Reference Oscillator Or Source Patents (Class 455/259)
  • Patent number: 11693802
    Abstract: In a memory system, a switch is connected between a controller and multiple non-volatile storage units, where the switch comprises first and second pins, a data bus, and a plurality of enable outputs. Each of the enable outputs of the switch is connected to an enable input of one of the non-volatile storage units. The switch is configured to transmit a signal to enable a communication path between the controller and one of the non-volatile storage units and to receive data over the data bus to be stored in one of the non-volatile storage units when the first and second pins are not asserted. In addition, the switch is configured to receive a command to be executed by one of the non-volatile storage units when the first pin is not asserted and the second pin is asserted. The switch is also configured to receive an address of a storage location within one of the non-volatile storage units when the first pin is asserted and the second pin is not asserted.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: July 4, 2023
    Assignee: Kioxia Corporation
    Inventor: Sie Pook Law
  • Patent number: 11604247
    Abstract: Mobile device positioning employs various forms of audio signal structures and detection methodologies. In one method, detection of an audio signal from a first source enables construction of a signal to facilitate detection of an audio signal from another source. Signals detected from these sources enable positioning of the mobile device receiving those signals. Another method forms audio signals transmitted from audio sources so that they have parts that add constructively and parts that differentiate the sources to enable positioning. Another audio signal based positioning method adaptively switches among positioning methods so that positioning remains operative as a mobile device moves toward and away from the sources. Another method tracks positioning history, evaluates it for errors and performs error mitigation to improve accuracy. Various other positioning technologies are detailed as well.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: March 14, 2023
    Assignee: Digimarc Corporation
    Inventors: Brett A. Bradley, Ravi K. Sharma, Shankar Thagadur Shivappa, John D. Lord
  • Patent number: 11605275
    Abstract: Improved systems and techniques are disclosed for controlling the security states of anti theft security systems such as product display assemblies using security fobs. The tasks relating to fob authentication are offloaded to a computer system, and these authentications can be based on identifiers for the different security fobs. The computer system can maintain a list of identifiers for authorized security fobs that is easily updated when new security fobs are added to or existing security fobs are de-authorized from the system.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: March 14, 2023
    Assignee: Mobile Tech, Inc.
    Inventors: Robert Logan Blaser, Kristopher Wendell Schatz, Hunter Anderson Wylie
  • Patent number: 11588515
    Abstract: A spread-spectrum transmitter is disclosed. The transmitter includes a modulator configured to produce an intermediate frequency signal, a frequency shifter configured to shift the intermediate frequency factor by a first factor, and a local oscillator (LO) configured to generate a LO signal. The transmitter further includes a ramp signal generator configured to determine the value of the first factor and a second factor, is configured to transmit the value of the factor to the frequency shifter, is configured to transmit the value of the second factor to the LO, where the frequency of the intermediate frequency signal shifted by the first factor is shifted synchronously with the frequency of the LO signal shifted by the second factor. The transmitter includes a mixer configured to mix the shifted intermediate frequency with the shifted LO signal that has been shifted by the second factor, producing a spread leaked LO signal.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: February 21, 2023
    Assignee: Rockwell Collins, Inc.
    Inventors: Carlos J. Chavez, Sasha Oster, Vadim Olen
  • Patent number: 11489537
    Abstract: A system may include ADC circuitry. To test the performance of the ADC circuitry, the system may include ADC testing circuitry coupled to the ADC circuitry. In particular, the ADC testing circuitry may include reference voltage generation circuitry configured to generate reference voltages serving as test voltages for the ADC circuitry. The ADC circuitry may be coupled to a test input for receiving the test voltages via switching circuitry and may be coupled to a main data input for receiving system data via the switching circuitry. Testing may occur during an idling time period of the system and when the switching circuitry couples the test input to the ADC circuitry. Test input voltages corresponding to one or more stages in the ADC circuitry may be provided to the ADC circuitry, and corresponding output values from the ADC circuitry may be compared to an expected value and/or expected threshold values.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: November 1, 2022
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Bharat Balar, Parthasarthy V. Sampath
  • Patent number: 10771069
    Abstract: The present invention relates to a field programmable gate array system that provides phase control with minimal latency.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: September 8, 2020
    Inventor: Nima Badizadegan
  • Patent number: 10254383
    Abstract: Mobile device positioning employs various forms of audio signal structures and detection methodologies. In one method, detection of an audio signal from a first source enables construction of a signal to facilitate detection of an audio signal from another source. Signals detected from these sources enable positioning of the mobile device receiving those signals. Another method forms audio signals transmitted from audio sources so that they have parts that add constructively and parts that differentiate the sources to enable positioning. Another audio signal based positioning method adaptively switches among positioning methods so that positioning remains operative as a mobile device moves toward and away from the sources. Another method tracks positioning history, evaluates it for errors and performs error mitigation to improve accuracy. Various other positioning technologies are detailed as well.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: April 9, 2019
