Silicon Oxide Patents (Class 438/756)
  • Patent number: 8461057
    Abstract: The present invention relates to a novel process for producing textured surfaces on multicrystalline, tricrystalline and monocrystalline silicon surfaces of solar cells or on silicon substrates which are used for photovoltaic purposes. It relates in particular to an etching process and an etching agent for producing a textured surface on a silicon substrate.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: June 11, 2013
    Assignee: BASF Aktiengesellschaft
    Inventors: Arnim Kuebelbeck, Claudia Zielinski, Thomas Goelzenleuchter
  • Patent number: 8450772
    Abstract: A phase change RAM device includes a semiconductor substrate having a phase change cell area and a voltage application area; a first oxide layer, a nitride layer and a second oxide layer sequentially formed on the semiconductor substrate; a first plug formed in the first oxide layer, the nitride layer and the second oxide layer of the phase change cell area; a second plug formed in the first oxide layer and the nitride layer of the voltage application area; a conductive line formed in the second oxide layer; a third oxide layer formed on the second oxide layer; a lower electrode shaped like a plug, the lower electrode being formed so as to directly make contact with the first plug; and a phase change layer and an upper electrode sequentially formed on the lower electrode in a pattern form.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: May 28, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Heon Yong Chang, Suk Kyoung Hong, Hae Chan Park
  • Publication number: 20130115774
    Abstract: According to one embodiment, a method for chemical planarization includes: preparing a treatment liquid containing a hydrosilicofluoric acid aqueous solution containing silicon dioxide dissolved therein at a saturated concentration; and decreasing height of irregularity of a silicon dioxide film. In the decreasing, dissolution rate of convex portions is made larger than dissolution rate of concave portion of the irregularity while changing equilibrium state of the treatment liquid at areas being in contact with the convex portions of the irregularity, in a state in which the silicon dioxide film having the irregularity is brought into contact with the treatment liquid.
    Type: Application
    Filed: March 16, 2012
    Publication date: May 9, 2013
    Inventors: Masako Kodera, Yukiteru Matsui
  • Patent number: 8435903
    Abstract: In one embodiment, a method for treating a surface of a semiconductor substrate is disclosed. The semiconductor substrate has a first pattern covered by a resist and a second pattern not covered by the resist. The method includes supplying a resist-insoluble first chemical solution onto a semiconductor substrate to subject the second pattern to a chemical solution process. The method includes supplying a mixed liquid of a water repellency agent and a resist-soluble second chemical solution onto the semiconductor substrate after the supply of the first chemical solution, to form a water-repellent protective film on a surface of at least the second pattern and to release the resist. In addition, the method can rinse the semiconductor substrate using water after the formation of the water-repellent protective film, and dry the rinsed semiconductor substrate.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: May 7, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Ogawa, Shinsuke Kimura, Tatsuhiko Koide, Hisashi Okuchi, Hiroshi Tomita
  • Patent number: 8426319
    Abstract: An etching solution for a metal hard mask. The etching solution comprises a mixture of a dilute HF (hydrofluoric acid) and a silicon containing precursor. The etching solution also comprises a surfactant agent, a carboxylic acid, and a copper corrosion inhibitor. The etching solution is selectively toward etching the metal hard mask material (e.g., Titanium) while suppressing Tungsten, Copper, oxide dielectric material, and carbon doped oxide.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: April 23, 2013
    Assignee: Intel Corporation
    Inventors: Nabil G. Mistkawi, Lourdes Dominguez
  • Patent number: 8415255
    Abstract: A micellar solution is used to seal pores exposed at the bottom and sidewall surfaces of a structure etched in or through a porous low dielectric constant material. The micellar solution is also effective to clean away etch residues from the etched structure.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: April 9, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Balgovind Sharma
  • Patent number: 8409997
    Abstract: A method and system for controlling a silicon nitride etching bath provides the etching bath including phosphoric acid heated to an elevated temperature. The concentration of silicon in the phosphoric acid is controlled to maintain a desired level associated with a desired silicon nitride/silicon oxide etch selectivity. Silicon concentration is measured while the silicon remains in soluble form and prior to silica precipitation. Responsive to the measuring, fresh heated phosphoric acid is added to the etching bath when necessary to maintain the desired concentration and silicon nitride:silicon oxide etch selectivity and prevent silica precipitation. The addition of fresh heated phosphoric acid enables the etching bath to remain at a steady state temperature. Atomic absorption spectroscopy may be used to monitor the silicon concentration which may be obtained by diluting a sample of phosphoric acid with cold deionized water and measuring before silica precipitation occurs.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: April 2, 2013
    Assignee: Taiwan Semiconductor Maufacturing Co., Ltd.
