Organic Compound Containing Patents (Class 502/150)
  • Patent number: 7767612
    Abstract: A catalyst composition for producing polyesters comprises: a) an organometallic compound obtained by reacting an orthoester or condensed orthoester of titanium, zirconium or aluminum, an alcohol containing at least two hydroxyl groups, a 2-hydroxy carboxylic acid and a base; and b) at least one compound comprising germanium, antimony or tin. Polyesters obtained by esterification reaction in the presence of the catalyst compositions according to the present invention exhibit improved melt properties and are particularly suitable for production of textile and commercial fibers, films and rigid packaging.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: August 3, 2010
    Assignees: Johnson Matthey PLC, Performance Fibers, Inc.
    Inventors: Andrew Martin Bellamy, Charles Mark Lindall, Calum Harry McIntosh, Martin Graham Partridge, John Armstrong Young, Steven Charles Davies
  • Patent number: 7767614
    Abstract: Provided is a method for preparing a support for olefin polymerization catalysts used in polyolefin preparation processes. Particularly, provided is a novel method for preparing a support for olefin polymerization catalysts comprising the reaction of metal magnesium with an alcohol in the presence of an additive for initiating the reaction, characterized in that halogenated nitrogen compound is used as the additive for initiating the reaction, resulting in a spherical dialkoxy magnesium support.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 3, 2010
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: Eun-Il Kim, Young-Joo Lee, Hoe-Chul Jung, Joon-Ryeo Park
  • Publication number: 20100190637
    Abstract: The invention relates to the use of nanoscale zinc oxide, prepared by a sol-gel process, as curing catalyst, in particular for liquid coatings.
    Type: Application
    Filed: May 23, 2008
    Publication date: July 29, 2010
    Applicant: Merck Patent Gesellschaft
    Inventors: Matthias Koch, Sabine Renker, Gerhard Jonschker
  • Patent number: 7763701
    Abstract: The invention is a method for making condensation polymers, such as polyethylene terephthalate polyester. The method includes introducing to a polycondensation reaction a catalyst system that includes a coordination catalyst and a composite catalyst, which includes an acid component and an auxiliary component.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: July 27, 2010
    Assignee: Wellman, Inc.
    Inventors: Carl Steven Nichols, Tony Clifford Moore, Daniel Allen Huenefeld
  • Publication number: 20100184588
    Abstract: Methods are disclosed herein for improving efficient catalyst utilization in processes including thermal catalysis using dry nanoparticle promoters, rather than salts of metal promoters in liquid form. Using selected process steps, the nanoparticles are more controllably dispersed on primary support particles, for effective use on secondary supports when it desired to bring reactants into contact with the secondary support. Applications that generally make use of these catalysts can be but are not limited to: emission abatement catalysts, generation of syngas, generation of liquid fuels from syngas, safety systems (hydrogen recombination catalysts in nuclear power plants) and many industrial processes.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 22, 2010
    Applicant: QUANTUMSPHERE, INC.
    Inventor: Fabrizio RINALDI
  • Patent number: 7759274
    Abstract: The invention relates to a catalytically active unit comprising a support material, wherein the catalytically active unit and/or the support material comprises polymeric particles, in particular polymeric nanoparticles, and/or wherein the support material is provided with polymeric particles, in particular polymeric nanoparticles, the polymeric particles comprising at least one catalytically active component. The catalytically active unit of the present invention is particularly useful for removing noxiant, odorant and poisonous entities of any kind, in particular from air and/or gas streams, and for protecting against chemical poisonous entities, in particular warfare agents, for example in NBC protective materials (for example protective clothing).
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: July 20, 2010
    Assignee: Blucher GmbH
    Inventor: Bertram Bohringer
  • Patent number: 7759273
    Abstract: A method of making an alkali metal salt is described and involves (1) reacting at least one alkali metal formate with an least one acid to form an alkali metal salt in the presence of formate ions and (2) substantially removing the formate ions from the alkali metal salt formed in step (1).