    Assignee: Digimarc Corporation
    Inventors: Brett A. Bradley, Ravi K. Sharma, Shankar Thagadur Shivappa, John D. Lord
  • Patent number: 10079581
    Abstract: A receiver includes a low noise amplifier (LNA) configured to amplify an input RF signal using a first current supplied by a first current source, and a voltage controlled oscillator (VCO) for applying an oscillation frequency to the amplified signal by generating an oscillation signal using the first current.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: September 18, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok Ju Yun, Seongjoong Kim, Yongkyu Kim, Young Jun Hong
  • Patent number: 9854278
    Abstract: A broadcast receiving apparatus includes: a plurality of unit antennas arranged at preset intervals, each unit antenna of the plurality of antennas being configured to receive a broadcast signal; a plurality of receiving modules, each receiving module of the plurality of receiving modules being configured to convert the broadcast signal received by a corresponding unit antenna of the plurality of unit antennas into a first signal and output the first signal; a filter configured to filter a noise component out of the first signals output by the plurality of receiving modules, synthesize the first signals into a second signal and output the second signal; and a signal processor configured to perform a signal process for displaying an image based on the second signal output from the filter.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: December 26, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Dong-Hoon Lee
  • Patent number: 9276732
    Abstract: Frequency synchronizing a local oscillator in a remote unit in a distributed antenna system (DAS) used for frequency shifting communications signals based on a received digital pulse signal from a central unit. A remote unit receives a frequency shifted downlink communications signal and a reference pulse signal indicative of a frequency of a reference oscillator from a central unit. To recover the original signal, a mixing frequency signal generated by a local oscillator is used. To recover a signal having the same frequency as the original signal, the local oscillator should be the same or substantially the same frequency as the frequency used to create the frequency shifted version. A time difference signal indicating the frequency difference between the oscillators is calculated. A frequency adjustment signal is provided to the local oscillator based on the time difference signal to decrease the frequency difference between the oscillators.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: March 1, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS WIRELESS LTD
    Inventors: Ami Hazani, Ofer Nisan, Pavel Rozenbaum
  • Patent number: 9184498
    Abstract: A method includes implementing a coupled Voltage Controlled Oscillator (VCO) array with a number of VCOs, and arranging a number of switched capacitor elements in a geometric proportion in a tank circuit of each VCO to provide for finesse in control of a tunable frequency of the tank circuit. The method also includes utilizing a voltage control input of a varactor element of the tank circuit solely for achieving phase separation between the each VCO and another VCO of the coupled VCO array based on the provision of finesse in the control of the tunable frequency of the tank circuit, and mixing Local Oscillator (LO) signals generated through the number of VCOs of the coupled VCO array with signals from antenna elements of an antenna array to introduce differential phase shifts in signal paths coupled to the antenna elements during performing beamforming with the antenna array.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: November 10, 2015
    Assignee: GIGOPTIX, INC.
    Inventor: Christopher T. Schiller
  • Patent number: 9019018
    Abstract: An integrated circuit (10) has an internal RC-oscillator (20) for providing an internal clock signal (CLI) having an adjustable oscillator frequency. The integrated circuit (10) further comprises terminals (101, 102) for connecting an external LC tank (30) having a resonance frequency and a calibration circuit (40) which is configured to adjust the oscillator frequency based on the resonance frequency of the LC tank (30) connected during operation of the integrated circuit (10). An internal auxiliary oscillator (46) is connected to the terminals (101, 102) in a switchable fashion and is configured to generate an auxiliary clock signal (CLA) based on the resonance frequency. The calibration circuit (40) comprises a frequency comparator (47) which is configured to determine a trimming word (TRW) based on a frequency comparison of the internal clock signal (CLI) and the auxiliary clock signal (CLA). The LC tank (30) to be connected is an antenna for receiving a radio signal.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: April 28, 2015
    Assignee: ams AG
    Inventor: Ruggero Leoncavallo
  • Patent number: 8811926
    Abstract: Described herein is a wireless transceiver and related method that enables ultra low power transmission and reception of wireless communications. In an example embodiment of the wireless transceiver, the wireless transceiver receives a first-reference signal having a first-reference frequency. The wireless transceiver then uses the first-reference signal to injection lock a local oscillator, which provides a set of oscillation signals each having an oscillation frequency that is equal to the first-reference frequency, and each having equally spaced phases. Then the wireless transceiver combines the set of oscillation signals into an output signal having an output frequency that is one of (i) a multiple of the first-reference frequency (in accordance with a transmitter implementation) or (ii) a difference of (a) a second-reference frequency of a second-reference signal and (b) a multiple of the first-reference frequency (in accordance with a receiver implementation).