    Inventors: Zin-Chang Wei, Tsung-Min Huang, Ming-Tsao Chiang Chiang, Cheng-Chen Calvin Hsueh
  • Patent number: 8394668
    Abstract: Oxide thin film, electronic devices including the oxide thin film and methods of manufacturing the oxide thin film, the methods including (A) applying an oxide precursor solution comprising at least one of zinc (Zn), indium (In) and tin (Sn) on a substrate, (B) heat-treating the oxide precursor solution to form an oxide layer, and (C) repeating the steps (A) and (B) to form a plurality of the oxide layers.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: March 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Baek Seon, Myung-Kwan Ryu, Kyung-Bae Park, Sang-Yoon Lee, Bon-Won Koo
  • Patent number: 8372299
    Abstract: A method and apparatus for performing treatment of substrates with a treating liquid. A first storage unit stores an initial life count specifying an allowable number of treatments of substrates to be carried out with treating liquid after an entire liquid replacement with a new supply of the treating liquid; a second storage device stores a normal life count specifying an allowable number of treatments to be carried out with the treating liquid after reaching the initial life count and after a partial liquid replacement; and a control device repeats treatment of the substrates after the entire liquid replacement until the initial life count is reached; and after the initial life count has been reached and the partial liquid replacement has been made, repeats treatment of the substrates until the normal life count is reached, and makes the partial liquid replacement each succeeding time the normal life count is reached.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: February 12, 2013
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Yasunori Nakajima, Yusuke Mori
  • Patent number: 8372752
    Abstract: Disclosed herein is a method for fabricating an ultra fine nanowire, which relates to a manufacturing technology of a microelectronic semiconductor transistor. This method obtains a suspended ultra fine nanowire base on a combination of a mask blocking oxidation process and a stepwise oxidation process. A diameter of the suspended ultra fine nanowire fabricated by this method is precisely controlled to 20 nm by controlling a thickness of a deposited silicon nitride film and a time and temperature of the two oxidation process. Since a speed of a dry oxidation process is slower, the size of the final nanowire may be precisely controlled. This method can be used to fabricate an ultra fine nanowire with a lower cost and a higher applicability.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: February 12, 2013
    Assignee: Peking University
    Inventors: Ru Huang, Shuai Sun, Yujie Al, Jiewen Fan, Runsheng Wang, Xiaoyan Xu
  • Patent number: 8324114
    Abstract: A method for removing silicon oxide based residue from a stack with a doped silicon oxide layer with features with diameters less than 100 nm is provided. A wet clean solution of between 25% to 60% by weight of NH4F, and between 0.05% and 5% by weight of phosphoric acid, and between 0.05% and 5% by weight citric acid, in a water solvent is provided to an area on a surface of the stack. The wet clean solution is removed from the area on the surface of the stack between 0.5 to 10 seconds after the area on the surface of the stack was exposed to the wet clean solution.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: December 4, 2012
    Assignee: Lam Research Corporation
    Inventors: Katrina Mikhaylichenko, Denis Syomin
  • Patent number: 8318606
    Abstract: An etchant for dielectrics, such as silicon dioxide, that leaves monocrystalline silicon surface exposed by the etchant free of etch damage, such as etch pits, when the etch is done in the presence of transition metals, such as copper, tungsten, titanium, gold, etc. The etchant comprises hydrofluoric acid and a source of halide anion, such as hydrochloric acid or a metal-halide. The etchant is useful in microelectromechanical system device fabrication and in deprocessing integrated circuits or the like.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: November 27, 2012
    Assignee: LSI Corporation
    Inventors: Frank Baiocchi, David Kern, John DeLucca
  • Patent number: 8310053
    Abstract: A micro-device with a cavity, the micro-device including a substrate. A method of forming the micro-device includes the steps of: A) providing the substrate having a surface and comprising a sacrificial oxide region at the surface; B) covering the sacrificial oxide region with a porous layer being permeable to a vapor HF etchant; and C) selectively etching the sacrificial oxide region through the porous layer using the vapor HF etchant to obtain the cavity. This method may be used in the manufacture of various micro-devices with a cavity , i.e. MEMS devices, and in particular in the encapsulation part thereof, and semiconductor devices, and in particular the BEOL-part thereof.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: November 13, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Greja Johanna Adriana Maria Verheijden, Roel Daamen, Gerhard Koops