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: July 20, 2010
    Assignee: Cabot Corporation
    Inventor: Bart Bakke
  • Publication number: 20100179054
    Abstract: The present invention generally provides compositions including carbon-based nanostructures, catalyst materials and systems, and related methods. In some cases, the present invention relates to carbon-based nanostructures comprising a high density of charged moieties. Methods of the invention may provide the ability to introduce a wide range of charged moieties to carbon-based nanostructures. The present invention may provide a facile and modular approach to synthesizing molecules that may be useful in various applications including sensors, catalysts, and electrodes.
    Type: Application
    Filed: December 11, 2009
    Publication date: July 15, 2010
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Jan Schnorr
  • Publication number: 20100179363
    Abstract: The invention includes a method for impregnating a molecular sieve primary catalyst with an aromatic co-catalyst, the method comprising contacting the small pore molecular sieve primary catalyst having a porous framework structure with a combination of from at least 50 wt % to about 99.9 wt % of an aromatic co-catalyst and from about 0.1 wt % to less than 50 wt % of a polar impregnation agent containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus, and boron, under conditions sufficient to impregnate the porous framework structure of the primary catalyst with the aromatic co-catalyst (and optionally also with the polar impregnation agent), thus forming an integrated catalyst system. Methods for converting oxygenates to olefins using said integrated catalyst system are also described herein.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Inventors: Stephen H. Brown, Guang Cao, Teng Xu
  • Patent number: 7754642
    Abstract: Disclosed are a hydrophobic oil-adsorbent material that is capable of adsorbing oil and separating oil from water and methods for production and application of said material, suitable for collecting and removing hydrocarbons and other contaminations of oil content from solid surfaces and water.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: July 13, 2010
    Assignee: Sineol Hungary KFT.
    Inventor: János Kátay
  • Patent number: 7754643
    Abstract: The present invention provides a novel transesterification catalyst having the general formula: Zn3M2(CN)n(ROH).xZnCl2.yH2O wherein R is tertiary-butyl and M is a transition metal ion selected from Fe, Co and Cr, x varies from 0 to 0.5, y varies from 3-5 and n is 10 or 12. The above said catalyst is useful for an efficient transesterification of glycerides, fatty acid esters and cyclic carbonates on reactions with alcohols.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: July 13, 2010
    Assignee: Council of Scientific & Industrial Research
    Inventors: Darbha Srinivas, Rajendra Srivastava, Paul Ratnasamy
  • Patent number: 7754636
    Abstract: A process for removing metal halides from regenerated ionic liquid catalyst comprising interacting a regenerated ammonium-based metal-halide ionic liquid catalyst or an ammonium-based metal-halide ionic liquid catalyst undergoing regeneration with either the parent ammonium halide salt from which the ionic liquid catalyst was made or a corresponding mixed salt having an ammonium halide to metal halide molar ratio of 0 to less than 2.0 is disclosed.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: July 13, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Hye-Kyung C. Timken, Howard S. Lacheen, Thomas V. Harris, Robert W. Campbell
  • Patent number: 7749934
    Abstract: A method for polymerizing ethylenically unsaturated monomers, including non-polar olefinic monomers, polar olefinic monomers, and combinations thereof, using a protected catalytic composition in an aqueous medium, is disclosed. An aqueous dispersion containing the protected catalytic composition is also disclosed, along with an aqueous dispersion of the addition polymer produced by the polymerization.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: July 6, 2010
    Assignee: Rohm and Haas Company
    Inventors: Ralph Craig Even, Willie Lau
  • Patent number: 7745368
