Organic Compound Containing Patents (Class 502/150)
  • Publication number: 20120316055
    Abstract: A method for supporting a catalytic metal on the surface of a carrier by bringing an aqueous catalytic metal salt solution into contact a porous carrier. The method includes the steps of: impregnating the carrier with a liquid hydrophobic organic compound before bringing the aqueous catalytic metal salt solution into contact with the carrier, and drying the impregnated carrier to volatilize the hydrophobic organic compound on the surface of the carrier, followed by bringing the carrier into contact with the aqueous catalytic metal salt solution; and then bringing a reducing agent into contact with the catalytic metal salt on the surface of the carrier to reduce the catalytic metal salt to undergo insolubilization treatment. The catalytic component is supported in a region from the surface of the carrier to a depth of 50 ?m or more and 500 ?m or less.
    Type: Application
    Filed: March 29, 2011
    Publication date: December 13, 2012
    Inventors: Hitoshi Kubo, Yuusuke Ohshima, Tomoko Ishikawa, Junichi Taniuchi
  • Publication number: 20120316056
    Abstract: In one embodiment, an aqueous dispersion liquid contains at least one particles selected from tungsten oxide particles and tungsten oxide composite particles. A mean primary particle diameter (D50) of the particles is in the range of 1 nm to 400 nm. In the aqueous dispersion liquid, concentration of the particles is in the range of 0.1 mass % to 40 mass %, and pH is in the range of 1.5 to 6.5. The aqueous dispersion liquid excels in dispersibility of particles and capable of maintaining good liquidity for a long period.
    Type: Application
    Filed: August 23, 2012
    Publication date: December 13, 2012
    Inventors: Kayo NAKANO, Akira SATO, Yasuhiro SHIRAKAWA, Keiichi FUSE, Shinya KASAMATSU, Akito SASAKI
  • Patent number: 8329929
    Abstract: A metal complex represented by the following formula (1): wherein R1 to R6 each independently represent a hydrogen atom or a substituent; Y1 and Y2 each independently represent any one of the following groups: wherein R? represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms; P1 and P2 each represent a group of atoms necessary for forming a heterocyclic ring together with Y1 or Y2 and the two carbon atoms at a position adjacent to Y1 or Y2; P1 and P2 may be linked to each other to form a ring; M represents a transition metal element or typical metal element; m represents 1 or 2; X represents a counter ion or a neutral molecule; n represents the number of X's in the complex, and an integer of 0 or more; and Q1 and Q2 each independently represent an aromatic heterocyclic group.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: December 11, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tadafumi Matsunaga, Nobuyoshi Koshino, Hideyuki Higashimura
  • Patent number: 8329609
    Abstract: A process for preparing an alkoxylation catalyst wherein a catalyst precursor which is formed from an alkoxylated alcohol and an alkaline earth metal compound to form a dispersion of an alkaline earth metal species is reacted with propylene oxide to propoxylate at least a portion of the ethoxylated alcohol.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: December 11, 2012
    Assignee: Sasol North America Inc.
    Inventors: Kenneth Lee Matheson, Masikana Millan Mdleleni, Tad Curtis Hebdon, Herbert Olin Perkins
  • Patent number: 8329608
    Abstract: A method of making a catalyst for use in oligomerizing an olefin, comprising a chromium-containing compound, a pyrrole-containing compound, a metal alkyl, a halide-containing compound, and optionally a solvent, the method comprising abating all or a portion of water, acidic protons, or both from a composition comprising the chromium-containing compound, a composition comprising the pyrrole-containing compound, a composition comprising a non-metal halide-containing compound, a composition comprising the solvent, or combinations thereof prior to contact thereof with a composition comprising a metal halide-containing compound.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: December 11, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ronald D. Knudsen, Bruce E. Kreischer, Ronald G. Abbott, Steven D. Bridges, Brooke L. Small
  • Patent number: 8329610
    Abstract: The present invention relates to a hydrogenation catalyst composition, process for preparing the same and use thereof. The composition comprises a hydrogenation catalyst, an organonitrogen compound in an amount of 0.01%-20% by weight of the catalyst, a sulfiding agent in an amount of 30%-150% by weight of the sulfur-requiring amount calculated theoretically of the hydrogenation catalyst, and an organic solvent in an amount of 0.1%-50% by weight of the catalyst. The preparation process comprises introducing the required substances onto the hydrogenation catalyst in oxidation state. By introduction of the organonitrogen compound, sulfur and organic solvent, the hydrogenation catalyst composition of the present invention may further increase the sulfur-maintaining ratio of the catalyst during the activation, slow down the concentrative exothermic phenomenon, decrease the rate of temperature rise of the catalyst bed layer, and improve the activity of the catalyst.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: December 11, 2012
    Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum and Petrochemicals, Sinopec Corp.