  • Patent number: 8309472
    Abstract: A method for fabricating semiconductor devices includes providing a semiconductor substrate having a surface region containing one or more contaminants and having an overlying oxide layer. In an embodiment, the one or more contaminants are at least a carbon species. The method includes processing the surface region using at least a wet processing process to selectively remove the overlying oxide layer and expose the surface region including the one or more contaminants. The method includes subjecting the surface region to a high energy electromagnetic radiation having wavelengths ranging from about 300 to about 800 nanometers for a time period of less than 1 second to increase a temperature of the surface region to greater than 1000 degrees Celsius to remove the one or more contaminants. The method includes removing the high energy electromagnetic radiation to cause a reduction in temperature to about 300 to about 600 degrees Celsius in a time period of less than 1 second.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: November 13, 2012
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: David Gao, Fumitake Mieno
  • Patent number: 8283260
    Abstract: A method for preparing an interlayer dielectric to minimize damage to the interlayer's dielectric properties, the method comprising the steps of: depositing a layer of a silicon-containing dielectric material onto a substrate, wherein the layer has a first dielectric constant and wherein the layer has at least one surface; providing an etched pattern in the layer by a method that includes at least one etch process and exposure to a wet chemical composition to provide an etched layer, wherein the etched layer has a second dielectric constant, and wherein the wet chemical composition contributes from 0 to 40% of the second dielectric constant; contacting the at least one surface of the layer with a silicon-containing fluid; optionally removing a first portion of the silicon-containing fluid such that a second portion of the silicon-containing fluid remains in contact with the at least one surface of the layer; and exposing the at least one surface of the layer to UV radiation and thermal energy, wherein the lay
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: October 9, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Scott Jeffrey Weigel, Mark Leonard O'Neill, Mary Kathryn Haas, Laura M. Matz, Glenn Michael Mitchell, Aiping Wu, Raymond Nicholas Vrtis, John Giles Langan
  • Patent number: 8273262
    Abstract: The invention provides a method for etching which is intended for reducing the thickness of a glass substrate, and which attains a high etching rate and is capable of inhibiting haze generation on the glass substrate surface. The invention relates to a method for etching a glass substrate surface, comprising etching the glass substrate surface in an amount of 1-690 ?m in terms of etching amount, in which the etching is conducted with an etchant having an HF concentration of 1-5 wt % and an HCl concentration of 1 wt % or higher.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: September 25, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Yoshitaka Saijo, Yuichi Suzuki, Ryoji Akiyama, Atsuyoshi Takenaka, Junichiro Kase
  • Patent number: 8258056
    Abstract: A method of lithography patterning includes forming a first material layer on a substrate; forming a first patterned resist layer including at least one opening therein on the first material layer; forming a second material layer on the first patterned resist layer and the first material layer; forming a second patterned resist layer including at least one opening therein on the second material layer; and etching the first and second material layers uncovered by the first and second patterned resist layers.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: September 4, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Ching-Yu Chang
  • Patent number: 8236694
    Abstract: The present invention relates to a method for manufacturing an acceleration sensor. In the method, thin SOI-wafer structures are used, in which grooves are etched, the walls of which are oxidized. A thick layer of electrode material, covering all other material, is grown on top of the structures, after which the surface is ground and polished chemo-mechanically, thin release holes are etched in the structure, structural patterns are formed, and finally etching using a hydrofluoric acid solution is performed to release the structures intended to move and to open a capacitive gap.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 7, 2012
    Assignee: Valtion Teknillinen Tutkimuskeskus
    Inventors: Jyrki Kiihamäki, Hannu Kattelus
  • Patent number: 8222153