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: August 19, 2014
    Assignee: University of Washington Through its Center for Commercialization
    Inventors: Brian Patrick Otis, Jagdish Narayan Pandey
  • Patent number: 8712359
    Abstract: For example, a communication device may be provided comprising an oscillator configured to generate a reference signal; an accuracy determiner configured to determine information about an accuracy of a frequency of the reference signal; a signal detector configured to detect the presence of a radio signal; and a controller configured to control the signal detector based on the information.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: April 29, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Tudor Murgan, Jean-Xavier Canonici, Werner Hein
  • Patent number: 8712360
    Abstract: A system includes a first clock module, a global positioning system (GPS) module, a phase-locked loop (PLL) module, a cellular transceiver, and a baseband module. The first clock module generates a first clock reference. The GPS module operates in response to the first clock reference. The WLAN module operates in response to the first clock reference. The PLL module generates a second clock reference by performing automatic frequency correction (AFC) on the first clock reference in response to an AFC signal. The cellular transceiver receives radio frequency signals from a wireless medium and generates baseband signals in response to the received radio frequency signals. The baseband module receives the baseband signals, operates in response to a selected one of the first clock reference and the second clock reference, and generates the AFC signal in response to the baseband signals.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: April 29, 2014
    Assignee: Marvell World Trade Ltd.
    Inventors: Gregory Uehara, Alexander Zaslavsky, Brian T. Brunn
  • Publication number: 20140086364
    Abstract: Apparatus and methods for quadrature clock signal generation are provided. In certain implementations, a quadrature clock signal generator includes a sine-shaping filter and a polyphase filter. The sine-shaping filter can receive an input clock signal such as a square or rectangular wave and can filter the input clock signal to generate a sinusoidal clock signal. Additionally, the polyphase filter can use the sinusoidal clock signal to generate in-phase (I) and quadrature-phase (Q) clock signals, which can have a phase difference of about ninety degrees. In certain configurations, the in-phase and quadrature-phase clock signals generated by the polyphase filter can be buffered by a buffer circuit to generate in-phase and quadrature-phase sinusoidal reference clock signals suitable for use in a clock and data recover (CDR) system.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Applicant: Analog Devices, Inc.
    Inventors: Robert Schell, John Kenney, Wei-Hung Chen
  • Patent number: 8682273
    Abstract: Digital spur reduction in which spurs are kept outside selected channels of interest, with illustrative embodiments relating to an integrated radiofrequency transceiver circuit having digital and analogue components, the circuit having a radiofrequency signal receiver with a local oscillator signal generator configured to provide a local oscillator signal at a frequency fLO and a mixer configured to combine an input radiofrequency signal with the local oscillator signal to produce an intermediate frequency signal; and a clock signal generator configured to generate a digital clock signal at a frequency fDIG for operation of the digital components, where the local oscillator signal and/or a reference signal from which the local oscillator signal is derived are generated such that digital spurs lie outside a band selected by the receiver.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: March 25, 2014
    Assignee: NXP, B.V.
    Inventors: Vincent Fillatre, Jean-Robert Tourret
  • Patent number: 8670737
    Abstract: A digital delta sigma modulator includes an input integration stage, a resonating stage, a quantizer, and a plurality of feedback paths operably coupled to the quantizer, the input integration stage, and the resonating stage. The input integration stage is operably coupled to integrate a digital input signal to produce an integrated digital signal, wherein the input integration stage has a pole at substantially zero Hertz. The resonating stage is operably coupled to resonate the integrated digital signal to produce a resonating digital signal, wherein the resonating stage has poles at a frequency above zero Hertz. The quantizer stage is operably coupled to produce a quantized signal from the resonating digital signal.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: March 11, 2014
    Assignee: Broadcom Corporation
    Inventor: Henrik T. Jensen
  • Patent number: 8644781
    Abstract: A clock generator for a mobile device, capable of operating in one of a full-power mode and a low-power mode according to a standby signal to generate a high-frequency clock signal and a low-frequency clock signal is disclosed. The clock generator includes a crystal oscillator, for generating an oscillation signal of a specific frequency according to the power mode of the clock generator; a frequency division block, for dividing the oscillation signal by a specific divisor according to the power mode of the clock generator to generate the low-frequency clock signal; and a buffer block, for amplifying the oscillation signal to generate the high-frequency clock signal; wherein during each power mode, a frequency of the low-frequency clock signal is substantially the same.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: February 4, 2014
    Assignee: Mediatek Inc.
