using a heat-flowable resin material, 5) transferring a pattern of the lens master to the etching control layer by dry etching to form an intermediate micro lens, and 6) transferring a pattern of the intermediate micro lens to the transparent resin layer by dry etching to form the transfer lenses.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: June 15, 2010
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Kenzo Fukuyoshi, Tadashi Ishimatsu, Keisuke Ogata, Mitsuhiro Nakao, Akiko Uchibori
  • Patent number: 7737045
    Abstract: A fluid delivery system including a first substrate having a micro-channel and a well both formed through the first substrate. The fluid delivery system also includes a second substrate and a delivery channel. The second substrate is on the first substrate and the delivery channel is formed between the first and second substrates. The delivery channel provides fluid communication between the micro-channel and the well.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: June 15, 2010
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Chang Liu, Kee Ryu, David Bullen
  • Patent number: 7732340
    Abstract: A method for adjusting the lateral critical dimension (i.e., length and width) of a feature formed in a layer on a substrate using a dry etching process. One or more thin intermediate sub-layers are inserted in the layer within which the feature is to be formed. Once an intermediate sub-layer is reached during the etching process, an etch process is performed to correct and/or adjust the lateral critical dimensions before etching through the intermediate sub-layer and continuing the layer etch.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: June 8, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Toshifumi Nagaiwa, Junichi Sasaki, Stefan Sawusch
  • Patent number: 7709397
    Abstract: A method for etching a high-k dielectric layer on a substrate in a plasma processing system is described. The high-k dielectric layer can, for example, comprise HfO2. The method comprises elevating the temperature of the substrate above 200° C. (i.e., typically of order 400° C.), introducing a process gas comprising a halogen-containing gas, igniting a plasma from the process gas, and exposing the substrate to the plasma. The process gas can further include a reduction gas in order to improve the etch rate of HfO2 relative to Si and SiO2.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: May 4, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Lee Chen, Hiromitsu Kambara, Nobuhiro Iwama, Akiteru Ko, Hiromasa Mochiki, Masaaki Hagihara
  • Patent number: 7704891
    Abstract: A method of producing a semiconductor device includes the steps of: preparing a base member; laminating sequentially a barrier film formed of titanium nitride, a wiring portion film formed of tungsten, and a mask film formed of titanium nitride on the base member to form a multi-layer film; forming a resist mask on the mask film so that the resist mask covers a wiring portion forming area and exposes a wiring portion non-forming area; etching the mask film using a first gas in which titanium nitride has a large etching ratio with respect to tungsten; and etching the wiring portion film using a second gas in which tungsten has a large etching ratio with respect to titanium nitride so that a portion of the wiring portion film in the wiring portion non-forming area is removed and a portion of the wiring portion film in the wiring portion forming area remains.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: April 27, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Sadaharu Tamaki
  • Patent number: 7700469
    Abstract: Some embodiments include methods of forming semiconductor constructions. Oxide is formed over a substrate, and first material is formed over the oxide. Second material is formed over the first material. The second material may be one or both of polycrystalline and amorphous silicon. A third material is formed over the second material. A pattern is transferred through the first material, second material, third material, and oxide to form openings. Capacitors may be formed within the openings. Some embodiments include semiconductor constructions in which an oxide is over a substrate, a first material is over the oxide, and a second material containing one or both of polycrystalline and amorphous silicon is over the first material. Third, fourth and fifth materials are over the second material. An opening may extend through the oxide; and through the first, second, third, fourth and fifth materials.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: April 20, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Russell A. Benson
  • Patent number: 7701652
    Abstract: A mounting process/device for mounting and alignment of micro optical electro-mechanical systems (MOEMS) elements and/or devices. The mounting process/device can be obtained by attaching at least one optical element onto a mounting system, which contains an embedded optical element. The attached optical element(s) are aligned with respect to the embedded optical element.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: April 20, 2010
    Assignee: MEMS Optical, Inc.