    Abstract: A stable catalyst solution suitable for catalyzing the polycondensation of reactants to make polyester polymers comprising: (i) M, wherein M is represented by an alkaline earth metal or alkali metal and (ii) aluminum and (iii) ethylene glycol and (iii) organic hydroxyacid compounds having at least three carbon atoms and less than three carboxylic acid groups when the hydroxyacid compound has 8 or less carbon atoms, wherein the molar ratio of ethylene glycol:aluminum is at least 35:1. The hydroxyacid compounds enhance to solubility of M and Al in ethylene glycol, even at even at molar ratios of M:Al approaching 1:1. There is also provided a method for the manufacture of the composition, its feed to and use in the manufacture of a polyester polymer, and polyester polymers obtained by combining certain ingredients or containing the residues of these ingredients in the composition.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: June 29, 2010
    Assignee: Eastman Chemical Company
    Inventor: Alan Wayne White
  • Patent number: 7744827
    Abstract: A fuel delivery system for a gas turbine engine includes a catalytic device for treating fuel to increase the usable cooling capability of an endothermic fuel. The catalytic device operates to treat and decompose components within in the fuel to render the fuel non-coking beyond 250° F. The catalytic device includes material that initiates reactions, and decomposition of coke forming components within the fuel to non-coke forming components within the fuel.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: June 29, 2010
    Assignee: United Technologies Corporation
    Inventors: Thomas Vanderspurt, Harry Cordatos
  • Patent number: 7741241
    Abstract: The invention relates to a hydrocarbon hydroconversion catalyst comprising a carrier based on refractory oxide, a metal of the group VIII, and a metal of the group VIB. Said catalyst is characterised in that it also comprises at least one organic compound selected from the alkene diols of formula (I) wherein R1 represents a C2-10 alkenylene group, preferably C2-4 alkenylene, a C6-18 arylene group, or a C7-18 alkylene-arylene group, and each R2 independently represents a hydrogen atom or a C1-18 alkyl group, a C1-18 alkenyl group, a C6-18 aryl group, a C3-8 cycloalkyl group, or a C7-20 alkylaryl or arylalkyl group, or the two groups R2 together form a divalent C2-18 group, the carbonated chain of the R2 groups containing or carrying at least one heteroatom selected from S, N and O. The invention also relates to a method for preparing one such catalyst, and to the use of said catalyst for hydrotreatment or hydroconversion.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: June 22, 2010
    Assignees: Total Raffinage Marketing, IFP
    Inventors: Thierry Cholley, Jean-Pierre Dath, Claude Brun, Georges Fremy, Francis Humblot
  • Patent number: 7737241
    Abstract: The invention is a system for initiating free radical polymerization comprising: a) in one part, one or more amido-borate compounds containing one or more anionic amido-borate moieties comprising an organoborate wherein the boron atom is bonded to a nitrogen atom of ammonia or an organic compound containing one or more nitrogen atoms, such as a hydrocarbyl amine, a hydrocarbyl polyamine, or an aromatic heterocycle containing one or more nitrogen atoms and optionally containing one or more heteroatoms or heteroatom containing functional moieties, and one or more cationic counter ions and b) in a second part, a liberating compound which reacts with the nitrogen atom(s) bound to the boron atom(s) upon contact with the amido-borate to form an organoborane radical.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: June 15, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Shaoguang Feng, Gary L. Jialanella, Peter Nickias, Toni Ristoski
  • Patent number: 7737244
    Abstract: The present invention relates to a process for preparing polyarylate, and more specifically, to a process for preparing polyarylate by interfacial polymerization of a bivalent phenol compound and an aromatic dicarboxylic acid or a halide thereof, which comprises mixing a cationic catalyst for the phase transition and a nonionic surfactant in a predetermined ratio, to further increase the yield of polyarylate, as compared with the case of using each of the nonionic surfactant and the cationic catalyst for the phase transition alone.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: June 15, 2010
    Assignee: LG Chem, Ltd.