    Inventors: Yulan Gao, Xiangchen Fang, Gang Wang, Fenglan Cao, Chonghui Li, Guang Chen
  • Patent number: 8324125
    Abstract: This invention relates to the use of nano-organocatalysts, and, more specifically, to the use of magnetic nanomaterial-supported organocatalysts. It is an object of the present invention to provide “green” catalysts and protocols. According to one embodiment of the invention, a nano-organocatalyst in the form of a magnetic nanomaterial-supported organocatalyst is provided. According to other embodiments of the invention, glutathione and cysteine are provided as organocatalysts and magnetic nanomaterial-supported glutathione and magnetic nanomaterial-supported cysteine are provided for use as nano-organocatalysts. According to another embodiment of the invention, a method of using a recyclable magnetic nanomaterial-supported organocatalyst using a totally benign aqueous protocol, without using any organic solvent in the reaction or during the workup, is provided.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: December 4, 2012
    Assignee: The United States of America as represented by the Administrator of the U.S. Environmental Protection Agency
    Inventors: Rajender S. Varma, Vivek Polshettiwar
  • Patent number: 8318626
    Abstract: The present invention relates to solid catalyst components comprising titanium, magnesium, halogen and an internal electron donor compound containing at least one 1,8-naphthyl diester compound. The 1,8-naphthyl diester compounds include naphthalene-1,8-diyl dicycloalkanecarboxylate derivatives, dicycloalkenecarboxylate derivatives, 8-(cycloalkanecarbonyloxy)naphthalene-1-yl benzoate derivatives, and 8-(cycloalkenecarbonyloxy)naphthalene-1-yl benzoate derivatives. The present invention further relates to catalyst systems containing the catalyst solid components, organoaluminum compounds, and organosilicon compounds. The present invention also relates to methods of making the solid catalyst components and the catalyst systems, and methods of polymerizing or copolymerizing alpha-olefins using the catalyst systems.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: November 27, 2012
    Assignee: BASF Corporation
    Inventor: Main Chang
  • Patent number: 8318627
    Abstract: This invention relates to catalyst carriers to be used as supports for metal and metal oxide catalyst components of use in a variety of chemical reactions. More specifically, the invention provides a process of formulating a low surface area alpha alumina carrier that is suitable as a support for silver and the use of such catalyst in chemical reactions, especially the epoxidation of ethylene to ethylene oxide. A precursor for a catalyst support comprises an admixture of an alpha alumina and/or a transition alumina; a binder; and either a solid blowing agent which expands, or propels a gas upon the application of sufficient heat, and optionally contains talc and/or water soluble titanium compound.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: November 27, 2012
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventor: Nabil Rizkalla
  • Patent number: 8318628
    Abstract: The invention relates to a catalyst for hydroconversion of hydrocarbons, comprising a support made from at least one refractory oxide, at least one group VIII metal and at least one group VIB metal, characterized in further comprising at least one organic compound with at least two thiol functions separated by at least one oxygenated group of formula (I): HS—CxHyOz—SH (I), where x=1 to 20, preferably 2 to 9 and for example x=6, y=2 to 60, preferably 4 to 12 and z=1 to 10, preferably 1 to 6. The invention further relates to a method for preparation, a method for activation of said catalyst and use of the catalyst for the hydrotreatment and/or hydrocracking of hydrocarbons.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: November 27, 2012
    Assignees: Total Raffinage Marketing, IFP Energies nouvelles
    Inventors: Claude Brun, Thierry Cholley, Carole Dupuy, Georges Fremy, Francis Humblot
  • Publication number: 20120295786
    Abstract: A composition that comprises a support material having incorporated therein a metal component and impregnated with both hydrocarbon oil and a polar additive. The composition that is impregnated with both hydrocarbon oil and polar additive is useful in the hydrotreating of hydrocarbon feedstocks, and it is especially useful in applications involving delayed feed introduction whereby the composition is first treated with hot hydrogen, and, optionally, with a sulfur compound, prior to contacting it with a hydrocarbon feedstock under hydrodesulfurization process conditions.