    Abstract: A method for fabricating a textured single crystal including depositing pads made of metal on a surface of a single crystal. A protective layer is deposited on the pads and on the single crystal between the pads; and etching the surface with a first compound that etches the metal more rapidly than the protective layer is carried out. Processing continues with etching the surface with a second compound that etches the single crystal more rapidly than the protective layer; and etching the surface with a third compound that etches the protective layer more rapidly than the single crystal. The textured substrate may be used for the epitaxial growth of GaN, AlN or III-N compounds (i.e. a nitride of a metal the positive ion of which carries a +3 positive charge) in the context of the fabrication of LEDs, electronic components or solar cells.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: July 17, 2012
    Assignee: Saint-Gobain Cristaux et Detecteurs
    Inventors: Fabien Lienhart, Guillaume Lecamp, François-Julien Vermersch
  • Patent number: 8221642
    Abstract: A method for removing a plurality of dielectric films from a supporting substrate by providing a substrate with a dielectric layer overlying another dielectric layer, contacting the substrate at a first temperature with an acid solution exhibiting a positive etch selectivity at the first temperature, and then contacting the substrate at a second temperature with an acid solution exhibiting a positive etch selectivity at the second temperature. The dielectric layers exhibit different etch rates when etched at the first and second temperatures. The first and second acid solutions may contain phosphoric acid. The first dielectric layer may be silicon nitride and the second dielectric layer may be silicon oxide. Under these conditions, the first temperature may be about 175° C. and the second temperature may be about 155° C.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: July 17, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Li Li, Don L. Yates
  • Patent number: 8222149
    Abstract: The present disclosure provides a method for making a semiconductor device. The method includes forming a sacrificial layer on a substrate; forming a patterned resist layer on the sacrificial layer; performing an ion implantation to the substrate; applying a first wet etch solution to remove the patterned photoresist layer; and applying a second wet etch solution to remove the sacrificial layer.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: July 17, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Ching-Yu Chang
  • Patent number: 8198198
    Abstract: The present invention relates to a method for forming electrode patterns of a ceramic substrate including the steps of: forming a plurality of conductive adhesion patterns on the ceramic substrate to be separated apart from one another; forming a plating seed layer, covering the conductive adhesion patterns, on the ceramic substrate; forming photoresist patterns, exposing parts corresponding to the conductive adhesion patterns, on the plating seed layer; forming a plating layer on the plating seed layer exposed by the photoresist patterns; removing the photoresist patterns; and etching parts of the plating seed layer exposed by removal of the photoresist patterns.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: June 12, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Won Hee Yoo, Byeung Gyu Chang, Yong Suk Kim
  • Patent number: 8193069
    Abstract: The invention relates to a method of producing a stacked structure. The inventive method comprises the following steps consisting in: a) using a first plate (1) which is, for example, made from silicon, and a second plate (5) which is also, for example, made from silicon, such that at least one of said first (1) and second (5) plates has, at least in part, a surface (2; 7) that cannot bond to the other plate; b) providing a surface layer (3; 8), which is, for example, made from silicon oxide, on at least one part of the surface (2) of the first plate and/or the surface (7) of the second plate (5); and c) bonding the two plates (1; 5) to one another. The aforementioned bonding incompatibility can, for example, result from the physicochemical nature of the surface or of a coating applied thereto, or from a roughness value (r?2, r?7) which is greater than a predetermined threshold. The invention also relates to a stacked structure produced using the inventive method.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: June 5, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Hubert Moriceau, Bernard Aspar, Jacques Margail
  • Patent number: 8187487
    Abstract: A method for removing (e.g., etching) different dielectric materials from a semiconductor substrate includes exposing the semiconductor substrate to a solution at temperatures below and at or above a set threshold. Below the threshold temperature, the solution removes one dielectric material (e.g., silicon nitride) faster than it removes another, different dielectric material (e.g., silicon oxide). At or above the threshold temperature, the selectivity of the solution is reversed.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: May 29, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Li Li, Don L. Yates