    Inventors: Chun-Ming Kuo, Song-Yu Yang
  • Patent number: 8644782
    Abstract: A method and apparatus for changing a frequency of a clock signal to avoid interference is disclosed. In one embodiment, data conveyed on a first interface is synchronized to a clock signal at a first frequency. Signals are conveyed on a second interface at another frequency. Responsive to a change of the frequency at which signals are conveyed on a second interface, a clock control unit associated with the first interface initiates a change of the clock signal to a second frequency. The second frequency may be chosen as to not cause interference with the frequency at which signals are conveyed on the second interface. The change of the clock frequency may be performed in such a manner as to prevent spurious activity on the clock line of the interface.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: February 4, 2014
    Assignee: Apple Inc.
    Inventors: Brijesh Tripathi, Timothy J. Millet
  • Patent number: 8630679
    Abstract: A wireless communication unit has two or more communication modes including one or more mobile phone mode, in which mobile phone mode the wireless communication unit is able to transmit or receive wireless signals via an antenna from and/or to a mobile phone network in accordance with a communication protocol. The unit includes a baseband module and a radiofrequency module. A radiofrequency interface of the baseband module is connected to the radiofrequency module, for receiving and/or transmitting baseband signals from and/or to the radiofrequency module. The radiofrequency module includes a baseband interface, for receiving and/or transmitting the baseband signals to the baseband module and an antenna interface (AI) connectable to an antenna for receiving and/or transmitting radiofrequency signals from and/or to the antenna. A clock system is connected to the radiofrequency interface and the baseband interface.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: January 14, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul Kelleher, Conor Okeeffe, Daniel B Schwartz, Kevin Traylor
  • Patent number: 8588720
    Abstract: Techniques for decimating a first periodic signal to generate a second periodic signal. In an exemplary embodiment, the first periodic signal is divided by a configurable integer ratio divider, and the output of the divider is delayed by a configurable fractional delay. The configurable fractional delay may be noise-shaped using, e.g., sigma-delta modulation techniques to spread the quantization noise of the fractional delay over a wide bandwidth. In an exemplary embodiment, the first and second periodic signals may be used to generate the transmit (TX) and receive (RX) local oscillator (LO) signals for a communications transceiver from a single phase-locked loop (PLL) output.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: November 19, 2013
    Assignee: QUALCOMM Incorproated
    Inventors: Gary J. Ballantyne, Jifeng Geng, Bo Sun
  • Patent number: 8532600
    Abstract: A system includes a first clock module, a global positioning system (GPS) module, a phase-locked loop (PLL) module, a cellular transceiver, and a baseband module. The first clock module generates a first clock reference. The GPS module operates in response to the first clock reference. The WLAN module operates in response to the first clock reference. The PLL module generates a second clock reference by performing automatic frequency correction (AFC) on the first clock reference in response to an AFC signal. The cellular transceiver receives radio frequency signals from a wireless medium and generates baseband signals in response to the received radio frequency signals. The baseband module receives the baseband signals, operates in response to a selected one of the first clock reference and the second clock reference, and generates the AFC signal in response to the baseband signals.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: September 10, 2013
    Assignee: Marvell World Trade Ltd.
    Inventors: Gregory Uehara, Alexander Zaslavsky, Brian Brunn
  • Patent number: 8532236
    Abstract: A radio-frequency (RF) apparatus, which may reside in a receiver or transceiver, includes receive-path circuitry. The receive-path circuitry includes a poly-phase filter and a harmonic filter. The poly-phase filter accepts an input signal and generates two output signals. One output signal of the poly-phase filter constitutes an in-phase (I) signal. The other output signal of the poly-phase filter constitutes a quadrature (Q) signal. The a harmonic filter couples to the poly-phase filter. The harmonic filter accepts as input signals the in-phase and quadrature output signals of the poly-phase filter.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 10, 2013
    Assignee: Silicon Laboratories Inc.