    Inventor: John S. Harchanko
  • Patent number: 7700491
    Abstract: A method of preventing formation of stringers adjacent a side of a CMOS gate stack during the deposition of mask and poly layers for the formation of a base and emitter of a bi-polar device on a CMOS integrated circuit wafer. The stringers are formed by incomplete removal of a hard mask layer over an emitter poly layer over a nitride mask layer. The method includes overetching the hard mask layer with a first etchant having a higher selectivity for the emitter poly material than for the material of the hard mask, determining an end point for the overetching step by detection of nitride in the etchant and applying a poly etchant that is selective with respect to nitride to remove any residual emitter poly.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: April 20, 2010
    Assignee: Agere Systems Inc.
    Inventors: Milton Beachy, Thomas Craig Esry, Daniel Charles Kerr, Thomas M. Oberdick, Mario Pita
  • Patent number: 7696098
    Abstract: A unipolar semiconductor laser is provided in which an active region is sandwiched in a guiding structure between an upper and lower cladding layer, the lower cladding layer being situated on a semiconducting substrate. The unipolar semiconductor laser comprises a raised ridge section running from end to end between end mirrors defining the laser cavity. The ridge section aids in optical and electrical confinement. The ridge waveguide is divided in a plurality of cavity segments (at least two). Lattice structures can be arranged on and/or adjacent to these cavity segments. Each cavity segment is in contact with upper metallic electrodes. A metallic electrode coupled to the bottom surface of the semiconducting substrate facilitates current injection through the device.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 13, 2010
    Assignee: Nanoplus GmbH
    Inventors: Marc Fischer, Alfred Forchel
  • Patent number: 7695632
    Abstract: A method for forming a feature in an etch layer is provided. A photoresist layer is formed over the etch layer. The photoresist layer is patterned to form photoresist features with photoresist sidewalls. A control layer is formed over the photoresist layer and bottoms of the photoresist features. A conformal layer is deposited over the sidewalls of the photoresist features and control layer to reduce the critical dimensions of the photoresist features. Openings in the control layer are opened with a control layer breakthrough chemistry. Features are etched into the etch layer with an etch chemistry, which is different from the control layer break through chemistry, wherein the control layer is more etch resistant to the etch with the etch chemistry than the conformal layer.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: April 13, 2010
    Assignee: Lam Research Corporation
    Inventors: Sangheon Lee, Dae-Han Choi, Jisoo Kim, Peter Cirigliano, Zhisong Huang, Robert Charatan, S.M. Reza Sadjadi
  • Patent number: 7696102
    Abstract: A multi-layer fabrication method for making three-dimensional structures is provided. In one embodiment, the formation of a multi-layer three-dimensional structure comprises: 1) fabricating a plurality of layers with each layer comprising at least two materials; 2) aligning the layers; 3) attaching the layers together to form a multi-layer structure; and 4) removing at least a portion of at least one of the materials from the multi-layer structure. Fabrication methods for making the required layers are also disclosed.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: April 13, 2010
    Inventor: Gang Zhang
  • Patent number: 7695986
    Abstract: The present invention provides a method and apparatus for modifying process selectivities based on process state information. The method includes accessing process state information associated with at least one material removal process, determining at least one selectivity based on the process state information, and modifying at least one process parameter of said material removal process based on said at least one determined selectivity.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: April 13, 2010
    Assignee: GlobalFoundries, Inc.