  • Patent number: 8153019
    Abstract: Methods for preventing isotropic removal of materials at corners formed by seams, keyholes, and other anomalies in films or other structures include use of etch blockers to cover or coat such corners. This covering or coating prevents exposure of the corners to isotropic etch solutions and cleaning solutions and, thus, prevents higher material removal rates at the corners than at smoother areas of the structure or film from which material is removed. Solutions, including wet etchants and cleaning solutions, that include at least one type of etch blocker are also disclosed, as are systems for preventing higher rates of material removal at corners formed by seams, crevices, or recesses in a film or other structure. Semiconductor device structures in which etch blockers are located so as to prevent isotropic etchants from removing material from corners of seams, crevices, or recesses in a surface of a film or other structure at undesirably high rates are also disclosed.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: April 10, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, J. Neil Greeley
  • Patent number: 8148272
    Abstract: A method for fabricating semiconductor devices, e.g., strained silicon MOS device, includes providing a semiconductor substrate (e.g., silicon wafer) having a surface region, which has one or more contaminants and an overlying oxide layer. The one or more contaminants is at least a carbon species. The method also includes processing the surface region using at least a wet process to selectively remove the oxide layer and expose the surface region. The method further includes subjecting the surface region to a laser treatment process for a time period of less than 1 second to increase a temperature of the surface region to greater than 1000 degrees Celsius to remove the one or more contaminants provided on the surface region. The method also includes removing the laser treatment process to cause a reduction in temperature to about 300 to about 600 degrees Celsius in a time period of less than 1 second.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: April 3, 2012
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: David Gao, Fumitake Mieno
  • Publication number: 20120070998
    Abstract: Provided is an etching composition for electively removing silicon dioxide at a high etch rate, more particularly, a composition for wet etching of silicon dioxide, including 1 to 40 wt % of hydrogen fluoride (HF); 5 to 40 wt % of ammonium hydrogen fluoride (NH4HF2); and water, and further including a surfactant to improve selectivity of the silicon dioxide and a silicon nitride film. Since the composition for wet etching of silicon dioxide has the high etch selectivity of the silicon dioxide to the silicon nitride film, it is useful for selectively removing silicon dioxide.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 22, 2012
    Applicant: TECHNO SEMICHEM CO., LTD.
    Inventors: Jung Hun Lim, Dae Hyun Kim, Chang Jin Yoo, Seong Hwan Park
  • Patent number: 8129242
    Abstract: A method of manufacturing a flash memory device having an enhanced gate coupling ratio includes steps of forming a first semiconductor layer on a substrate and forming a semiconductor spacer layer on top of the first semiconductor layer. The semiconductor spacer layer includes a plurality of recesses. The method provides a semiconductor spacer structure which functions to increase the contact area between a floating gate and a control gate of the flash memory device.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: March 6, 2012
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Tian-Shuan Luo, Chun-Pei Wu
  • Patent number: 8129287
    Abstract: A first oxide film and a second oxide film 16 are formed in a first region 13a and a second region 13b, respectively, on the surface of the semiconductor substrate 10, via thermal oxidization method, and the first oxide film is removed while the second oxide film 16 is covered with the resist layer 18 formed thereon, and then the resist layer 18 is removed with a chemical solution containing an organic solvent such as isopropyl alcohol as a main component. Subsequently, a third oxide film 22 having different thickness than the second oxide film 16 is formed in the first region 13a.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: March 6, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Tatsuya Suzuki, Hidemitsu Aoki
  • Patent number: 8124545
    Abstract: The invention includes methods in which one or more components of a carboxylic acid having an aqueous acidic dissociation constant of at least 1×10?6 are utilized during the etch of oxide (such as silicon dioxide or doped silicon dioxide). Two or more carboxylic acids can be utilized. Exemplary carboxylic acids include trichloroacetic acid, maleic acid, and citric acid.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: February 28, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Niraj B. Rana, Kevin R. Shea, Janos Fucsko
