Zeolite Or Clay, Including Gallium Analogs Patents (Class 502/60)
  • Patent number: 9669397
    Abstract: A metal-doped or metal-exchanged zeolite is disclosed, wherein the doping metal is present in the zeolite in the form of individual atoms i.e. as monomeric and/or dimeric species. Further, a process for the preparation of such a metal-doped or metal-exchanged zeolite is disclosed. The metal-doped zeolites are useful, in particular, as catalysts for the reduction of nitrogen oxides.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: June 6, 2017
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Roderik Althoff, Arno Tissler, Helge Toufar
  • Patent number: 9662640
    Abstract: Methods for introducing mesoporosity into zeolite materials that employ an acid pretreatment step are provided. By utilizing a non-acidic chelating agent during the acid treatment step, the zeolite material can be pretreated with a strong acid, often in higher concentrations or over shorter contact times, than had previously been contemplated. The resulting acid-treated mesoporous materials retain desirable properties, including Si/Al, UCS, and total mesopore and micropore volume. The ability to use a stronger acid without damaging the zeolite material results in a less expensive process capable of producing mesoporous zeolite materials suitable for a wide range of uses.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: May 30, 2017
    Assignee: Rive Technology, Inc.
    Inventors: Ernest Senderov, Mohammad Ibrahim Qureshi
  • Patent number: 9580329
    Abstract: Mesoporous X and A zeolites and methods for production thereof are disclosed herein. Such mesoporous zeolites can be prepared by contacting an initial zeolite with an acid in conjunction with a mesopore forming agent. The initial zeolite can have a framework silicon-to-aluminum content in the range of from about 1 to about 2.5. Additionally, such mesoporous zeolites can have a total 20 to 135 ? diameter mesopore volume of at least 0.05 cc/g.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: February 28, 2017
    Assignee: Rive Technology, Inc.
    Inventors: Kunhao Li, Javier Garcia-Martinez, Michael G. Beaver
  • Patent number: 9555391
    Abstract: Provided is a carbon dioxide adsorbent with which large quantities of carbon dioxide can be adsorbed and removed even under conditions having low carbon dioxide concentrations such as when under subatmospheric pressure or when under an environment having a carbon dioxide partial pressure of less than atmospheric pressure, said carbon dioxide adsorbent exhibiting excellent adsorption activity. A carbon dioxide adsorbent including at least a ZSM-5 zeolite including barium (Ba) or strontium (Sr) is characterized in that the ZSM-5 zeolite includes M-O-M bonds (M being Ba or Sr, and O being oxygen). The M-O-M bonds interact strongly with carbon dioxide, and thus carbon dioxide can be adsorbed effectively and in large volumes even under conditions having low carbon dioxide concentrations.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: January 31, 2017
    Assignee: PANASONIC CORPORATION
    Inventors: Akiko Yuasa, Yasushige Kuroda, Atsushi Itadani
  • Patent number: 9517458
    Abstract: There is disclosed a microporous crystalline material having pore opening ranging from 3 to 5 Angstroms, where the material comprises a first metal chosen from alkali earth group, rare earth group, alkali group, or mixtures thereof, and a second metal chosen from iron, copper or mixtures thereof; and has a molar silica to alumina ratio (SAR) from 3 to 10. The microporous crystalline material disclosed herein may comprise a crystal structure having building units of double-6-rings (d6r) and pore opening of 8-rings as exemplified with framework types defined by the Structure Commission of the International Zeolite Association having structural codes of CHA, LEV, AEI, AFT, AFX, EAB, ERI, KFI, SAT, TSC, and SAV. There is also disclosed a method of selective catalytic reduction of nitrogen oxides in exhaust gas, comprising at least partially contacting the exhaust gases with an article comprising the disclosed microporous crystalline material.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 13, 2016
    Assignee: PQ Corporation
    Inventors: Hong-Xin Li, Bjorn Moden, William E. Cormier
  • Patent number: 9512365
    Abstract: The present invention describes a Fischer-Tropsch process for synthesis of hydrocarbons comprising contacting a charge comprising synthesis gas under Fischer-Tropsch synthesis operating conditions with at least one catalyst containing an active phase comprising at least one metal of group VIIIB selected from cobalt, nickel, ruthenium and iron deposited on an oxides support comprising alumina, silica and phosphorus, said oxides support not containing any spinel phase. The catalyst has an improved hydrothermal and mechanical resistance in a Fischer-Tropsch process while improving its catalytic performances.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: December 6, 2016