    Inventor: Donald A. Kerth
  • Patent number: 8483332
    Abstract: In an oscillating apparatus, a detection unit detects a frequency offset between an input signal and a reference signal. A code generation unit specifies a relationship among a code having a predetermined number of bits, the frequency offset, and a voltage to be applied to a voltage-controlled oscillator by a DAC, in accordance with a frequency offset detection state of the detection unit. The code generation unit also generates a frequency offset correction code having a predetermined number of bits in accordance with the specified relationship. The DAC applies the voltage to the voltage-controlled oscillator, in accordance with the relationship described above and the code generated by the code generation unit. The voltage controlled oscillator outputs an oscillator signal having an oscillation frequency corresponding to the voltage applied by the DAC.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: July 9, 2013
    Assignee: Fujitsu Limited
    Inventor: Hiroki Kobayashi
  • Patent number: 8476982
    Abstract: A method and device for managing a reference oscillator within a wireless device is presented. The method includes selecting reference oscillator parameters associated with the lowest reference oscillator error, where the selection is based upon reference oscillator parameters derived using different technologies within a wireless device, acquiring a satellite based upon the selected reference parameters, determining the quality of the satellite-based position fix, and updating the reference oscillator parameters based upon the quality of the satellite-based position fix.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: July 2, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Emilija M. Simic, Dominic Gerard Farmer, Borislav Ristic, Ashok Bhatia
  • Publication number: 20130115905
    Abstract: Systems and methods are described for controlling a reference oscillator shared by multiple subsystems of a communications system and arbitrating usage of the reference oscillator among these subsystems. By changing the properties of the reference oscillator (e.g., by tuning the reference oscillator) according to the needs of particular subsystem(s), the communications system can configure the reference oscillator to meet the specification requirements of these particular subsystem(s) and can later reconfigure the reference oscillator to meet the needs of other subsystems. Further, the controller can configure the subsystems based on parameters that impact multiple subsystems (e.g., by implementing geographic awareness, spectrum occupation awareness, and availability of Assisted GPS (AGPS) functionality) to achieve further optimization of the communications system.
    Type: Application
    Filed: May 4, 2012
    Publication date: May 9, 2013
    Inventor: Nikolaos HARALABIDIS
  • Patent number: 8401508
    Abstract: Disclosed are methods and systems for mitigating unwanted signal components. A received carrier signal is downconverted using a local reference signal that imposes an frequency perturbation or dither. Later, when an intermediate digitized signal is filtered to remove the DC offset that is an artifact of the sampling process, the dither in the carrier signal serves to distinguish the carrier from the unwanted offset. The preferred offset filter is a low pass filter with a passband that is narrow relative to the frequency range of the dither.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: March 19, 2013
    Assignee: Honeywell International Inc.
    Inventors: Dave Havener, Timothy Gibson, Manuel Franklin Richey, Jyotsna Motukupally
  • Patent number: 8401503
    Abstract: Techniques for performing frequency control using dual-loop automatic frequency control (AFC) are described. The dual-loop AFC includes an inner loop that corrects short-term frequency variations (e.g., due to Doppler effect) and an outer loop that corrects long-term frequency variations (e.g., due to component tolerances and temperature variations). In one design, a first inner loop is implemented for frequency control of a first system (e.g., a broadcast system), a second inner loop is implemented for frequency control of a second system (e.g., a cellular system), and at least one outer loop is implemented for adjusting a reference frequency used to receive signals from the first and second systems. Each inner loop estimates and corrects the frequency error in an input signal for the associated system and may be enabled when receiving the input signal from the system. The reference frequency may be used for frequency downconversion, sampling and/or other purposes.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: March 19, 2013
    Assignee: Qualcomm Incorporated
    Inventors: Seong Taek Chung, Vinay Murthy, Alok Kumar Gupta, Fuyun Ling
  • Patent number: 8380151
    Abstract: Aspects of a method and system for reducing the complexity of multi-frequency hypothesis testing using an iterative approach may include estimating a frequency offset of a received signal via a plurality of iterative frequency offset hypotheses tests. The iterative frequency offset hypotheses may be adjusted for each iteration. A correlation may be done between a primary synchronization signal (PSS), and one or more frequency offset versions of a received signal to control the adjustment of the iterative frequency offset hypotheses. A frequency of the received local oscillator signal may be adjusted based on the estimated frequency offset. One or more frequency offset version of the received signal may be generated via one or more multiplication, and the multiplication may be achieved via a multiplication signal corresponding to one or more frequency offsets. The frequency offset of the received signal may be estimated via the correlation.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: February 19, 2013