    Type: Application
    Filed: July 27, 2012
    Publication date: November 22, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Alexei Grigorievich Gabrielov, John Anthony Smegal
  • Publication number: 20120282316
    Abstract: Sol-gel inorganic porous particles are composed of an inorganic compound that provides an inorganic solid phase including an external particle surface. They also have a first set of pores wherein the pores have an average diameter of less than 100 nm and a second set of pores wherein the pores have an average diameter of at least 100 nm, which second set of pores contains stabilizing organic microgel particles. These inorganic porous particles are prepared using a first oil phase comprising a first water-immiscible aprotic solvent having a dielectric constant of less than 10 and having dissolved therein organic microgel particles. An aqueous phase comprising a polar solvent, an inorganic gel precursor, a catalyst, and a dispersing surfactant is neutralized to initiate condensation of the inorganic gel precursor. An oil-in-water emulsion is then formed with the organic microgel particles in the first oil phase, which is dispersed as first oil phase droplets in the aqueous phase.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Inventors: Mary Christine Brick, Joseph Salvatore Sedita, Joan Kay Williams, Mridula Nair
  • Patent number: 8304134
    Abstract: The present invention provides a polymer electrolyte composition comprising a polymer electrolyte (A component) having an ion exchange capacity of from 0.5 to 3.0 meq/g, a compound (B component) having a thioether group and a compound (C component) having an azole ring, wherein a mass ratio (B/C) of the B component to the C component is 1/99 to 99/1, and a total content of the B component and C component is 0.01 to 50% by mass based on the solid content in the polymer electrolyte composition.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: November 6, 2012
    Assignee: Asahi Kasei E-materials Corporation
    Inventors: Naoto Miyake, Yuichi Inoue
  • Publication number: 20120277090
    Abstract: Disclosed are spherical magnesium-based catalyst supports and methods of using the same in a Ziegler-Natta catalyst system for the polymerization of an olefin. The spherical magnesium-based catalyst supports are made by reacting a magnesium halide, a haloalkylepoxide, and a phosphate acid ester in an organic solvent that does not have to contain substantial amounts of toluene.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: BASF CORPORATION
    Inventors: Michael Donald Spencer, Neil O'Reilly
  • Publication number: 20120277091
    Abstract: A method of preparing a catalyst using an alkali metal or an alkaline earth metal in natural cellulose fibers as a co-catalyst and a dispersant. The catalyst is prepared using an alkali metal or an alkaline earth metal as a co-catalyst and a dispersant, thus increasing the dispersibility of catalytic components and enhancing the interactions between the catalyst and the support to thereby retard agglomeration and increase the durability of the catalyst.
    Type: Application
    Filed: December 29, 2011
    Publication date: November 1, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Hee-Yeon Kim, Nam-Jo Jeong, Seong-Ok Han
  • Patent number: 8299203
    Abstract: A melt phase process for making a polyester polymer melt phase product by adding an antimony containing catalyst to the melt phase, polycondensing the melt containing said catalyst in the melt phase until the It.V. of the melt reaches at least 0.75 dL/g. Polyester polymer melt phase pellets containing antimony residues and having an It.V. of at least 0.75 dL/g are obtained without solid state polymerization. The polyester polymer pellets containing antimony residues and having an It.V. of at least 0.70 dL/g obtained without increasing the molecular weight of the melt phase product by solid state polymerization are fed to an extruder, melted to produce a molten polyester polymer, and extruded through a die to form shaped articles. The melt phase products and articles made thereby have low b* color and/or high L* brightness, and the reaction time to make the melt phase products is short.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: October 30, 2012
    Assignee: Grupo Petrotemex, S.A. DE C.V.