    Assignees: ENI S.P.A., IFP ENERGIES NOUVELLES
    Inventors: Dominique Decottignies, Fabrice Diehl, Vincent Lecocq, Marie Velly
  • Patent number: 9480969
    Abstract: A new adsorbent CO2-ONE for removal of acidic gases such as carbon dioxide and hydrogen sulfide was developed from hydrothermal reaction of natural limestone with natural kaolin via sodium hydroxide. Several synthesis conditions were employed such as initial concentration of NaOH, weight ratio of limestone to kaolin, reaction temperature and pressure. The produced Ca—Na—SiO2-Al2O3 samples were characterized using XRD and EDS and showed that a mixture of Gehlenite Ca2Al(Al1.22Si0.78O6.78)OH0.22 and Stilbite Na5.76Ca4.96(Al15.68Si56.32O144) with percentage of 43 and 57 was successfully produced, respectively. Another produced sample showed the presence of Gehlenite Ca2Al(Al1.22Si0.78O6.78)OH0.22, Stilbite Na5.76Ca4.96(Al15.68Si56.32O144) and Lawsonite CaAl2Si2O7OH2(H2O) with percentage of 4.1 and 7.4 and 88, respectively.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: November 1, 2016
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Reyad Awwad Shawabkeh, Naim Moh'd Faqir, Qusay Yousef Bkour
  • Patent number: 9382169
    Abstract: A lower olefin producing catalyst which has high olefin production efficiency and maintains its activity for a long period of time when lower olefins are produced from an oxygen-containing compound, which is a solid catalyst used in producing lower olefins from an oxygen-containing compound, includes a solid-state catalyst component containing an MFI-type zeolite, in which, at a position where the shortest distance to the outer surface is maximum among all positions inside a structure of the solid catalyst, the thickness defined as a distance twice the shortest distance from the point to the outer surface is in a range of from 0.1 to 2.0 mm, and a method for producing lower olefins.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: July 5, 2016
    Assignees: JGC CORPORATION, MITSUBISHI CHEMICAL CORPORATION
    Inventors: Atsushi Okita, Kazunori Honda, Chizu Inaki, Jumpei Takahashi, Masashi Yamaguchi, Yumiko Yoshikawa, Shinji Iwade, Tohru Setoyama
  • Patent number: 9382189
    Abstract: The invention relates to a method for the synthesis of a branched unsaturated fatty compound, said method comprising the metathesis, in the presence of a metathesis catalyst, of a linear unsaturated fatty compound and a branched olefin. The branched unsaturated fatty compound is used in particular for the production of at least one of the following products: dielectric fluids, specialty surfactants, emulsifiers, frictions agents, antistatic additives, antifogging additives, mould release agents, pigment dispersants, high-performance lubricants, waxes and wax emulsifiers, polymer conversion additives, PVC stabilizing agents, inks, resins, paints, varnishes, solvents, lipsticks, creams for the skin, deodorants, particularly stick deodorants, hair dyes, shampoos and other liquid soaps, shaving foam, laundry detergents, cleaning agents, fabric softeners, and mixtures of same.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: July 5, 2016
    Assignee: Arkema France
    Inventors: Jean-Luc Dubois, Jean-Luc Couturier
  • Patent number: 9358522
    Abstract: A composite medium and method thereof for simultaneous removal of cationic and anionic heavy metals are provided to remove cationic and anionic heavy metals effectively. The method includes dissolving sodium alginate powder into deionized water to provide an alginate solution, and introducing amine group-supported mesoporous iron oxide and synthetic zeolite into the alginate solution and kneading the resultant mixture. The method also includes adding the alginate solution mixed with the mesoporous iron oxide and synthetic zeolite dropwise to an aqueous calcium chloride solution so that each drop of alginate solution is cured to form a bead-like composite medium, and vacuum drying the bead-like composite medium to remove water present in the composite medium, while the mesoporous iron oxide and synthetic zeolite are moved from the inside of the composite medium toward the surface of the composite medium.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: June 7, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Seok Won Hong, Sang Hyup Lee, Jae Woo Choi, Seung Gun Chung
  • Patent number: 9339802
    Abstract: A catalyst for converting methane to aromatic hydrocarbons is described herein. The catalyst comprises an active metal or a compound thereof, zinc or a compound thereof and an inorganic oxide support wherein the active metal is added to the support as a metal oxalate. A method of making the catalyst and a method of using the catalyst are also described.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: May 17, 2016