  • Patent number: 8123966
    Abstract: A piezoelectric electronic component for use in a cellular phone or the like and capable of achieving reductions in size and profile is provided. A piezoelectric element oscillating in response to application of an input signal and outputting an output signal corresponding to the oscillations is provided on a substrate. The piezoelectric element includes a pad, the pad inputting and outputting the input and output signals. A shell member serving as a sealing member and having an insulation film covering the piezoelectric element is provided on the substrate, the shell member being remote from the piezoelectric element. The shell member includes a through hole above the pad, and the through hole is occluded with an electrode.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: February 28, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Ryuichi Kubo, Hidetoshi Fujii, Naoko Aizawa
  • Patent number: 8119537
    Abstract: A method is provided for selectively etching native oxides or other contaminants to metal nitrides and metal oxides during manufacture of a semiconductor device. The method utilizes a substantially non-aqueous etchant which includes a source of fluorine ions. In a preferred embodiment, the etchant comprises H2SO4 and HF. The etchant selectively etches native and doped oxides or other contaminants without excessively etching metal nitrides or metal oxides on the substrate or on adjacent exposed surfaces.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: February 21, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Kevin R. Shea, Kevin J. Torek
  • Patent number: 8105948
    Abstract: A process is described for making contact to the buried capping layers of GMR and MTJ devices without the need to form and fill via holes. CMP is applied to the structure in three steps: (1) conventional CMP (2) a Highly Selective Slurry (HSS) is substituted for the conventional slurry to just expose the capping layer, and (3) the HSS is diluted and used to clean the surface as well as to cause a slight protrusion of the capping layers above the surrounding dielectric surface, making it easier the contact them without damaging the devices below.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: January 31, 2012
    Assignee: MagIC Technologies, Inc.
    Inventors: Adam Zhong, Wai-Ming Kan, Tom Zhong, Chyu-Jiuh Torng
  • Publication number: 20120009797
    Abstract: The invention concerns a method to thin an initial silicon-on-insulator substrate that has a layer of silicon oxide buried between a silicon carrier substrate and a silicon surface layer.
    Type: Application
    Filed: April 20, 2010
    Publication date: January 12, 2012
    Inventors: Patrick Reynaud, Ludovic Ecarnot, Khalid Radouane
  • Publication number: 20110294299
    Abstract: A method for removing silicon oxide based residue from a stack with a doped silicon oxide layer with features with diameters less than 100 nm is provided. A wet clean solution of between 25% to 60% by weight of NH4F, and between 0.05% and 5% by weight of phosphoric acid, and between 0.05% and 5% by weight citric acid, in a water solvent is provided to an area on a surface of the stack. The wet clean solution is removed from the area on the surface of the stack between 0.5 to 10 seconds after the area on the surface of the stack was exposed to the wet clean solution.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 1, 2011
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Katrina Mikhaylichenko, Denis Syomin
  • Patent number: 8048726
    Abstract: In sophisticated SOI devices, circuit elements, such as substrate diodes, may be formed in the crystalline substrate material on the basis of a substrate window, wherein the pronounced surface topography may be compensated for or at least reduced by performing additional planarization processes, such as the deposition of a planarization material, and a subsequent etch process when forming the contact level of the semiconductor device.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: November 1, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jens Heinrich, Kai Frohberg, Sven Mueller, Kerstin Ruttloff
  • Patent number: 8043974
    Abstract: A semiconductor wet etchant includes deionized water, a fluorine-based compound, an oxidizer and an inorganic salt. A concentration of the fluorine-based compound is 0.25 to 10.0 wt % based on a total weight of the etchant, a concentration of the oxidizer is 0.45 to 3.6 wt % based on a total weight of the etchant, and a concentration of the inorganic salt is 1.0 to 5.0 wt % based on a total weight of the etchant. The inorganic salt comprises at least one of an ammonium ion (NH4+) and a chlorine ion (Cl?).