    Assignee: Broadcom Corporation
    Inventors: Francis Swarts, Mark Kent
  • Patent number: 8380156
    Abstract: A mobile wireless communications device includes a circuit board carried by a housing. A microprocessor, RF transceiver and circuitry are carried by the circuit board and operative with each other. Clock buffer circuitry is carried by the circuit board and connected to the RF transceiver and circuitry and microprocessor for isolating a clock signal from the noise of the microprocessor and allowing greater isolation for the RF transceiver from RF circuitry.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: February 19, 2013
    Assignee: Research In Motion Limited
    Inventors: Lizhong Zhu, Robert Grant
  • Patent number: 8355688
    Abstract: Aspects of a method and system for frequency selection using microstrip transceivers for high-speed applications may include determining an operating frequency for operating one or both of a transmitter and a receiver. A frequency response and/or impedance of one or more transmission lines that may be utilized by the transmitter and/or the receiver may be controlled by adjusting one or more capacitances, communicatively coupled to the transmission lines based on the determined operating frequency. The capacitances may be coupled to the one or more transmission line at arbitrary physical spots, and may comprise capacitors and/or varactors. The capacitors and/or the varactors may be adjusted with a digital signal or an analog signal. The capacitances may comprise a matrix arrangement of capacitors and/or varactors. The one or more transmission lines may comprise a microstrip.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: January 15, 2013
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Patent number: 8301098
    Abstract: A system comprises a first clock module configured to generate a first clock reference that is not corrected using automatic frequency correction (AFC). A global position system (GPS) module is configured to receive the first clock reference. An integrated circuit for a cellular transceiver includes a system phase lock loop configured to receive the first clock reference, to perform AFC, and to generate a second clock reference that is AFC corrected.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: October 30, 2012
    Assignee: Marvell World Trade Ltd.
    Inventors: Gregory Uehara, Alexander Zaslavsky, Brian Brunn
  • Patent number: 8301162
    Abstract: A communication system comprising one or more transceiver units of a first type and one or more transceiver units of a second type capable of communicating with the transceiver units of the first type; each transceiver unit of the first type comprising: a frequency comparison unit for comparing the frequency of a signal received from a transceiver unit of the second type with a reference frequency; a feedback signal generator for generating a feedback signal dependent on the result of that comparison; and a transmitter for transmitting that signal to the transceiver unit of the second type; and each transceiver unit of the second type comprising: a local frequency reference unit on which the frequency of signals transmitted by it are dependent; and a frequency adjustment unit for receiving the feedback signal and adjusting the local frequency reference unit in dependence on the feedback signal.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: October 30, 2012
    Assignee: Ubisense Limited
    Inventor: Andrew Martin Robert Ward
  • Patent number: 8275336
    Abstract: An oscillator circuit having a source of an oscillating signal, a tank circuit including an inductor and a capacitor, and a discretely switchable capacitance module configured to control an amount of capacitance in the oscillator circuit. The discretely switchable capacitance module includes, in one embodiment, a capacitor coupled between a first node and a second node, a switch, having a control node, coupled between the second node and a third node; and a DC feed circuit, having a first end coupled to the second node and a second end configured to receive a first or second control signal. The control node of the switch is tied to a predetermined bias voltage. When the first control signal is applied, the capacitor is coupled between the first node and the third node via the switch such that the capacitor is coupled in parallel with the capacitor of the tank circuit, and when the second control signal is applied the capacitor is decoupled from the tank circuit.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: September 25, 2012
    Assignee: Richwave Technology Corp.
    Inventor: Chen Tse-Peng
  • Publication number: 20120157021
    Abstract: Disclosed is an apparatus for wirelessly transmitting and receiving energy and data including: a signal generator generating a first frequency signal for power transmission; a first matching circuit matching input/output impedance upon receiving the first frequency signal generated by the signal generator; an oscillator outputting a second frequency signal, a carrier frequency, by using the first frequency signal, generated by the signal generator, as a reference frequency; a mixer modulating a data signal output from a communication module by using the second frequency signal; a second matching circuit matching input/output impedance upon receiving a modulated signal by using the second frequency signal; a resonator resonating an output signal from the first matching circuit to a reception side apparatus; and a radiator radiating an output signal from the second matching circuit to the reception side apparatus.