    Assignee: Shell Oil Company
    Inventors: Armin Lange De Oliveira, Larry Lanier Marshall, Peter Tanev Tanev
  • Patent number: 9296619
    Abstract: A process for the manufacture of large crystal size synthetic porous crystalline molecular sieve requires an aqueous reaction mixture that is organic structure directing agent-free, has a H2O/MOH molar ratio (M is an alkali metal) of 75 or less, a source of X2O3 (X is a trivalent element) and a source of YO2 (Y is a tetravalent element). The source of X2O3 and YO2 is an amorphous material containing both X2O3 and YO2 and having a YO2/X2O3 molar ratio of 15 to 40. The resultant highly crystalline novel materials have crystals with at least one dimension greater than 1 ?m, such as greater than 3 ?m.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: March 29, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw Jerzy Roth, Carrie L. Kennedy, Thomas Yorke
  • Patent number: 9242237
    Abstract: The invention relates to an adsorbent zeolite-based material comprising for 100 mass %: an amount different from zero of a zeolite selected from X zeolites or LSX zeolites; the balance up to 100 mass % consisting of an amount different from zero of a cation-exchanged zeolite, said cation-exchanged zeolite being selected from cation-exchanged X zeolites and cation-exchanged LSX zeolites.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: January 26, 2016
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventor: Christian Monereau
  • Patent number: 9156748
    Abstract: The invention relates to a process for conversion of a paraffinic feedstock that has a number of carbon atoms of between 9 and 25, whereby said paraffinic feedstock is produced starting from renewable resources, employing a catalyst that comprises at least one hydrogenating-dehydrogenating metal that is selected from the group that is formed by the metals of group VIB and group VIII of the periodic table, taken by themselves or in a mixture, and a substrate that comprises at least one IZM-2 zeolite and at least one binder, with said process being carried out at a temperature of between 150 and 500° C., at a pressure of between 0.1 MPa and 15 MPa, at an hourly volumetric flow rate of between 0.1 and 10 h?1, and in the presence of a total quantity of hydrogen mixed with the feedstock such that the hydrogen/feedstock ratio is between 70 and 2,000 Nm3/m3 of feedstock.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: October 13, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Christophe Bouchy, Emmanuelle Guillon, Filipe Manuel Marques Mota
  • Patent number: 9138685
    Abstract: An SCR catalyst including iron-containing ?-type zeolite has high NOx reducing performance at a high temperature in the presence of a reducing agent, but does not have the sufficient reducing performance at a low temperature (not higher than 200° C.). A high NOx reduction rate of at least 45% at a temperature not higher than 200° C. is achieved by an SCR catalyst containing iron-containing ?-type zeolite having a full width at half maximum (FWHM) on the X-ray crystal diffraction (302) plane of from 0.28 to 0.34° and a weight loss on heating to 900° C. after hydration treatment of from 15.0 to 18.0% by weight. The SCR catalyst can be manufactured by calcining iron-containing ?-type zeolite at 700 to 850° C. under an atmosphere of a water vapor concentration of not more than 5% by volume.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: September 22, 2015
    Assignee: TOSOH CORPORATION
    Inventor: Keisuke Tokunaga
  • Patent number: 9126830
    Abstract: The present invention discloses composite inorganic membranes, methods for making the same, and methods of separating gases, vapors, and liquids using the same. The composite zeolite membrane is prepared by TS-1 zeolite membrane synthesis, and subsequent palladium doping. In the composite zeolite membrane synthesis, two different methods can be employed, including in-situ crystallization of one or more layers of zeolite crystals an a porous membrane substrate, and a second growth method by in-situ crystallization of a continuous second layer of zeolite crystals on a seed layer of MFI zeolite crystals supported on a porous membrane substrate. The membranes in the form of disks, tubes, or hollow fibers have high gas selectivity over other small gases, very good impurity resistance, and excellent thermal and chemical stability over polymer membranes and other inorganic membranes for gas, vapor, and liquid, separations.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: September 8, 2015
    Assignee: BETTERGY CORP.