    Inventors: Matthew A. Purdy, Matthew Ryskoski, Richard J. Markle
  • Patent number: 7691753
    Abstract: A deposition/etching/deposition process is provided for filling a gap in a surface of a substrate. A liner is formed over the substrate so that distinctive reaction products are formed when it is exposed to a chemical etchant. The detection of such reaction products thus indicates that the portion of the film deposited during the first etching has been removed to an extent that further exposure to the etchant may remove the liner and expose underlying structures. Accordingly, the etching is stopped upon detection of distinctive reaction products and the next deposition in the deposition/etching/deposition process is begun.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: April 6, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Lin Zhang, Xiaolin Chen, DongQing Li, Thanh N. Pham, Farhad K. Moghadam, Zhuang Li, Padmanabhan Krishnaraj
  • Patent number: 7678693
    Abstract: An exposure method executed after processing a hole in a substrate of a semiconductor device, has an exposure step of transferring a pattern on a mask onto an upper layer of the hole and forming a wiring groove by exposure, wherein a quantity of exposure with which a wiring groove 11 just above the hole or the wiring groove in the vicinity of the hole is exposed to light, is greater than a quantity of exposure with which a wiring groove 11A in a position spaced away from just above the hole is exposed to the light.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: March 16, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Fumitoshi Sugimoto, Kiyoshi Ozawa
  • Patent number: 7670946
    Abstract: A method to form a barrier layer and contact plug using a touch up RIE. In a first embodiment, we form a first barrier layer over the dielectric layer and the substrate in the contact hole. The first barrier layer is comprised of Ta. A second barrier layer is formed over the first barrier layer. The second barrier layer is comprised of TaN or WN. We planarize a first conductive layer to form a first contact plug in the contact hole. We reactive ion etch (e.g., W touch up etch) the top surfaces using a Cl and B containing etch. Because of the composition of the barrier layers and RIE etch chemistry, the barrier layers are not significantly etched selectively to the dielectric layer. In a second embodiment, a barrier film is comprised of WN.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: March 2, 2010
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Yong Kong Siew, Beichao Zhang
  • Patent number: 7666797
    Abstract: The invention includes methods for selectively etching insulative material supports relative to conductive material. The invention can include methods for selectively etching silicon nitride relative to metal nitride. The metal nitride can be in the form of containers over a semiconductor substrate, with such containers having upwardly-extending openings with lateral widths of less than or equal to about 4000 angstroms; and the silicon nitride can be in the form of a layer extending between the containers. The selective etching can comprise exposure of at least some of the silicon nitride and the containers to Cl2 to remove the exposed silicon nitride, while not removing at least the majority of the metal nitride from the containers. In subsequent processing, the containers can be incorporated into capacitors.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: February 23, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kevin R. Shea, Thomas M. Graettinger
  • Patent number: 7666796
    Abstract: Some embodiments of the present invention include apparatuses and methods relating to improved substrate patterning for multi-gate transistors.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: February 23, 2010
    Assignee: Intel Corporation
    Inventors: Ibrahim Ban, Uday Shah, Allen B. Gardiner
  • Patent number: 7662724
    Abstract: A method for manufacturing a capacitor includes the steps of: forming a lower electrode above a base substrate; forming a dielectric film composed of ferroelectric material or piezoelectric material above the lower electrode; forming an upper electrode above the dielectric film; forming a silicon oxide film that covers at least the dielectric film and the upper electrode; and forming a hydrogen barrier film that covers the silicon oxide film.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: February 16, 2010
    Assignee: Seiko Epson Corporation
    Inventors: Masao Nakayama, Daisuke Kobayashi
  • Patent number: 7660058
    Abstract: Certain MEMS devices include layers patterned to have tapered edges. One method for forming layers having tapered edges includes the use of an etch leading layer. Another method for forming layers having tapered edges includes the deposition of a layer in which the upper portion is etchable at a faster rate than the lower portion. Another method for forming layers having tapered edges includes the use of multiple iterative etches. Another method for forming layers having tapered edges includes the use of a liftoff mask layer having an aperture including a negative angle, such that a layer can be deposited over the liftoff mask layer and the mask layer removed, leaving a structure having tapered edges.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: February 9, 2010