    Inventors: Dae-Woo Nam, Dong-Ryul Kim, Hyo-Sun Lee, Boong-Goon Jeong, Sang-Uk Ryu, Hee-Jung Kim, Ju-Eun Cha
  • Patent number: 7732365
    Abstract: The present invention is directed to a catalyst composition, comprising: (1) a catalyst precursor having the general structure MSXn wherein M is a transition metal selected from the group consisting of iridium, molybdenum, and tungsten; S is a coordinating ligand; X is a counterion; and n is an integer from 0 to 5; and (2) a phosphoramidite ligand having the structure wherein O—Cn—O is an aliphatic or aromatic diolate and wherein R1, R2, R3 and R4 are selected from the group consisting of substituted or unsubstituted aryl groups, substituted or unsubstituted heteroaryl groups, substituted or unsubstituted aliphatic groups, and combinations thereof, with the proviso that at least one of R1, R2, R3, or R4 must be a substituted or unsubstituted aryl or heteroaryl group. The present invention is also directed to activated catalysts made from the above catalyst composition, as well as methods of allylic amination and etherification using the above catalysts.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: June 8, 2010
    Assignee: Yale University
    Inventors: John F. Hartwig, Chutian Shu, Toshimichi Ohmura, Christoph Kiener, Fernando Garcia Lopez
  • Patent number: 7732363
    Abstract: A process for regenerating a used acidic catalyst which has been deactivated by conjunct polymers by removing the conjunct polymers so as to increase the activity of the catalyst is disclosed. Methods for removing the conjunct polymers include hydrogenation, addition of a basic reagent and alkylation. The methods are applicable to all acidic catalysts and are described with reference to certain ionic liquid catalysts.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: June 8, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Thomas V. Harris
  • Patent number: 7732364
    Abstract: A regeneration process for re-activating an ionic liquid catalyst, which is useful in a variety of reactions, especially alkylation reactions, and which has been deactivated by conjunct polymers. The process includes a reaction step and a solvent extraction step. The process comprises (a) providing the ionic liquid catalyst, wherein at least a portion of the ionic liquid catalyst is bound to conjunct polymers; and (b) reacting the ionic liquid catalyst with aluminum metal to free the conjunct polymers from the ionic liquid catalyst in a stirred reactor or a fixed reactor. The conjunct polymer is then separated from the catalyst phase by solvent extraction in a stirred extraction or packed column.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: June 8, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bong-Kyu Chang, Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Saleh Elomari
  • Publication number: 20100137128
    Abstract: A thermocatalytically active titanium dioxide coating has a high BET surface area. With this coating, a catalytic effect can be achieved with only moderately increased temperatures (>200 DEG C.).
    Type: Application
    Filed: February 13, 2008
    Publication date: June 3, 2010
    Inventors: Anett Berndt, Florian Eder, Rudolf Gensler, Heinrich Zeininger
  • Patent number: 7727925
    Abstract: A process for regenerating a used acidic ionic liquid catalyst which has been deactivated by conjunct polymers comprising combining the used catalyst, a metal and a Broensted acid which acts a source of hydrogen in a reaction zone under hydrogenation conditions for a time sufficient to hydrogenate at least a portion of the conjunct polymer is disclosed.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: June 1, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Thomas V. Harris
  • Patent number: 7723539
    Abstract: Catalysts are described based on metal complexes derived from optically active s compounds, chosen from the classes consisting of bisoxazolines and salicylaldimines supported on an organic or inorganic matrix and employed in particular for the synthesis of optically active chrysanthemic acid.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: May 25, 2010
    Assignee: ENDURA S.p.A.