    Inventors: Zhong Tang, Lin-Feng Li, Hongmin Jiang
  • Patent number: 9067193
    Abstract: An exhaust gas purifying catalyst, which is obtained by having at least one platinum group metal selected from the group consisting of Pt, Rh, and Pd supported on a calcined aluminum phosphate body. The calcined aluminum phosphate body has a tridymite crystal structure and the ratio of the cumulative pore distribution of pores having a size of 10 nm or less to the cumulative pore distribution of pores having a size of 300 nm or less is 20% or more in the calcined aluminum phosphate body. A method for producing an exhaust gas purifying catalyst including calcining aluminum phosphate, which has been obtained from an aqueous solution that is controlled to have a pH within a predetermined range, at a predetermined temperature for a predetermined period of time, thereby obtaining a calcined aluminum phosphate body; and having at least one platinum group metal selected from the group consisting of Pt, Rh, and Pd supported on the calcined aluminum phosphate body.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: June 30, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Satoshi Nagao, Rui Imoto, Daichi Sato, Yusaku Inatomi
  • Patent number: 9061914
    Abstract: Disclosed herein are a novel catalyst for recovering good-quality light oil from materials such as woody hydrocarbons, woody plastics and waste oils, and a preparation method thereof. The catalyst has a three-dimensional network structure and a cubic crystal structure sharing oxygen atoms, and has a Si/Al ratio greater than 1, and includes an alkali metal, an alkaline earth metal and a water molecule of crystallization. The catalyst enables good-quality light oil to be recovered from waste plastics, woody hydrocarbons and waste oils and is highly advantageous in terms of environmental problems.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: June 23, 2015
    Assignee: EPEL CO., LTD
    Inventors: Moon Chan Kim, Byeong Woo Kim
  • Publication number: 20150136316
    Abstract: A method of forming a structured adsorbent sheet is provided. The method includes, combining a nano-adsorbent powder and a binder material to form an adsorbent material, and sandwiching a porous electrical heating substrate between two layers of adsorbent material. The nano-adsorbent powder may be a nano-particle adsorbent. The nano-adsorbent powder may be selected from the group consisting of crystal zeolite, activated carbon, activated alumina, silica gel, and metal organic framework (MOF).
    Type: Application
    Filed: November 20, 2013
    Publication date: May 21, 2015
    Applicant: L'Air Liquide Societe Anonyme Pour I'Etude et I'Exploitation des Procedes Georges Claude
    Inventors: Yudong Chen, Christian Monereau, Edgar S. Sanders, JR., Pascal Tessier
  • Patent number: 9034274
    Abstract: The present invention relates to a vehicular air cleaner. A DOR (Direct Ozone Reduction) system for suppressing deterioration of a purifying function of an ozone purifying material is provided. Active oxygen is produced by an ozone purifying function of activated carbon. The probability that the active oxygen contacts with a fin of a radiator on a rear surface side is higher than that on a front surface side of the radiator. Accordingly, the activated carbon on the rear surface side of the radiator is easily oxidized as compared with the activated carbon on the front surface side. Therefore, in the fin, a coating amount of the activated carbon on the front surface side of the radiator is adjusted to be larger than a coating amount of the activated carbon on the rear surface side. Thus, the probability that the active oxygen contacts with the activated carbon can be reduced.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: May 19, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshihisa Shinoda, Kazuhiro Sugimoto, Hiroaki Katsumata
  • Publication number: 20150133287
    Abstract: An exhaust gas reduction catalyst that exhibits high nitrogen oxide reduction performance, and a simple and efficient method for producing the catalyst, in which the amount of the waste liquid is reduced, further, an object of the invention is to provide a zeolite-containing catalyst for reducing nitrogen oxides, which does not use an expensive noble metal or the like and which has high nitrogen oxide reduction performance.
    Type: Application
    Filed: January 21, 2015
    Publication date: May 14, 2015
    Applicant: Mitsubishi Plastics, Inc.