    Inventors: Mary Therese Jernigan, Michael Paul Ekart, Richard Gill Bonner
  • Patent number: 8298976
    Abstract: A pathogen-resistant fabric comprising one or more photocatalysts capable of generating singlet oxygen from ambient air. The pathogen-resistant fabric may optionally include one or more singlet oxygen traps.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: October 30, 2012
    Inventor: John L. Lombardi
  • Patent number: 8293675
    Abstract: The invention relates to a process for producing a catalyst comprising a metal of the platinum group and a second metal selected from among the metals of the platinum group or the transition metals, in which a catalyst comprising the metal of the platinum group is mixed with a complex comprising the second metal to give a dry powder in a first step and the powder is subsequently heat treated to form a compound between the metal of the platinum group and the second metal. The invention further relates to the use of the catalyst produced according to the invention.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: October 23, 2012
    Assignee: BASF SE
    Inventors: Stefan Kotrel, Gerhard Cox, Ekkehard Schwab, Alexander Panchenko
  • Patent number: 8293862
    Abstract: The present invention provides processes for producing polyester. In one of the embodiments, the invention provides a process for producing polyester, comprising adding a catalyst in a polycondensation reaction, esterification reaction or transesterification reaction between components comprising at least a polyfunctional alcohol and at least a polyfunctional carboxylic acid or ester-forming derivative of a polyfunctional carboxylic acid to produce the polyester; and obtaining the polyester, wherein the polymerization catalyst comprises an aluminum substance and a phosphorus compound, wherein the aluminum substance is selected from the group consisting of aluminum hydroxide and aluminum alkoxides, and wherein the phosphorus compound has an aromatic ring structure.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: October 23, 2012
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Takahiro Nakajima, Ken-ichi Tsukamoto, Shoichi Gyobu, Mitsuyoshi Kuwata
  • Patent number: 8293673
    Abstract: A complex base catalyst comprising tetraalkyl ammonium hydroxide and tetraalkyl ammonium salt for the condensation reaction of aniline and nitrobenzene.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: October 23, 2012
    Assignee: Jiangsu Sinorgchem Technology Co., Ltd.
    Inventors: Xiaogen Feng, Nongyue Wang, Xiaohui Mao, Ruibiao Yu, Qianwen Cheng
  • Patent number: 8288305
    Abstract: Naphtha is selectively hydrodesulfurized with retention of olefin content. More particularly, a CoMo metal hydrogenation component is loaded on a silica or modified silica support in the presence of an organic additive to produce a catalyst which is then used for hydrodesulfurizing naphtha while retaining olefins.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: October 16, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chuansheng Bai, Stuart Soled, Sabato Mlseo, Jonathan McConnachie
  • Publication number: 20120252660
    Abstract: The invention provides a catalyst composition, which includes an emulsion of an aqueous phase in an oil phase, wherein the aqueous phase comprises an aqueous solution containing a group 6 metal and a group 8, 9 or 10 metal. The metals can be provided in two separate emulsions, and these emulsions are well suited for treating hydrocarbon feedstocks.
    Type: Application
    Filed: February 27, 2012
    Publication date: October 4, 2012
    Applicant: INTEVEP, S.A.
    Inventors: Guaicaipuro Rivas, Jose Cordova, Francisco Granadillo, Roger Marzin, Bruno Solari, Luis Zacarias, Carmen Elena López de Rivas
  • Patent number: 8263520
    Abstract: A solid, hydrocarbon-insoluble, catalyst component useful in polymerizing olefins, said catalyst component containing magnesium, titanium, and halogen, and further containing an internal electron donor having a structure: [R1—O—C(O)—O—]xR2 wherein R1 is independently at each occurrence, an aliphatic or aromatic hydrocarbon, or substituted hydrocarbon group containing from 1 to 20 carbon atoms; x is 2-4; and R2 is an aliphatic or aromatic hydrocarbon, or substituted hydrocarbon group containing from 1 to 20 carbon atoms, provided that there are 2 atoms in the shortest chain connecting a first R1—O—C(O)—O— group and a second R1—O—C(O)—O— group.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: September 11, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Joseph N. Coalter, III, Tak W. Leung, Tao Tao, Kuanqiang Gao
  • Patent number: 8263521
    Abstract: The present invention provides a process for producing bisphenol A by reacting phenol with actone, wherein reaction is performed at higher temperatures while maintaining high selectivity, and thus high productivity is obtained. The invention relates to a cation-exchange resin, wherein a cation-exchange group is introduced into a syndiotactic polystyrene polymer and the amount of acid is 0.8 milliequivalent/g or more, to a catalyst comprising the cation-exchange resin, and to a process for producing bisphenol A using a cation-exchange resin catalyst.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: September 11, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Takashi Terajima, Yuko Maruyama, Toshihiro Takai, Kenji Fujiwara