    Inventors: Silvia Carloni, Valerio Borzatta, Leni Moroni, Giada Tanzi, Giovanni Sartori, Raimondo Maggi
  • Patent number: 7718710
    Abstract: A method for manufacturing stable concentrated colloids containing metal nanoparticles in which the colloid is stabilized by adding a base. This allows the metal particles to be formed in higher concentration without forming larger agglomerates and/or precipitating. The method of manufacturing the stable colloidal metal nanoparticles of the present invention generally includes (i) providing a solution comprising a plurality of metal atoms, (ii) providing a solution comprising a plurality of organic agent molecules, each organic agent molecule comprising at least one functional group capable of bonding to the metal atoms, (iii) reacting the metal atoms in solution with the organic agent molecules in solution to form a mixture comprising a plurality of complexed metal atoms, (iv) reducing the complexed metal atoms in the mixture using a reducing agent to form a plurality of nanoparticles, and (v) adding an amount of a base to the mixture, thereby improving the stability of the nanoparticles in the mixture.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: May 18, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Cheng Zhang, Sukesh Parasher, Michael A. Rueter, Bing Zhou
  • Patent number: 7718564
    Abstract: The present invention is related to a hydrocarbon oxidation process. The process comprises bringing one or more hydrocarbons into contact with a source of oxygen in the presence of a radical initiator and a catalyst. The catalyst comprises an organic metal complex located on a catalyst support, and is obtained by partial decomposition of the organic metal complex. For example, the process can be used to produce dimethyl carbonate from dimethoxy methane. The invention is also related to a partially decomposed catalyst that comprises a silica support and an organic metal complex, wherein at least 5% of the organic compound remains in the catalyst. The organic metal complex comprises an organic compound and a metal-based compound wherein the metal is selected from copper, nickel, and combinations thereof.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: May 18, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jihad Mohammed Dakka, Sabato Miseo, Stuart Leon Soled, Jose Guadalupe Santiesteban, Joseph Ernest Baumgartner, Michiel Christian Alexander Van Vliet, Roger Arthur Sheldon
  • Publication number: 20100113254
    Abstract: A method for producing a tungsten trioxide powder for a photocatalyst according to the present invention is characterized by comprising a sublimation step for obtaining a tungsten trioxide powder by subliming a tungsten metal powder or a tungsten compound powder by using inductively coupled plasma process in an oxygen atmosphere, and a heat treatment step for heat-treating the tungsten trioxide powder obtained in the sublimation step at 300° C. to 1000° C. for 10 minutes to 2 hours in an oxidizing atmosphere. A tungsten trioxide powder which is obtained by the method for producing a tungsten trioxide powder for a photocatalyst according to the present invention has excellent photocatalytic performance under visible light.
    Type: Application
    Filed: March 11, 2008
    Publication date: May 6, 2010
    Applicants: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Akira Sato, Kayo Nakano, Yasuhiro Shirakawa
  • Publication number: 20100113257
    Abstract: A system and method for preparing and using a metal precursor diluent composition are described. The composition includes a metal precursor, and about 18% to about 80% by weight of an olefinic diluent having between 6 and 18 carbon atoms. Such compositions may be used in oligomerization catalyst systems.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 6, 2010
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Bruce E. Kreischer, Ronald D. Knudsen, Orson L. Sydora
  • Patent number: 7709409
    Abstract: The present invention relates to catalytic compositions for esterification, transesterification and polycondensation reactions, a process for the catalysis of said reactions employing such catalytic compositions and polyesters or resins obtainable by this process.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: May 4, 2010
    Assignee: Chemtura Organometallics GmbH
    Inventors: Jens Röder, Andrea Kapries, Thorsten Nordhorn, Johannes Canisius
  • Publication number: 20100101221
    Abstract: Catalysts, systems, and methods disclosed herein provide for reduced NOx emissions in the exhaust stream of a lean burning engine. The catalysts include two different types of selective catalytic reduction (SCR) catalysts (i.e., two different types of catalysts that may catalytically reduce NOx using a reductant). The first SCR catalyst (116) is an SCR catalyst having a composition that produces a reductant (e.g., an HC-SCR catalyst that produces ammonia) and the second catalyst (118) is an SCR catalyst (e.g., NH3-SCR) having a composition that reduces NOx using the reductant produced by the first SCR catalyst (116).
    Type: Application
    Filed: October 28, 2008
    Publication date: April 29, 2010
    Applicant: Caterpillar Inc.