    Type: Application
    Filed: November 9, 2011
    Publication date: June 21, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jung Ick Moon, In Kui Cho, Seong Min Kim, Je Hoon Yun, Woo Jin Byun, Kwang Seon Kim, Bong Su Kim, Min Soo Kang
  • Patent number: 8116716
    Abstract: A mobile wireless communications device includes a circuit board carried by a housing. A microprocessor, RF transceiver and circuitry are carried by the circuit board and operative with each other. Clock buffer circuitry is carried by the circuit board and connected to the RF transceiver and circuitry and microprocessor for isolating a clock signal from the noise of the microprocessor and allowing greater isolation for the RF transceiver from RF circuitry.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: February 14, 2012
    Assignee: Research In Motion Limited
    Inventors: Lizhong Zhu, Robert Grant
  • Patent number: 8060045
    Abstract: The present invention refers to a method for compensating the non-linear distortions of high-frequency signals, especially when observing the amplitude modulated signals with narrow band receiver. The invention refers also to a device to carry out the said method. In the invention it is supposed that the ratio between the frequency fIN of the input signal SA and the sampling frequency fS that dictates the operation of the analogue-digital converter (3) is an arbitrary irrational number.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: November 15, 2011
    Inventors: Primoz Lemut, Peter Paglovec, Rok Ursic, Andrej Kosicek, Tomaz Karcnik
  • Patent number: 8060046
    Abstract: The radio receiver includes: a mixer configured to convert a received signal to an IF signal using a local oscillation signal; an IF processing section configured to limit the band of the IF signal; a detection section configured to demodulate the band-limited IF signal; a frequency control section configured to output a frequency control signal corresponding to a desired signal; and a local oscillation section configured to generate the local oscillation signal having a frequency corresponding to the desired signal according to the frequency control signal. The frequency control section outputs as the frequency control signal to change the frequency of the local oscillation signal so that the difference from the frequency corresponding to the desired signal is not more than the frequency of the IF signal, and determines one of the set values with which the corresponding image signal strength is lowest as the frequency control signal.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: November 15, 2011
    Assignee: Panasonic Corporation
    Inventors: Takamichi Kuga, Yasuhisa Yao
  • Patent number: 8014477
    Abstract: A receiver is set forth that includes a tuner circuit and a converter circuit. The tuner circuit provides an analog signal corresponding to a modulated signal that is received on a selected channel. The converter circuit includes a sample clock that is used to convert the analog signal to a digital signal at a conversion rate corresponding to the frequency of the sample clock. The sample clock is selectable between at least two different clock frequencies.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: September 6, 2011
    Assignee: Marvell International Ltd.
    Inventors: King Chun Tsai, Patrick Clement, David Cousinard
  • Patent number: 8010075
    Abstract: A high-order harmonics generator includes a plurality of high-pass filters to block out DC signals. In one embodiment, high-pass filters are coupled to the output signals from an envelope detector and a power detector. A high-pass filter can also be coupled to the output of a multiplier that multiplies the filtered envelope signal and the filtered power signal. Additional multipliers may also be used at outputs of multipliers in a cascaded chain of multipliers for higher harmonics generation.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: August 30, 2011
    Assignee: Scintera Networks, Inc.
    Inventor: Frederic Roger
  • Patent number: 8010072
    Abstract: A technique for improving frequency synthesizer performance by frequency-compensating charge pump current in order to maintain a consistent loop bandwidth over a wide operating frequency range is described. A relationship between the capacitance value associated with a voltage controlled oscillator resonant tank and the magnitude of current pulses in a related charge pump is exploited to bound the loop bandwidth of the frequency synthesizer over both operating frequency and process variation. A control state machine generates digital coarse tune values that dynamically select a capacitance for the resonant tank, such that the voltage controlled oscillator operates within an optimal control voltage range. Each dynamically selected capacitance value is then used to determine the magnitude of current pulses in the charge pump.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: August 30, 2011
    Assignee: Atheros Communications, Inc.
    Inventor: Lalitkumar Nathawad
  • Patent number: 8005442
    Abstract: A wireless network connection system remotely connects to a network without the use of crystal reference oscillators. This provides communication at long range using a low transmit Effective Isotropic Radiated Power (EIRP). Operation is obtained through a combination of injection locking the system clock to the fundamental frequency of a remote reference oscillator, injection locking the transmitter to the third harmonic of the remote reference oscillator, a micro-watt RF receiver, and a network connection.
    Type: Grant
    Filed: May 9, 2009
    Date of Patent: August 23, 2011
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Candice L Brittain, Gary J Lawrence, Brian M Tomaselli
  • Patent number: 8000661
    Abstract: A communication system comprises a predistorter for distorting an input signal according to at least one parameter to generate a distorted signal, an amplifier for amplifying the distorted signal according to an input-output characteristic to generate an output signal, and a frequency-domain adaptive calibration module for adaptively adjusting the parameter of the predistorter according to a frequency characteristic of the output signal. Because the calibration is performed in the frequency domain, there is no need to precisely estimate the group delay formed by the feedback path. The system complexity is therefore reduced without loss of performance.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: August 16, 2011
    Assignee: Mediatek Inc.