  • Patent number: 8258253
    Abstract: Disclosed is a method for increasing the solid state polymerization (SSP) rates of metal catalyzed polyesters. The method comprises in a first step, reacting a dicarboxylic acid or a C1-C4 dicarboxylic diester with a diol at a suitable temperature and pressure to effect esterification or transesterification to prepare a precondensate and in a second step, reacting the precondensate to effect polycondensation at a suitable temperature and pressure to prepare a high molecular weight polyester and in a third step, further increasing the molecular weight and viscosity of the polyester under SSP conditions of a suitable temperature and pressure, where a metal catalyst is added in the first step or in the second step as a reaction catalyst, and where a certain phosphinic acid compound is added in the first step, in the second step or just prior to the third step. The polyester product exhibits low aldehyde formation during melt processing steps as well as excellent color.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: September 4, 2012
    Assignee: BASF SE
    Inventors: Paul Odorisio, Stephen M. Andrews, Thomas F. Thompson, Si Wu, Paragkumar Thanki, Deepak M. Rane, Delina Joseph, Jianzhao Wang
  • Publication number: 20120208694
    Abstract: A process for the preparation of a chromium-type supported olefin polymerization catalyst. A fluidized bed of support particles in an inert carrier gas is established. A chromium (III) compound is added to the fluidized support particles to provide a supported catalyst component. The supported catalyst component is activated to convert at least a portion of the chromium (III) to Chromium (VI). The chromium (III) containing particles may be recovered from the fluidized bed and then activated or they may be activated in the fluidized bed. Also the support particles can be treated in the fluidized bed with other treatment agents. The support particles may be pretreated with a solution of a boron treating agent prior to incorporation of the support in the fluidized bed.
    Type: Application
    Filed: April 24, 2012
    Publication date: August 16, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Ricky McCormick, David Knoeppel
  • Patent number: 8242041
    Abstract: The invention includes a method for impregnating a molecular sieve primary catalyst with an aromatic co-catalyst, the method comprising contacting the small pore molecular sieve primary catalyst having a porous framework structure with a combination of from at least 50 wt % to about 99.9 wt % of an aromatic co-catalyst and from about 0.1 wt % to less than 50 wt % of a polar impregnation agent containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus, and boron, under conditions sufficient to impregnate the porous framework structure of the primary catalyst with the aromatic co-catalyst (and optionally also with the polar impregnation agent), thus forming an integrated catalyst system. Methods for converting oxygenates to olefins using said integrated catalyst system are also described herein.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: August 14, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen H. Brown, Guang Cao, Teng Xu
  • Patent number: 8236723
    Abstract: The invention relates to a catalyst for hydrodesulfurizing naphtha, to a method for preparing said catalyst and to a method for hydrodesulfurizing naphtha using said catalyst. More particularly, the catalyst comprises a Co/Mo metal hydrogenation component on a silica support having a defined pore size distribution and at least one organic additive. The catalyst has high dehydrosulphurisation activity and minimal olefin saturation when used to hydrodesulfurize FCC naphtha.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: August 7, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sven Johan Timmer, Jason Wu
  • Patent number: 8236207
    Abstract: Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: August 7, 2012
    Assignee: Los Alamos National Security, LLC
    Inventors: Yu Seung Kim, Kwan-Soo Lee, Tommy Q. T. Rockward
  • Patent number: 8236915
    Abstract: Disclosed herein are manganese, iron, cobalt, or nickel complexes containing terdentate pyridine diimine ligands and their use as efficient and selective hydrosilylation catalysts.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: August 7, 2012
    Assignees: Momentive Performance Materials Inc., Cornell University
    Inventors: Johannes G. P. Delis, Susan A. Nye, Kenrick M. Lewis, Keith J. Weller, Paul J. Chirik, Aaron M. Tondreau, Sarah Kathleen Russell
  • Patent number: 8232222
    Abstract: A catalyst composition comprises the reaction product of an alkoxide or condensed alkoxide of a metal M, selected from titanium, zirconium, hafnium, aluminum, or a lanthanide, an alcohol containing at least two hydroxyl groups, a 2-hydroxy carboxylic acid and a base, wherein the ratio of equivalents of base to —COOH acid equivalents of said 2-hydroxy carboxylic acid is in the range 0.0033-0.2:1. The composition is useful as a catalyst for esterification reactions, especially for the production of polyesters such as polyethylene terephthalate, polytrimethylene terephthalate and polybutylene terephthalate.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: July 31, 2012
    Assignee: Dorf Ketal Chemicals (India) Pvt. Ltd.