    Inventors: Sylvain Joseph Charbonnel, Zhiyong Wei, James Joshua Driscoll, Ronald Silver, Corey Stefanick
  • Publication number: 20100105540
    Abstract: The present invention provides a process for the regeneration of a catalyst comprising at least one metal from Group VIII and at least one metal from Group VIB which are deposited on a refractory oxide support, comprising: at least one first step of heat treatment of the catalyst in the presence of oxygen and at a temperature ranging from 350° C. to 550° C.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 29, 2010
    Applicant: EURECAT S.A.
    Inventors: Pauline Galliou, Eric Nagy, Pierre Dufresne
  • Patent number: 7704912
    Abstract: The invention relates to certain chiral transition metal catalysts, to the metal of which at least two structurally different monophosphorus ligands are bonded, at least one of said monophosphorus ligands being chiral. Said chiral transition metal catalysts are suitable as catalysts for use in asymmetric transition metal-catalyzed reactions, providing better enantioselectivities than in cases where only one structurally defined ligand is used.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: April 27, 2010
    Assignee: Studiengesellschaft Kohle mbH
    Inventors: Manfred T. Reetz, Thorsten Sell, Andreas Meiswinkel, Gerlinde Mehler
  • Patent number: 7704911
    Abstract: The present invention provides a catalytic composition for use in an oxidation-reduction process for effecting the catalytic oxidation of hydrogen sulfide in gas strains comprising a water soluble iron compound, a mixture of two chelating agents, comprising Na2EDTA and Na4EDTA, and at least one stabilizer.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: April 27, 2010
    Assignee: Research Institute of Petroleum Industry (RIPI)
    Inventor: Masih Hosseini Jenab
  • Publication number: 20100099551
    Abstract: A carbon nanohorn (CNH) is oxidized to make an opening in the side of the CNH. A substance to be included, e.g., a metal, is introduced through the opening. The inclusion substance is moved to a tip part of the carbon nanohorn through heat treatment in vacuum or an inert gas. The CNH is further heat treated in an atmosphere containing oxygen in a low concentration to remove the carbon layer in the tip through catalysis of the inclusion substance. This exposes the inclusion substance. If the inclusion substance is a metal which is not moved to a tip part by the heat treatment in vacuum or an inert gas, the carbon part surrounding the fine catalyst particle is specifically burned by a heat treatment in an low oxygen concentration atmosphere, while utilizing the catalysis. Thus, the fine catalyst particle is fixed to the tip part of the CNH.
    Type: Application
    Filed: January 16, 2008
    Publication date: April 22, 2010
    Applicant: NEC CORPORATION
    Inventors: Ryota Yuge, Masako Yodasaka, Sumio Iijima
  • Patent number: 7696122
    Abstract: An electrocatalyst ink composition comprising a liquid vehicle, particles comprising at least one electrocatalyst metal, and at least one copolymer dispersant comprising at least one polyalkylene oxide segment.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: April 13, 2010
    Assignee: Cabot Corporation
    Inventors: Matthew C. Ezenyilimba, Paolina Atanassova, Hanwei Lei, Ross A. Miesem, Ryan Cash Wall
  • Patent number: 7691773
    Abstract: The invention provides and a highly-dispersed supported catalyst that has a reduced average particle size of catalytic metal particles and is also supported by a porous support material. A method of preparing a supported catalyst that can reduce the average particle size of catalytic metal particles supported by a support material includes first mixing a charged support material with a solution containing a polymer electrolyte having a charge opposite to that of the support material to adsorb the polymer electrolyte on the support material. Next, the support material having the polymer electrolyte adsorbed thereon is mixed with a solution containing a catalytic metal precursor ion having a charge opposite to that of the polymer electrolyte to adsorb the catalytic metal precursor ion on the support material having the polymer electrolyte adsorbed on it.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: April 6, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-Hyuk Suh, Chan-Ho Pak, Hae-Kyoung Kim
  • Patent number: 7691771
    Abstract: A process for regenerating a used acidic ionic liquid catalyst comprising the steps of contacting the used ionic liquid catalyst and hydrogen with a supported hydrogenation catalyst comprising a hydrogenation component on a support in a reaction zone under hydrogenation conditions for a time sufficient to increase the activity of the used catalyst is disclosed.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: April 6, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Thomas V. Harris, Saleh Elomari
  • Publication number: 20100081568
    Abstract: Exemplary methods of producing single-walled carbon nanotubes (SWCNTs) are disclosed. A plurality of seed cap molecules having a same diameter and a same chirality are prepared. The plurality of seed cap molecules are attached to a plurality of catalyst particles to form a plurality of catalyst-cap composites. Carbon atoms are provided to the catalyst-cap composites. Carbon nanotubes having the same diameter and the same chirality are grown on the plurality of catalyst-cap composited by exposing the composites to the carbon atoms.