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Chengbin Qiu, Teruo Sasagawa, Ming-Hau Tung, Chun-Ming Wang, Stephen Zee
  • Patent number: 7651951
    Abstract: Differently-sized features of an integrated circuit are formed by etching a substrate using a mask which is formed by combining two separately formed patterns. Pitch multiplication is used to form the relatively small features of the first pattern and conventional photolithography used to form the relatively large features of the second pattern. Pitch multiplication is accomplished by patterning a photoresist and then etching that pattern into an amorphous carbon layer. Sidewall spacers are then formed on the sidewalls of the amorphous carbon. The amorphous carbon is removed, leaving behind the sidewall spacers, which define the first mask pattern. A bottom anti-reflective coating (BARC) is then deposited around the spacers to form a planar surface and a photoresist layer is formed over the BARC. The photoresist is next patterned by conventional photolithography to form the second pattern, which is then is transferred to the BARC.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: January 26, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Luan Tran, William T. Rericha, John Lee, Ramakanth Alapati, Sheron Honarkhah, Shuang Meng, Puneet Sharma, Jingyi Bai, Zhiping Yin, Paul Morgan, Mirzafer K. Abatchev, Gurtej S. Sandhu, D. Mark Durcan
  • Patent number: 7648919
    Abstract: A method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. The method further comprises using pitch multiplication to produce at least two features in a lower masking layer for each feature in the photoresist layer. The features in the lower masking layer include looped ends. The method further comprises covering with a second photoresist layer a second region of the substrate including the looped ends in the lower masking layer. The method further comprises etching a pattern of trenches in the substrate through the features in the lower masking layer without etching in the second region. The trenches have a trench width.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: January 19, 2010
    Inventors: Luan C. Tran, John Lee, Zengtao “Tony” Liu, Eric Freeman, Russell Nielsen
  • Patent number: 7648915
    Abstract: Some embodiments include methods of recessing multiple materials to a common depth utilizing etchant comprising C4F6 and C4F8. The recessed materials may be within isolation regions, and the recessing may be utilized to form trenches for receiving gatelines. Some embodiments include structures having an island of semiconductor material laterally surrounded by electrically insulative material. Two gatelines extend across the insulative material and across the island of semiconductor material. One of the gatelines is recessed deeper into the electrically insulative material than the other.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: January 19, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Larson Lindholm, Aaron R. Wilson, David K. Hwang
  • Patent number: 7645657
    Abstract: A MOS transistor is formed with a dual-layer silicon oxynitride (SiON) etch stop film that protects the transistor from plasma induced damage (PID) and hot carrier degradation, thereby improving the reliability of the transistors. The first SiON layer is formed with SiH4 at a first flow rate, and the second SiON layer is formed with SiH4 at a second higher flow rate.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: January 12, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Douglas Brisbin, Prasad Chaparala, Denis Finbarr O'Connell, Heather McCulloh, Sergei Drizlikh
  • Patent number: 7635645
    Abstract: Methods for forming an interconnection line and interconnection line structures are disclosed. The method includes forming an interlayer insulating layer on a semiconductor substrate, wherein the interlayer insulating layer is formed of a carbon-doped low-k dielectric layer. An oxidation barrier layer is formed on the interlayer insulating layer. An oxide capping layer is formed on the oxidation barrier layer. A via hole is in the oxide capping layer, the oxidation barrier, and the interlayer insulating layer. A conductive layer pattern is formed within the via hole.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: December 22, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-Woo Lee, Hong-Jae Shin, Jae-Hak Kim, Young-Jin Wee, Seung-Jin Lee, Ki-Kwan Park
  • Patent number: 7628866
    Abstract: A method of cleaning a wafer after an etching process is provided. A substrate having an etching stop layer, a dielectric layer, a patterned metal hard mask sequentially formed thereon is provided. Using the patterned metal hard mask, an opening is defined in the dielectric layer. The opening exposes a portion of the etching stop layer. A dry etching process is performed in the environment of helium to remove the etching stop layer exposed by the opening. A dry cleaning process is performed on the wafer surface using a mixture of nitrogen and hydrogen as the reactive gases. A wet cleaning process is performed on the wafer surface using a cleaning solution containing a trace amount of hydrofluoric acid.
    Type: Grant
    Filed: November 23, 2006
    Date of Patent: December 8, 2009
    Assignee: United Microelectronics Corp.