    Inventors: Mao-Ching Chiu, Wei-Ping Chuang
  • Patent number: 7974585
    Abstract: A method of performing a frequency correction of a radio module. Multiple samples of frequency data during a quiescent portion of the base station transmission is taken to estimate the amount of frequency correction needed. An embodiment applies the frequency data to a median filter to eliminate invalid data. Next, a new reference frequency is applied to a radio transceiver in the radio module to provide the frequency correction. If the frequency was corrected by greater than a pre-determined amount, the process performs a large shift frequency correction, including verifying that the first frequency correction was satisfactory and verifying that the radio transceiver is able to receive data after the frequency correction has been performed. If the frequency was corrected by smaller than a pre-determined amount, the process performs a small shift frequency correction, including updating a total of all frequency corrections made since a stored reference frequency was updated.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: July 5, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Kenneth Johnson, John Brown, Edward Vertatschitsch
  • Patent number: 7970875
    Abstract: A system and method for computer originated audio file transmission includes a server having a communications module operable to communicate with a terminal unit. The server may also include a storage module operable to store at least one file. A processor may be provided to separate the file into a plurality of packets. In accordance with one embodiment of the present invention, the communications module is operable to send an initial burst of packets to the terminal unit, wherein the initial burst of packets includes at least two of the plurality of packets. In accordance with another embodiment of the present invention, the communications module is further operable to send additional packets of the plurality of packets at a predetermined rate, until each of the plurality of packets has been sent to the terminal unit.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: June 28, 2011
    Assignee: Cisco Technology, Inc.
    Inventors: Shmuel Shaffer, Labhesh Patel
  • Patent number: 7965728
    Abstract: A buffer circuit buffers incoming signals, from a local oscillator generator to a mixing circuit and has a push-pull circuit having two inputs, a first being coupled to a first incoming signal, and a second of the inputs being coupled to one of the buffered versions of the incoming signals, having a phase related to that of the first incoming signal. By coupling a second input to a buffered version rather than to the incoming signal, the load presented to the preceding circuit can be halved, while maintaining reduced power consumption. By using as a second input, a signal which is phase related to the first incoming signal, the normal operation of the push-pull circuit can be maintained. The incoming signals from the LO generator can be differential IQ signals and the buffered version of the further incoming signal be in phase with the first incoming signal.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: June 21, 2011
    Assignee: ST-Ericsson SA
    Inventor: Steven Terryn
  • Patent number: 7929935
    Abstract: A microprocessor system architecture is disclosed which allows for the selective execution of programmed ROM microcode or, alternatively, RAM microcode if there has been a correction or update made to the ROM microcode originally programmed into the system. Patched or updated RAM microcode is utilized or executed only to the extent of changes to the ROM microcode, otherwise the ROM microcode is executed in its normal fashion. When a patch is received, it is loaded into system RAM along with instructions or other appropriate signals to direct the execution of the patched or updated microcode from RAM instead of the existing ROM microcode. Various methods are presented for selecting the execution of the appropriate microcode depending upon whether there have been changes made to it.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: April 19, 2011
    Assignee: Broadcom Corporation
    Inventors: John H. Lin, Sherman Lee, Vivian Y. Chou
  • Patent number: 7885630
    Abstract: A mobile wireless communications device includes a circuit board carried by a housing. A microprocessor, RF transceiver and circuitry are carried by the circuit board and operative with each other. Clock buffer circuitry is carried by the circuit board and connected to the RF transceiver and circuitry and microprocessor for isolating a clock signal from the noise of the microprocessor and allowing greater isolation for the RF transceiver from RF circuitry.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: February 8, 2011
    Assignee: Research In Motion Limited
    Inventors: Lizhong Zhu, Robert Grant
  • Patent number: 7831197
    Abstract: The invention proposes an LNB using two transposition frequencies chosen on either side of the reception band so as to obtain a transposition of supradyne type and a transposition of infradyne type according to the frequency used. This choice of transposition frequencies makes it possible to have an overlap zone in the middle of the reception band which is transposed with the aid of the two oscillation frequencies but at different frequencies. This makes it possible to choose between the two transpositions in the case where the frequency transposed with the aid of an oscillator corresponds to a particularly noisy frequency.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: November 9, 2010
    Assignee: Thomson Licensing
    Inventor: Marc Louchkoff