    Type: Application
    Filed: April 13, 2009
    Publication date: April 1, 2010
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventor: Peter V. Bedworth
  • Publication number: 20100081563
    Abstract: The present invention pertains to the addition of a carboxylic acid, preferably formic acid or acetic acid, to a washcoat and/or overcoat slurry to improve the properties of the slurry, including adhesion of the slurry to a substrate. The present invention provides for the reduction in oxide solid loss, increase in oxide solid pickup, and a more efficient method of producing washcoat and/or overcoat slurries.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 1, 2010
    Inventors: Andrew Edgar-Beltran, Stephen J. Golden, Mark Jarand, Chi Le
  • Publication number: 20100075835
    Abstract: A nanocarbon aggregate including a graphite aggregate including a graphene sheet having a petal shape and a nanohorn. The petal-shaped graphite aggregate achieves a reduction in the particulate size and a higher dispersibility by allowing the edge of the petal shape to locally absorb a metal, a metal complex and a metal oxide. The nanocarbon aggregate is used for a catalyst support.
    Type: Application
    Filed: January 29, 2008
    Publication date: March 25, 2010
    Applicant: NEC CORPORATION
    Inventors: Ryota Yuge, Masako Yudasaka, Sumio Iijima
  • Publication number: 20100075836
    Abstract: A photocatalyst formed using a sol-gel process provides high photoactivity, increased photocatalyst lifetime, and improved resistance to performance degradation caused by siloxane-based contaminants. The photocatalyst is formed by a method including the steps of photocatalyst template creation, template conditioning, template refinement, and coating application.
    Type: Application
    Filed: November 30, 2009
    Publication date: March 25, 2010
    Applicant: CARRIER CORPORATION
    Inventors: Treese Hugener-Campbell, Thomas Henry Vanderspurt, Wayde R. Schmidt, Steven M. Zhitnik
  • Patent number: 7683004
    Abstract: This invention relates to an organotin-based catalyst system for polyurethane synthesis that is useful in coatings applications. The catalyst has low activity in the absence of oxygen. When a coating mixture comprising the catalyst is sprayed and/or applied to a substrate as a thin film in air, the catalyst is activated. For solvent-based refinish systems comprising hydroxyl and isocyanate species at high solids levels, the catalyst system therefore provides extended viscosity stability, i.e., pot life.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: March 23, 2010
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Jerald Feldman, Stephan J. McLain
  • Patent number: 7683191
    Abstract: The invention relates to a method for producing chiral organic compounds by asymmetric catalysis, using ionic catalysts comprising a chiral catalyst anion. The claimed method is suitable for reactions which are carried out over cationic intermediate stages, such as iminium ions or acyl pyridinium ions. The invention enables the production of chiral compounds with high ee values, that until now could only be obtained by means of costly purification methods.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: March 23, 2010
    Assignee: Studiangesellschaft Kohle mbH
    Inventors: Benjamin List, Sonja Mayer, Martin Nolwenn, Wang Xingwang
  • Patent number: 7678878
    Abstract: Disclosed is a method for the preparation of a polyester, which method comprises in a first step, reacting a dicarboxylic acid or a C1-C4 dicarboxylic diester with a diol at a suitable temperature and pressure to effect esterification or transesterification to prepare a precondensate and in a second step, reacting the precondensate to effect polycondensation at a suitable temperature and pressure to prepare a high molecular weight polyester, where a metal phosphonic acid complex compound of the formula is employed in the first step, in the second step or in both the first and second steps as a reaction catalyst.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: March 16, 2010