    Inventors: Miao-Chun Lin, Cheng-Ming Weng, Chun-Jen Huang
  • Patent number: 7618510
    Abstract: A method of applying a pattern on a topography includes first applying a polymer film to an elastomer member, such as PDMS, to form a pad. The pad is then applied to a substrate having a varying topography under pressure. The polymer film is transferred to the substrate due to the plastic deformation of the polymer film under pressure compared to the elastic deformation of the PDMS member. Thus, upon removal of the pad from the substrate, the PDMS member pulls away from the polymer layer, thereby depositing the polymer layer upon the substrate.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: November 17, 2009
    Assignee: The Regents of the University of Michigan
    Inventors: Li Tan, Yen-Peng Kong, Stella W. Pang, Albert F. Yee
  • Patent number: 7615497
    Abstract: A method for forming a fine pattern of a semiconductor device includes forming a deposition film over a substrate having an underlying layer. The deposition film includes first, second, and third mask films. The method also includes forming a photoresist pattern over the third mask film, patterning the third mask film to form a deposition pattern, and forming an amorphous carbon pattern at sidewalls of the deposition pattern. The method further includes filling a spin-on-carbon layer over the deposition pattern and the amorphous carbon pattern, polishing the spin-on-carbon layer, the amorphous carbon pattern, and the photoresist pattern to expose the third mask pattern, and performing an etching process to expose the first mask film with the amorphous carbon pattern as an etching mask. The etching process removes the third mask pattern and the exposed second mask pattern.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: November 10, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Cheol Kyu Bok, Keun Do Ban
  • Publication number: 20090241694
    Abstract: An external force detection device includes a weight portion, a supporting portion, and a beam portion provided in an SOI substrate which includes an upper layer and a lower layer that are capable of being etched with a first etching gas and sandwich an intermediate layer that is capable of being etched with a second etching gas. The weight portion is displaced in accordance with an external force to cause the beam portion to deform. The upper layer in a gap portion between the weight portion and the supporting portion is etched. The lower layer in the gap portion and the lower layer below the beam portion are etched. The intermediate layer in the gap portion is then etched. The groove formed by etching the upper layer has a multidirectional two-dimensional shape.
    Type: Application
    Filed: March 13, 2009
    Publication date: October 1, 2009
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventor: Koichi YOSHIDA
  • Patent number: 7595010
    Abstract: Adding at least one non-silicon precursor (such as a germanium precursor, a carbon precursor, etc.) during formation of a silicon nitride, silicon oxide, silicon oxynitride or silicon carbide film improves the deposition rate and/or makes possible tuning of properties of the film, such as tuning of the stress of the film. Also, in a doped silicon oxide or doped silicon nitride or other doped structure, the presence of the dopant may be used for measuring a signal associated with the dopant, as an etch-stop or otherwise for achieving control during etching.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: September 29, 2009
    Assignee: International Business Machines Corporation
    Inventors: Ashima B. Chakravarti, Judson Holt, Kevin K. Chan, Sadanand V. Deshpande, Rangarajan Jagannathan
  • Patent number: 7589024
    Abstract: Recently, with shortened wavelengths employed in aligners, it is now difficult to use a material containing a benzene ring as a photoresist material. Since resist has extremely low plasma resistance, formation of deep holes using a photoresist as a dry etching mask is difficult. Under such circumstances, in the present invention, amorphous carbon film 6 is formed on photoresist 4 in which first hole 5 is formed, and using amorphous carbon film 6 as a mask, deep second hole 7 is formed in a etch target material such as underlying SiO2 film 2.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: September 15, 2009
    Assignee: Elpida Memory, Inc.