    Inventors: Takeshi MATSUO, Takahiko Takewaki, Daisuke Nishioka, Kazunori Oshima, Haijun Chen, Hiroyuki Kakiuchi
  • Patent number: 9029283
    Abstract: A catalyst composition which comprises: a) a carrier which comprises at least 30 wt % of a binder selected from silica, zirconia and titania; at least 20 wt % of a pentasil zeolite, having a bulk silica to alumina ratio in the range of from 20 to 150 and being in its H+ form; and less than 10 wt % of other components, all percentages being on the basis of total carrier; b) platinum in an amount in the range of from 0.001 to 0.1 wt %, on the basis of total catalyst; and c) tin in an amount in the range of from 0.01 to 0.5 wt %, on the basis of total catalyst; its preparation and use; are provided.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: May 12, 2015
    Assignee: Shell Oil Company
    Inventors: Johanna Jacoba Berg-Slot, László Domokos, Ingrid Maria Van Vegchel
  • Publication number: 20150122124
    Abstract: A carbon dioxide adsorbent may include a chabazite zeolite containing an alkali metal ion or alkaline earth metal ion. The chabazite zeolite may have a Si/Al mole ratio of about 1 to about 9.9 and mesopores. The carbon dioxide adsorbent may be included in a carbon dioxide capture module. The carbon dioxide adsorbent may also be used in a method of separating carbon dioxide.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 7, 2015
    Applicant: INHA-INDUSTRY PARTNERSHIP INSTITUTE
    Inventors: Hyuk Jae KWON, Soon Chul KWON, Hyun Chul LEE, Wha Seung AHN, Seung Hwan HONG
  • Publication number: 20150126357
    Abstract: The present invention is related to a nano-structured composite material and process of making for air detoxing and deodoring in enclosed spaces to prevent harmful chemicals in the air from damaging human health. The nano-structured composite material consists of nano-porous carbon, zeolites with sub nano-size pores and at least 1 other component chosen from nano-porous rare earth oxides and nano-sized catalysts, and is made into highly efficient configurations with high geometric surface and low resistance air flow channels. The synergetic action of those nano-structured components can effectively remove toxic chemicals including, but not limited to formaldehyde, benzene, toluene, xylene, propene, butadiene, acetone, carbon monoxide, nitric oxide, nitrogen dioxide, sulfur dioxide, hydrogen sulfide, ammonia, alcohols, chlorine, mercaptans, as well as bad odors, such cigarette smoke and bathroom/toilet smells.
    Type: Application
    Filed: October 27, 2014
    Publication date: May 7, 2015
    Inventors: Xiwang Qi, Mei Jiang
  • Publication number: 20150118115
    Abstract: A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
    Type: Application
    Filed: December 31, 2014
    Publication date: April 30, 2015
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: HAI-YING CHEN, JOSEPH MICHAEL FEDEYKO, RODNEY KOK SHIN FOO, PAUL JOSEPH ANDERSEN, JILLIAN ELAINE COLLIER, JOHN LEONELLO CASCI, RAJ RAO RAJARAM
  • Patent number: 9018120
    Abstract: The present invention provides a process for the preparation of metal-doped zeolites comprising the steps of i) provision of a dry mixture of a) a zeolite, b) a compound of a catalytically active metal, ii) intimate grinding of the mixture, iii) heating of the mixture in a reactor, iv) cooling to room temperature and obtaining the metal-doped zeolite, wherein the internal pressure in the reactor during the heating is kept in a pressure range from 0 to ?200 millibar. The invention further relates to the use of a metal-doped zeolite prepared by means of the process according to the invention for the conversion of NOx and N2O into harmless products.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: April 28, 2015
    Assignee: Süd-Chemie IP GmbH & Co KG
    Inventors: Soovi Hurgobin, Arno Tissler, Ashveer Raghunandan, Attila Jambor, Rainer Rakoczy, Roderik Althoff
  • Patent number: 9017626
    Abstract: Described are SCR catalyst systems comprising a first SCR catalyst composition and a second SCR catalyst composition arranged in the system, the first SCR catalyst composition promoting higher N2 formation and lower N2O formation than the second SCR catalyst composition, and the second SCR catalyst composition having a different composition than the first SCR catalyst composition, the second SCR catalyst composition promoting lower N2 formation and higher N2O formation than the first SCR catalyst composition. The SCR catalyst systems are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 28, 2015
    Assignee: BASF Corporation
    Inventors: Weiyong Tang, Jaya L. Mohanan
  • Publication number: 20150112110