    Assignee: Ciba Specialty Chemicals Corporation
    Inventors: Stephen M. Andrews, Jianzhao Wang, Thomas Thompson, Paragkumar N. Thanki, Deepak M. Rane, Suhas D. Sahasrabudhe, Preetam P. Ghogale, Paul A. Odorisio, Si Wu
  • Patent number: 7678727
    Abstract: A process for regenerating a used acidic ionic liquid catalyst comprising the steps of contacting the used ionic liquid catalyst and hydrogen with a homogeneous hydrogenation catalyst in a reaction zone under hydrogenation conditions for a time sufficient to increase the activity of the used catalyst is disclosed.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: March 16, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Thomas V. Harris, Saleh Elomari
  • Publication number: 20100063333
    Abstract: Catalytic hydrochlorination system comprising at least one amine hydrochloride and at least one group VIII metal compound chosen from the group composed of mixtures of a platinum (IV) compound with tin (II) chloride, mixtures of a platinum (II) compound with triphenylphosphine oxide and mixtures of a palladium (II) compound with triphenylphosphine. This catalytic system is suitable for preparing vinyl chloride by reaction of acetylene with hydrogen chloride.
    Type: Application
    Filed: December 20, 2007
    Publication date: March 11, 2010
    Applicant: SOLVAY (SOCIETE ANONYME)
    Inventors: Andre Petitjean, Michel Strebelle, Andre Devos
  • Patent number: 7674741
    Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2?CHR in which R is hydrogen or a hydrocarbon radical with 1-12 carbon atoms, comprising Mg, Ti, halogen and an electron donor selected from y-butyrolactone derivatives of a particular formula. Said catalyst components, when used in the polymerization of olefins and in particular of propylene, are capable to give polymers in high yields and with high isotactic index expressed in terms of high xylene insolubility.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: March 9, 2010
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Yuri Gulevich, Giulio Balbontin, Remco Kelder, Giampiero Morini, Jan Dirk Van Loon
  • Patent number: 7674740
    Abstract: A process for regenerating a used acidic ionic liquid catalyst comprising contacting the used ionic liquid catalyst with an isoparaffin-containing stream and Broensted acid in a reaction zone under alkylation conditions for a time sufficient to increase the activity of the ionic liquid catalyst is disclosed.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: March 9, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Thomas V. Harris, Saleh Elomari
  • Publication number: 20100056363
    Abstract: Disclosed is a method of processing a polycrystalline nanoparticle. The method includes exposing a polycrystalline nanoparticle that includes at least two metal oxide crystallites bonded to each other to a chemical composition that includes a catalyst in order to at least partially separate the at least two metal oxide crystallites of the polycrystalline nanoparticle at an interface thereof.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 4, 2010
    Inventor: Kwangyeol Lee
  • Publication number: 20100056362
    Abstract: A substrate, such as a glass, glass ceramic, ceramic or metal substrate, is provided with a thermocatalytically active coating on at least a part of the substrate surface. The thermocatalytic coating contains an inorganic lithium salt or organic lithium-containing compound in an amount that is equivalent to not less than 2 wt. % of lithium ions, based on total coating weight. The thermocatalytic coating has a glass, glass solder or sol-gel matrix in which the lithium salt or organic lithium-containing compound is introduced. Optional barrier and IR-reflecting layers are arranged between the substrate surface and the thermocatalytically active coating.
    Type: Application
    Filed: August 21, 2009
    Publication date: March 4, 2010
    Inventors: Inka Henze, Hrabanus Hack, Gerhard Weber, Hans-Joachim Schmitt, Wolfgang Schmidbauer, Torsten Gabelmann