    Inventors: Charles Mark Lindall, Neville Slack, Martin Graham Partridge
  • Publication number: 20120190535
    Abstract: Provided is a preparation method of a catalyst slurry used for synthesizing hydrocarbons by contact with a synthesis gas which includes carbon monoxide gas and hydrogen gas as main components. The method includes the step of preparing the catalyst slurry having solid catalyst particles suspended in a liquid medium, wherein adopting a petroleum solvent which is a liquid at normal temperature and normal pressure as the liquid medium.
    Type: Application
    Filed: August 12, 2010
    Publication date: July 26, 2012
    Inventors: Yasuhiro Onishi, Masaki Shingu, Yuichi Tanaka
  • Patent number: 8227370
    Abstract: A catalyst system containing (a) a solid catalyst component containing a titanium halide, a magnesium halide, a first internal electron donor compound, and a second internal electron donor compound, (b) an organoaluminum compound, and (c) an external electron donor compound is disclosed. The first internal electron donor compound contains at least one ether group and at least one ketone group. The second internal electron donor compound is a 1,8-naphthyl diester compound. Methods of polymerizing or copolymerizing alpha-olefins using the catalyst system also are disclosed.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: July 24, 2012
    Assignee: BASF Corporation
    Inventor: Main Chang
  • Patent number: 8222177
    Abstract: Disclosed is a technology for enabling an efficient asymmetric Michael addition reaction which does not require a large amount of a malonic ester, while having a short reaction time. Specifically disclosed is a catalyst which is composed of MX2 (wherein M is Be, Mg, Ca, Sr, Ba or Ra and X is an arbitrary group) and a compound represented by general formula [I]. [In the formula, R7, R8, R9 and R10 each represents a substituted cyclic group or an unsubstituted cyclic group.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: July 17, 2012
    Assignee: Japan Science and Technology Agency
    Inventors: Shu Kobayashi, Magno Agostinho, Uwe Schneider, Miyuki Yamaguchi
  • Patent number: 8216958
    Abstract: A method for hydrodesulfurizing FCC naphtha is described. More particularly, a Co/Mo metal hydrogenation component is loaded on a silica or modified silica support in the presence of organic ligand and sulfided to produce a catalyst which is then used for hydrodesulfurizing FCC naphtha. The silica support has a defined pore size distribution which minimizes olefin saturation.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: July 10, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jason Wu, Chuansheng Bai, Thomas R. Halbert, Stuart L. Soled, Sabato Miseo, Jonathan M. McConnachie, Valery Sokolovskii, David M. Lowe, Anthony F. Volpe, Jr., Jun Han
  • Publication number: 20120172205
    Abstract: An improved hydroprocessing slurry catalyst is provided for the upgrade of heavy oil feedstock. The slurry catalyst is prepared from at least a Group VIB metal precursor compound and optionally at least a Promoter metal precursor compound. The catalyst comprises dispersed particles in a hydrocarbon medium with the dispersed particles have an average particle size ranging from 1 to 300 ?m. The catalyst has a total surface area of at least 100 m2/g. The catalyst is prepared from sulfiding and dispersing a metal precursor solution in a hydrocarbon diluent, the metal precursor comprising at least a Primary metal precursor and optionally a Promoter metal precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Applicant: Chevron Corporation
    Inventors: Julie Chabot, Ling Jiao, Joseph V. Nguyen, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Publication number: 20120172204
    Abstract: An improved hydroprocessing slurry catalyst is provided for the upgrade of heavy oil feedstock. The catalyst comprises dispersed particles in a hydrocarbon medium with the dispersed particles have an average particle size ranging from 1 to 300 ?m. The catalyst has a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter. The catalyst is prepared from sulfiding and dispersing a metal precursor solution in a hydrocarbon diluent, the metal precursor comprising at least a Primary metal precursor and optionally a Promoter metal precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Ling Jiao, Julie Chabot, Joseph V. Nguyen, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Publication number: 20120172201