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Dae Park, Young You, Tae-Hyo Choi, Hun-Jung Yi, Kun-Hyung Lee
  • Patent number: 8012877
    Abstract: Exemplary embodiments provide a method for fabricating an integrated circuit (IC) device with reduced streak defects. In one embodiment, the IC device structure can be formed having a first pad oxide-based layer on a front side of a semiconductor substrate and having an oxide-nitride-based structure on a backside of the semiconductor substrate. The IC device structure can be etched to remove a nitride-related material from the backside oxide-nitride-based structure, and further to remove the first pad oxide-based layer from the front side of the semiconductor substrate. On the removed front side of the semiconductor substrate a second pad oxide-based layer can be formed, e.g., for forming an isolation structure for device component or circuitry isolation.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: September 6, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Scott Cuong Nguyen
  • Patent number: 8008154
    Abstract: Methods of forming an insulating film include forming an insulating film on a substrate. A first impurity is injected into the insulating film using a thermal process under a first set of processing conditions to form a first impurity concentration peak in a lower portion of the insulating film. A second impurity is injected into the insulating film using the thermal process under a second set of processing conditions, different from the first set of processing conditions, to form a second impurity concentration peak in an upper portion of the insulating film. Injecting the first impurity and injecting the second impurity may be carried out without using plasma and the first impurity concentration peak may be higher than the second impurity concentration peak.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: August 30, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Jin Noh, Bon-Young Koo, Si-Young Choi, Ki-Hyun Hwang, Chul-Sung Kim, Sung-Kweon Baek, Jin-Hwa Heo
  • Patent number: 8008212
    Abstract: Fabrication methods for integrating CMOS and BJT devices are presented. A semiconductor substrate having a first region and a second region are provided, wherein the first region includes a CMOS device, and the second region includes a BJT device. A dielectric layer is conformably deposited on the semiconductor substrate. Part of the dielectric layer is removed, thereby forming sidewall spacers on a gate structure of the CMOS device and remaining a thin dielectric layer on the BJT device. The remaining thin dielectric layer is completely removed, completing integration of the CMOS device and the BJT device.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: August 30, 2011
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Chien-Hsien Song, Yung-Lung Chou, Yu-Hsun Chen, Cheng-Che Tsai
  • Patent number: 7977228
    Abstract: The microelectronic device interconnects are fabricated by a process that utilizes a silicon-based interlayer dielectric material layer, such as carbon-doped oxide, and a chemical mixture selective to materials used in the formation of the interconnects, including, but not limited to, copper, cobalt, tantalum, and/or tantalum nitride, to remove the interlayer dielectric material layer between adjacent interconnects thereby forming air gaps therebetween.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: July 12, 2011
    Assignee: Intel Corporation
    Inventor: Vijayakumar S. Ramachandrarao
  • Patent number: 7977251
    Abstract: Methods of selectively etching BPSG over TEOS are disclosed. In one embodiment, a TEOS layer may be used to prevent contamination of other components in a semiconductor device by the boron and phosphorous in a layer of BPSG deposited over the TEOS layer. An etchant of the present invention may be used to etch desired areas in the BPSG layer, wherein the high selectivity for BPSG to TEOS of etchant would result in the TEOS layer acting as an etch stop. A second etchant may be utilized to etch the TEOS layer. The second etchant may be less aggressive and, thus, not damage the components underlying the TEOS layer.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: July 12, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Whonchee Lee, Kevin J. Torek
  • Patent number: 7972967
    Abstract: A method of forming patterns of a semiconductor device comprising forming an auxiliary layer over an underlying layer comprising a cell region and a select transistor region, forming a first passivation layer over the auxiliary layer, wherein the first passivation layer blocks the auxiliary layer of the select transistor region and opens the auxiliary layer of the cell region, and forming a first photoresist pattern having a narrower width than the first passivation layer over (a) the first passivation layer and (b) second photoresist patterns, each having a narrower width than the first photoresist pattern, over an opening region of the auxiliary layer, wherein a gap between the first and second photoresist patterns is identical in width with a gap defined between the second photoresist patterns.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 5, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chan Sun Hyun
  • Publication number: 20110117752
    Abstract: The present invention relates to a method and system for removing a sacrificial layer from an MEMS structure or from any other semiconductor substrate that includes a sacrificial layer. The above etching method and system use densified carbon dioxide, fluorine compounds, and co-solvents as the processing fluid and are capable of removing the sacrificial layer in a short period of time without incurring damage on the structural layer or incurring stiction between structures. In addition, the above etching method and system do not create etching residue and thus do not require a separate cleaning process.