    Inventor: Yasuhiko Ueda
  • Patent number: 7589006
    Abstract: A method for manufacturing a semiconductor device includes forming a plurality of gate lines on a substrate, forming a first cell spacer on the gate lines, forming a second cell spacer on the first cell spacer, forming a buffer layer on the second cell spacer, and exposing the surface of the substrate by etching the buffer layer.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: September 15, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ki-Won Nam, Ky-Hyun Han
  • Patent number: 7566664
    Abstract: A method for etching a target material in the presence of a structural material with improved selectivity uses a vapor phase etchant and a co-etchant. Embodiments of the method exhibit improved selectivities of from at least about 2-times to at least about 100-times compared with a similar etching process not using a co-etchant. In some embodiments, the target material comprises a metal etchable by the vapor phase etchant. Embodiments of the method are particularly useful in the manufacture of MEMS devices, for example, interferometric modulators. In some embodiments, the target material comprises a metal etchable by the vapor phase etchant, for example, molybdenum and the structural material comprises a dielectric, for example silicon dioxide.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: July 28, 2009
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Xiaoming Yan, Brian Arbuckle, Evgeni Gousev, Ming-Hau Tung
  • Patent number: 7566658
    Abstract: A semiconductor device includes an interlayer insulating layer including a plurality of trenches connecting to a number of via holes formed on a semiconductor substrate including lower interconnections, wherein widths of the trenches are greater than widths of the via holes, and metal interconnections formed by burying metal thin films in the via holes and the trenches. Depths of the trenches are adjusted differently from each other depending on required resistances of the metal interconnections.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: July 28, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Dong-Yeal Keum
  • Patent number: 7563688
    Abstract: A method for fabricating a capacitor in a semiconductor device includes forming a stack structure providing a plurality of open regions, the stack structure including an insulation layer and a hard mask pattern, forming a conductive layer over the stack structure and in the open regions, etching a portion of the conductive layer formed outside the open regions to form bottom electrodes in the open regions, removing the hard mask pattern, and etching upper portions of the bottom electrodes that are exposed after the hard mask pattern is removed.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: July 21, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jun-Hyeub Sun, Sang-Oh Lee
  • Patent number: 7560315
    Abstract: It is an object of the present invention to enhance a selection ratio in an etching process, and provide a method for manufacturing a semiconductor device that has favorable uniform characteristics with high yield. In a method for manufacturing a semiconductor device according to the present invention, a first layer is formed over a substrate, second layer is formed on the first layer, the first layer and the second layer are etched to form a first pattern, and the second layer in the first pattern is selectively etched with plasma of boron trichloride, chlorine, and oxygen using ECR (Electron Cyclotron Resonance) or ICP (Inductively Coupled Plasma) to form a second pattern.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: July 14, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shigeharu Monoe, Takashi Yokoshima, Shinya Sasagawa
  • Patent number: 7560360
    Abstract: Methods for enhancing trench capacitance and a trench capacitor so formed are disclosed. In one embodiment a method includes forming a first portion of a trench; depositing a dielectric layer in the first portion; performing a reactive ion etching including a first stage to etch the dielectric layer and form a micro-mask on a bottom surface of the first portion of the trench and a second stage to form a second portion of the trench having a rough sidewall; depositing a node dielectric; and filling the trench with a conductor. The rough sidewall enhances trench capacitance without increasing processing complexity or cost.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: July 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, David M. Dobuzinsky, Xi Li
  • Publication number: 20090170034
    Abstract: A method for manufacturing a semiconductor device comprises: forming a first photoresist pattern in a double patterning technology (DPT) for overcoming a resolution limit of an exposer; and forming a second photoresist pattern. The method further comprises forming a hard mask film and an anti-reflective film to prevent an intermixing phenomenon generated when the second photoresist pattern is formed. As a result, yield and reliability of the process can be improved.
    Type: Application
    Filed: July 21, 2008
    Publication date: July 2, 2009
    Applicant: Hynix Semiconductor Inc.