    Abstract: A process for preparing a slurry catalyst is provided. The slurry catalyst is prepared from at least a Group VIB metal precursor and optionally at least a Promoter metal precursor selected from Group VIII, Group IIB, Group IIA, Group IVA metals and combinations thereof. The slurry catalyst comprises a plurality of dispersed particles in a hydrocarbon medium having an average particle size ranging from 1 to 300 nm. The slurry catalyst is then mixed with a hydrogen feed at a pressure from 1435 psig (10 MPa) to 3610 psig (25 MPa) and a temperature from 200-800° F. at 500 to 15,000 scf hydrogen per bbl of slurry catalyst for a minute to 20 hours, for the slurry catalyst to be saturated with hydrogen providing an increase of k-values in terms of HDS, HDN, and HDMCR of at least 15% compared to a slurry catalyst that is not saturated with hydrogen.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Applicant: c/o Chevron Corporation
    Inventors: Shuwu Yang, Bruce Edward Reynolds, Julie Chabot, Bo Kou
  • Publication number: 20120172197
    Abstract: A process for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. The process comprises providing at least a metal precursor in solution comprising at least two different metal cations in its molecular structure, with at least one of the metal cations is a Group VIB metal cation; sulfiding the metal precursor with a sulfiding agent in solution forming a catalyst precursor; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In one embodiment, the at least a metal precursor comprising at least two different metal cations is prepared by combining and reacting at least one Group VIB metal compound with at least a Promoter metal compound selected from Group VIII, Group IIB, Group IIA, Group IVA metals and combinations thereof.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Joseph V. Nguyen, Julie Chabot, Oleg Mironov
  • Publication number: 20120172203
    Abstract: An improved process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, high shear mixing is employed to generate an emulsion containing droplets of metal precursor in oil with droplet sizes ranging from 0.1 to 300 ?m. The emulsion is subsequently sulfided with a sulfiding agent, or in-situ in a heavy oil feedstock to form a slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Oleg Mironov, Alexander E. Kuperman, Juli Chabot, Shuwu Yang, Joseph V. Nguyen, Ling Jiao, Bruce Edward Reynolds, Axel Brait, Kenneth Kwik, Modinat Kotun
  • Publication number: 20120168350
    Abstract: An improved process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. The process employs a polar aprotic solvent to mix with the inorganic metal precursor feed to form an oil-dispersible inorganic metal precursor, at a weight ratio of solvent to inorganic metal precursor of 1:1 to 10:1; the oil-dispersible inorganic metal precursor is subsequently sulfided forming the slurry catalyst. In one embodiment, the sulfiding is in-situ upon mixing the oil-dispersible inorganic metal precursor with a hydrocarbon diluent containing a heavy oil feedstock under in-situ sulfiding conditions.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Publication number: 20120172198
    Abstract: A process for making an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, a metal precursor solution comprising at least a water-soluble molybdenum compound and a water-soluble metal zinc compound is mixed under high shear mixing conditions to generate an emulsion. The emulsion is subsequently sulfided with a sulfiding agent ex-situ, or in-situ in a heavy oil feedstock to form the slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Applicant: c/o Chevron Corporation
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Publication number: 20120172200
    Abstract: A single metal slurry catalyst for the upgrade of heavy oil feedstock is provided. The slurry catalyst is prepared by sulfiding a Primary metal precursor, then mixing the sulfided metal precursor with a hydrocarbon diluent to form the slurry catalyst. The single-metal slurry catalyst has the formula (Mt)a(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one of a non-noble Group VIII metal, a Group VIB metal, a Group IVB metal, and a Group IIB metal; 0.5a<=d<=4a; 0<=e<=11a; 0<=f<=18a; 0<=g<=2a; 0<=h<=3a; t, v, w, x, y, z, each representing total charge for each of: M, S, C, H, O, and N; and ta+vd+we+xf+yg+zh=0. The slurry catalyst has a particle size ranging from 1 to 300 ?m.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Joseph V. Nguyen, Axel Brait, Oleg Mironov, Alexander E. Kuperman
  • Publication number: 20120168347
    Abstract: This invention provides processes for forming solution compositions, which processes comprises bringing together, in an aqueous medium, i) at least one phosphorus compound; ii) at least one Group VI metal compound; and iii) at least one Group VIII metal compound, such that a solution having a Group VI metal concentration of more than about 5.6 mol/L is formed. Also provided are compositions formed by such processes, processes for forming catalyst compositions from these compositions, and catalyst compositions formed by these processes.