    Type: Application
    Filed: November 18, 2009
    Publication date: May 19, 2011
    Inventors: Kwon Taek Lim, Jae Hyeon Bae
  • Patent number: 7939451
    Abstract: A method for fabricating a patter is provided as followed. First, a material layer is provided, whereon a patterned hard mask layer is formed. A spacer is deposited on the sidewalls of the patterned hard mask layer. Then, the patterned hard mask layer is removed, and an opening is formed between the adjacent spacers. Afterwards, a portion of the material layer is removed to form a patterned material layer by using the spacer as mask.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: May 10, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Chang Tsai, Chun-Hung Lee, Ming-Cheng Deng, Ta-Hung Yang
  • Patent number: 7910014
    Abstract: A chemical processing bath and system used in semiconductor manufacturing utilizes a dynamic spiking model that essentially constantly monitors chemical concentration in the processing bath and adds fresh chemical on a regular basis to maintain chemical concentrations at desirable levels. Etch rates and etch selectivities are maintained at desirable levels and contamination from undesirable precipitation is avoided. The system and method automatically compare concentration levels to a plurality of control limits associated with various technologies and identify the technology or technologies that may undergo processing.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 22, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-Yung Yu, Yu-Sheng Su, Li Te Hsu, Jin Lin Liang, Shih Cheng Yeh, Pin Chia Su
  • Patent number: 7888270
    Abstract: The invention discloses etching method for the nitride semiconductor. Firstly dielectric layer is formed on gallium nitride. The line pattern or dot pattern is formed on the dielectric layer by using the exposure, development, and etching processes. The dielectric layer is used as the mask for the epitaxial lateral overgrowth of follow-up gallium nitride layer. The thick gallium nitride film is grown on the dielectric layer. Then the wet etching process is used to remove the dielectric layer, and the thick gallium nitride film on the dielectric layer is etched to form the specific shape as required.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: February 15, 2011
    Assignee: National Chiao Tung University
    Inventors: Wei-I Lee, Hsin-Hsiung Huang, Hung-Yu Zeng
  • Patent number: 7888168
    Abstract: Embodiments of the invention contemplate the formation of a high efficiency solar cell using novel methods to form the active region(s) and the metal contact structure of a solar cell device. In one embodiment, the methods include the use of various etching and patterning processes that are used to define point contacts through a blanket dielectric layer covering a surface of a solar cell substrate. The method generally includes depositing an etchant material that enables formation of a desired pattern in a dielectric layer through which electrical contacts to the solar cell device can be formed.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: February 15, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Timothy W. Weidman, Rohit Mishra
  • Patent number: 7884028
    Abstract: A method of removing material layer is disclosed. First, a semiconductor substrate is fixed on a rotating platform, where a remnant material layer is included on the surface of the semiconductor substrate. Afterward, an etching process is carried out. In the etching process, the rotating platform is rotated, and an etching solution is sprayed from a center region and a side region of the rotating platform toward the semiconductor substrate until the material layer is removed. Since the semiconductor substrate is etched by the etching solution sprayed from both the center region and the side region of the rotating platform, the etching uniformity of the semiconductor substrate is improved.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: February 8, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Wei Chen, Chun-Chieh Chang, Tzung-Yu Hung, Yu-Lan Chang, Chao-Ching Hsieh
  • Patent number: 7879736
    Abstract: In a composition for etching silicon oxide, and a method of forming a contact hole using the composition, the composition which includes from about 0.01 to about 2 percent by weight of ammonium bifluoride, from about 2 to about 35 percent by weight of an organic acid, from about 0.05 to about 1 percent by weight of an inorganic acid, and a remainder of a low polar organic solvent. The composition may reduce damages to a metal silicide pattern that may be exposed in an etching process performed for forming the contact hole.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: February 1, 2011
    Assignees: Samsung Electronics Co., Ltd., Cheil Industries, Inc.
    Inventors: Dong-Won Hwang, Kook-Joo Kim, Jung-In La, Pil-Kwon Jun, Seung-Ki Chae, Yang-Koo Lee