    Abstract: Disclosed herein is an activated EU-2 zeolite, including: pores having a diameter of 30 to 40 ? while maintaining the crystal structure of the EU-2 zeolite; and pores having a diameter of 40 to 200 ?, wherein the volume of the pores having a diameter of 30 to 40 ? is 0.01 to 0.06 cc/g, and the volume of the pores having a diameter of 40 to 200 ? is 0.07 to 0.4 cc/g.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 23, 2015
    Inventors: Yoon Kyung LEE, Seung Woo LEE, Jae Suk CHOI, Tae Jin Kim, Do Woan Kim, Seon Ju Lim
  • Patent number: 9011807
    Abstract: Described is a selective catalytic reduction catalyst comprising an iron-promoted 8-ring small pore molecular sieve. Systems and methods for using these iron-promoted 8-ring small molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are also described.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: April 21, 2015
    Assignees: BASF Corporation, N. E. Chemcat Corporation, Heesung Catalysts Corporation
    Inventors: Jaya L. Mohanan, Patrick Burk, Michael J. Breen, Barbara Slawski, Makoto Nagata, Yasuyuki Banno, Eunseok Kim
  • Publication number: 20150101483
    Abstract: An adsorbent media has a pore volume/media volume of at least about 0.12 cc pore volume/cc media, a specific heat capacity of less than about 2.9 J/cc pore volume, and a pressure drop of less than about 4.0 inH2O/ft media at a superficial air velocity of about 500 ft/min, wherein the adsorbent media is in a concentrator system. An extruded honeycomb adsorbent media has a cell density of more than about 200 cells per square inch (cspi), % open area of at least about 50%, an activated carbon content of at least about 50% by weight based on total weight, and a pressure drop of less than about 4.0 inH2O/ft media at a superficial fluid velocity of about 500 ft/min.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Inventors: John D. PERRY, Paula S. WALMET
  • Publication number: 20150101961
    Abstract: This application discloses a mesoporous catalyst formed by combining a matrix precursor treated with a polyphosphate, and a metallic oxide treated with a cationic electrolyte. The combined treatment with the polyphosphate and cationic polyelectrolyte yields unexpected improvements in attrition resistance, while maintaining high overall pore volume, even as the ratio of meso pore volume to macro pore volume of the formed FCC catalyst increases.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 16, 2015
    Inventors: Michael Sigman, Charles Keweshan, Mitchell Willis
  • Patent number: 9005560
    Abstract: A method to produce a NOx trap composition, and its use in a NOx trap and in an exhaust system for internal combustion engines, is disclosed. The NOx trap composition is produced by heating an iron-containing zeolite in the presence of an inert gas and an organic compound to produce a reductively calcined iron/zeolite. A palladium compound is then added to the reductively calcined iron/zeolite, and the resulting Pd—Fe/zeolite is then calcined at 400 to 600° C. in the presence of an oxygen-containing gas to produce the NOx trap composition. The NOx trap composition shows low temperature NO capacity below 200° C., as well as an additional NO storage temperature window in the 200 to 250° C. range.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: April 14, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventor: Fiona-Mairead McKenna
  • Publication number: 20150093294
    Abstract: In various implementations, a filter may include a substrate and manganese oxide coupled to the substrate. The filter may at least remove particles and/or chemicals from a gaseous stream. In some implementations, the filter may be capable of degrading at least one of formaldehyde or ozone present in a gaseous stream.
    Type: Application
    Filed: September 26, 2014
    Publication date: April 2, 2015
    Inventors: Sanjeev Hingorani, Henry Greist
  • Patent number: 8993468
    Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst is a medium pore germanium zeolite, a germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO). At least one metal selected from Group 10 is deposited on the medium pore zeolite and, optionally on the germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO). The catalyst is prepared by synthesizing a medium pore zeolite, an aluminophosphate (AlPO) or a silicoaluminophosphate (SAPO) with germanium incorporated into the framework and calcining the medium pore germanium zeolite, germanium aluminophosphate (AlPO) or germanium silicoaluminophosphate (SAPO). At least one metal may be deposited on the germanium zeolite, germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO).