    Type: Application
    Filed: August 24, 2010
    Publication date: July 5, 2012
    Applicant: ALBEMARLE EUROPE SPRL
    Inventors: Sona Eijsbouts-Spickova, Marcel Adriaan Jansen
  • Publication number: 20120172206
    Abstract: A method for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In one embodiment, the process comprises: sulfiding at least a metal precursor solution with at least a sulfiding agent forming a sulfided Group VIB catalyst precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst composition. The slurry catalyst prepared therefrom has a BET total surface area of at least 100 m2/g, a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Joseph V. Nguyen, Julie Chabot, Ling Jiao, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Publication number: 20120168351
    Abstract: An improved process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. The process employs rework material obtained from a process to prepare a hydroprocessing catalyst as part of the metal precursor feed. In one embodiment, the process comprises mixing the rework material with a hydrocarbon diluent to form a slurried metal precursor for subsequent in-situ sulfiding in a heavy oil upgrade process. In another embodiment, the rework is slurried in a hydrocarbon carrier and a sulfiding agent, forming a slurry catalyst. In yet another embodiment, the rework material is mixed directly with a heavy oil feedstock under in-situ sulfiding conditions, forming a slurry catalyst.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Applicant: c/o Chevron Corporation
    Inventors: Erin P. Maris, Oleg Mironov, Julie Chabot
  • Publication number: 20120172202
    Abstract: A process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. The process employs a pressure leach solution obtained from a metal recovery process as part of the metal precursor feed. In one embodiment, the process comprises: sulfiding a pressure leach solution having at least a Group VIB metal precursor compound in solution forming a catalyst precursor, and mixing the sulfided catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In another embodiment, the pressure leach solution is mixed with a hydrocarbon diluent under high shear mixing conditions to form an emulsion, which emulsion can be sulfided in-situ upon contact with a heavy oil feedstock in the heavy oil upgrade process.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Applicant: Chevron Corporation
    Inventors: Oleg Mironov, Alexander E. Kuperman, Rahul Shankar Bhaduri, Julie Chabot, Shuwu Yang, Joseph V. Nguyen, Ling Jiao, Bruce Edward Reynolds
  • Publication number: 20120172199
    Abstract: An improved process to make a slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, at least a metal precursor feedstock is portioned and fed in any of the stages: the promotion stage; the sulfidation stage; or the transformation stage of a water-based catalyst precursor to a slurry catalyst. In one embodiment, the promoter metal precursor feedstock is split into portions, the first portion is for the sulfiding step, the second portion is for the promotion step; and optionally the third portion is to be added to the transformation step in the mixing of the sulfided promoted catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In another embodiment, the Primary metal precursor feedstock is split into portions.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Shuwu Yang, Julie Chabot, Ling Jiao, Joseph V. Nguyen, Bruce Edward Reynolds
  • Publication number: 20120172207
    Abstract: An improved process to make a slurry catalyst for the upgrade of heavy oil feedstock is provided. The sulfiding of the metal precursor/catalyst precursor is carried out at least twice (“enhanced sulfiding”) in the improved process to form a slurry catalyst with improved surface area and porosity value. The slurry catalyst under an enhanced sulfiding scheme is characterized as having increased catalytic activities over a slurry catalyst without an enhanced sulfidation step.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Joseph V. NGUYEN, Ling JIAO, Julie CHABOT, Christopher Paul DUNCKLEY, Shuwu YANG
  • Patent number: 8211486
    Abstract: The invention is directed to a process for the hydrogenation of unsaturated triglycerides in the presence of a supported precious metal catalyst and hydrogen, in which process a precious metal catalyst is used, comprising an aggregate of solid support, precious metal nano particles and surfactant or polymer.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: July 3, 2012
    Assignee: BASF Corporation
    Inventors: Annemarie Elisa Wilhelmina Beers, Pieter Hildegardus Berben