    Inventor: Hee Youl LIM
  • Patent number: 7553723
    Abstract: A method of manufacturing a memory device. The memory device comprises a trench in a substrate, a capacitor at the low portion of the trench, a collar dielectric layer overlying the capacitor and covering a portion of the sidewall of the trench, and a conductive layer filling a portion of the trench over the capacitor. First, a first mask layer is formed on the conductive layer, wherein a bottom portion of the first mask layer is thicker than the side portion thereof in the trench. A second mask layer is formed on the first mask layer. Next, a portion of the second mask layer in the trench is ion implanted. The unimplanted portion of the second mask layer is removed.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: June 30, 2009
    Assignee: Nanya Technology Corporation
    Inventor: Cheng-Chih Huang
  • Patent number: 7547638
    Abstract: A method for manufacturing a semiconductor device includes the steps of forming a circuit element on a semiconductor substrate, forming an insulation film covering the circuit element, forming a first electrode on the insulation film, forming a ferroelectric film on the first electrode, forming a second electrode on the ferroelectric film, forming a hardmask comprised of lower, middle, and upper layer mask films on the second electrode, etching the second electrode using the upper layer mask film as an etching mask, removing the upper layer mask film remaining after the etching of the second electrode, etching the ferroelectric film and the first electrode using the middle layer mask film as an etching mask, removing the middle layer mask film remaining after the etching of the ferroelectric film and the first electrode, and removing the lower layer mask film.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: June 16, 2009
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Akira Takahashi
  • Patent number: 7547641
    Abstract: The present invention provides semiconductor structures comprised of stressed channels on hybrid oriented. In particular, the semiconductor structures include a first active area having a first stressed semiconductor surface layer of a first crystallographic orientation located on a surface of a buried insulating material and a second active area having a second stressed semiconductor surface layer of a second crystallographic orientation located on a surface of a dielectric material. A trench isolation region is located between the first and second active area, and the trench isolation region is partially filled with a trench dielectric material and the dielectric material that is present underneath said second stressed semiconductor surface layer.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: June 16, 2009
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Qiqing C. Ouyang
  • Patent number: 7547565
    Abstract: The method of manufacturing an optical interference color display is described. A first electrode structure is formed over a substrate first. At least one first area, second area and third area are defined on the first electrode structure. A first sacrificial layer is formed over the first electrode structure of the first area, the second area and the third area. Moreover, a second sacrificial layer is formed over the first sacrificial layer inside the second area and the third area. In addition, a third sacrificial layer is formed over the second sacrificial layer inside the third area. The etching rates of all sacrificial layers are different. Then, a patterned support layer is formed over the first electrode structure. Next, a second electrode layer is formed and the sacrificial layers are removed to form air gaps. Therefore, the air gaps are effectively controlled by using the material having different etching rates.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: June 16, 2009
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventor: Wen-Jian Lin
  • Patent number: 7547640
    Abstract: Different sized features in the array and in the periphery of an integrated circuit are patterned on a substrate in a single step. In particular, a mixed pattern, combining two separately formed patterns, is formed on a single mask layer and then transferred to the underlying substrate. The first of the separately formed patterns is formed by pitch multiplication and the second of the separately formed patterns is formed by conventional photolithography. The first of the separately formed patterns includes lines that are below the resolution of the photolithographic process used to form the second of the separately formed patterns. These lines are made by forming a pattern on photoresist and then etching that pattern into an amorphous carbon layer. Sidewall pacers having widths less than the widths of the un-etched parts of the amorphous carbon are formed on the sidewalls of the amorphous carbon. The amorphous carbon is then removed, leaving behind the sidewall spacers as a mask pattern.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: June 16, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Mirzafer K. Abatchev, Gurtej Sandhu, Luan Tran, William T. Rericha, D. Mark Durcan
  • Patent number: 7544623
    Abstract: A method for fabricating a contact hole is provided. A semiconductor substrate having thereon a conductive region is prepared. A dielectric layer is deposited on the semiconductor substrate and the conductive region. An etching resistive layer is coated on the dielectric layer. A silicon-containing hard mask bottom anti-reflection coating (SHB) layer is then coated on the etching resistive layer. A photoresist layer is then coated on the SHB layer. A lithographic process is performed to form a first opening in the photoresist layer. Using the photoresist layer as a hard mask, the SHB layer is etched through the first opening, thereby forming a shrunk, tapered second opening in the SHB layer. Using the etching resistive layer as an etching hard mask, etching the dielectric layer through the second opening to form a contact hole in the dielectric layer.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: June 9, 2009
    Assignee: United Microelectronics Corp.
    Inventors: Pei-Yu Chou, Wen-Chou Tsai, Jiunn-Hsiung Liao