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: March 31, 2015
    Assignee: Saudi Basic Industries Corporation
    Inventors: Scott A. Stevenson, Alla K. Khanmamedova, Dustin B. Farmer, Scott F. Mitchell, Jim Vartuli
  • Patent number: 8993469
    Abstract: The present invention provides a zeolite-containing catalyst having excellent shape, fluidity and mechanical strength as a catalyst for a fluidized bed reaction. The present invention provides a zeolite-containing catalyst which is a particulate catalyst containing zeolite and silica, wherein the catalyst has an average particle diameter of 20 to 300 ?m and the ratio of the void area in the cross-section of the particle is 30% or less relative to the cross-section area of the particle.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: March 31, 2015
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Kenji Akagishi, Hiroyuki Yano, Ryusuke Miyazaki
  • Publication number: 20150086786
    Abstract: The present invention provides a beta zeolite that is useful as a catalyst, adsorbent agent, or the like, and that is both microporous and mesoporous. The beta zeolite is characterized by (i) the SiO2/Al2O3 ratio being 8-30, and the SiO2/ZnO ratio being 8-1000, (ii) the micropore surface area being 300-800 m2/g, (iii) the micropore volume being 0.1-0.3 cm3/g, and (iv) having mesopores having, in the state as synthesized, a diameter of 2-6 nm and a volume of 0.001-0.3 cm3/g. The beta zeolite is favorably produced by means of adding and reacting a zinc silicate beta zeolite as a seed crystal with a reaction mixture containing a silica source, an alumina source, an alkali source, and water.
    Type: Application
    Filed: April 9, 2013
    Publication date: March 26, 2015
    Applicants: UniZeo Co., Ltd., THE UNIVERSITY OF TOKYO
    Inventors: Keiji Itabashi, Tatsuya Okubo, Kenta Iyoki
  • Patent number: 8987160
    Abstract: Cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2) supported Fe and Co catalysts are utilized in a method for producing hydrocarbons by a Fischer-Tropsch mechanism. The hydrocarbon producing method includes providing a catalyst of a manganese oxide-based octahedral molecular sieve nanofibers with an active catalyst component of at least one of iron, cobalt, nickel, copper, manganese, vanadium, zinc, and mixtures thereof, and further containing an alkali metal. The formation of iron carbides and cobalt carbides by exposing the catalyst to conditions sufficient to form those carbides is also taught. After the catalyst has been appropriately treated, a carbon source and a hydrogen source are provided and contacted with the catalyst to thereby form a hydrocarbon containing product. The catalyst have high catalytic activity and selectivity (75%) for C2+ hydrocarbons in both CO hydrogenation and CO2 hydrogenation.
    Type: Grant
    Filed: March 26, 2011
    Date of Patent: March 24, 2015
    Assignees: Honda Motor Co., Ltd., The University of Connecticut
    Inventors: Steven L. Suib, Boxun Hu, Eric Rolland Kreidler, Christopher James Brooks
  • Patent number: 8987161
    Abstract: A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al+3, wherein the catalyst decreases NOx emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu—Fe-ZSM5, Cu—La-ZSM-5, Fe—Cu—La-ZSM5, Cu—Sc-ZSM-5, and Cu—In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: March 24, 2015
    Assignee: UT-Battelle, LLC
    Inventors: Chaitanya K. Narula, Xiaofan Yang
  • Patent number: 8987162
    Abstract: A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al3+. The catalyst composition decreases NOx emissions in diesel exhaust and is suitable for operation in a catalytic converter.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: March 24, 2015
    Assignee: UT-Battelle, LLC
    Inventors: Chaitanya K. Narula, Xiaofan Yang
  • Publication number: 20150071841
    Abstract: In order to improve the lifetime of an SCR catalyst in the waste gas purification by means of the SCR process of waste gas of a biomass combustion plant, the catalyst comprises a sacrificial component selected from a zeolite and/or a clay mineral, in particular halloysite. During operation, catalyst poisons contained in the waste gas, in particular alkali metals, are absorbed by the sacrificial component so that catalytically active centres of the catalyst are not blocked by the catalyst poisons.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 12, 2015
    Inventor: Maria Theresia Brandmair
  • Publication number: 20150065334
    Abstract: A honeycomb catalyst includes a honeycomb unit. The honeycomb unit has a plurality of through holes that are arranged in parallel in a longitudinal direction and partitions that are provided between the plurality of through holes. The honeycomb unit includes a zeolite, inorganic particles, and an inorganic binder. The zeolite includes a CHA-structured aluminosilicate having a Si/Al ratio of about 15 to about 50. The inorganic particles includes an oxide that has a positive coefficient of thermal expansion. A volume ratio of the zeolite to the inorganic particles is about 50:about 50 to about 90:about 10.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 5, 2015
    Applicant: IBIDEN CO., LTD.
    Inventors: Masaya SATO, Takehiro UMEMOTO, Naoki ONAYA
  • Publication number: 20150064074
    Abstract: A catalyst composition is provided wherein the composition includes a zeolite having a non-phosphorous CHA crystal structure and having a mean crystalline size of about 1 to about 5 microns; and at least one non-aluminum base metal present in an amount sufficient to achieve a NOx conversion of at least about 65% at a temperature of at least 450° C.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Todd Howard BALLINGER, Philip Gerald BLAKEMAN, Guy Richard CHANDLER, Hai-Ying CHEN, Julian Peter COX, Joseph Michael FEDEYKO, Alexander Nicholas Michael GREEN, Paul Richard PHILLIPS, Stuart David REID, Erich Conlan WEIGERT, James Alexander WYLIE
  • Publication number: 20150065337
    Abstract: A honeycomb catalyst includes a honeycomb unit. The honeycomb unit has a plurality of through holes that are arranged in parallel in a longitudinal direction and partitions that are provided between the plurality of through holes. The partitions have pores having an average pore size of about 0.05 to about 0.2 ?m. The honeycomb unit includes a zeolite and an inorganic binder. The zeolite includes a CHA-structured aluminosilicate having a Si/Al ratio of about 15 to about 50.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 5, 2015
    Applicant: IBIDEN CO., LTD.
    Inventors: Masaya SATO, Takehiro UMEMOTO, Naoki ONAYA
  • Publication number: 20150064102
    Abstract: A hydrogen oxidation catalyst is provided, comprising a zeolite that contains at least one catalytically active noble metal or a compound thereof, wherein said zeolite is a hydrophobic zeolite. A use of the catalyst and a method for hydrogen recombination in nuclear power plants, reprocessing plants or fuel element repositories is also specified.
    Type: Application
    Filed: April 2, 2013
    Publication date: March 5, 2015
    Applicant: Clariant Produkte (Deutschland) GmbH
    Inventors: Patrick Mueller, Arno Tissler, Frank Klose, RoderikPeter Althoff, Olaf Buettner
  • Patent number: 8969233
    Abstract: The present invention describes a hydrocracking and/or hydrotreatment process using a catalyst comprising an active phase containing at least one hydrogenating/dehydrogenating component selected from the group VIB elements and the non-precious elements of group VIII of the periodic table, used alone or in a mixture, and a support comprising at least one dealuminated zeolite Y having an overall initial atomic ratio of silicon to aluminum between 2.5 and 20, an initial weight fraction of extra-lattice aluminum atoms greater than 10%, relative to the total weight of aluminum present in the zeolite, an initial mesopore volume measured by nitrogen porosimetry greater than 0.07 ml·g?1 and an initial crystal lattice parameter a0 between 24.38 ? and 24.30 ?, said zeolite being modified by a) a stage of basic treatment comprising mixing said dealuminated zeolite Y with a basic aqueous solution, and at least one stage c) of thermal treatment.
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: March 3, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Laurent Simon, Emmanuelle Guillon
  • Patent number: 8969232
    Abstract: This invention is for a catalyst for conversion of hydrocarbons. The catalyst contains a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework. At least one Group 10 metal, such as platinum, is deposited on the zeolite. Examples of the elements in the framework are tin, boron, iron or titanium. The catalyst is prepared by synthesizing a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework; depositing the metal; and calcining after preparation of the zeolite and before or after depositing the metal. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with alkanes having 2 to 12 carbon atoms per molecule and recovering the product.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: March 3, 2015
    Assignee: Saudi Basic Industries Corporation
    Inventors: Scott F. Mitchell, Alla K. Khanmamedova, Scott A. Stevenson, Jim Vartuli
  • Patent number: 8969237
    Abstract: Disclosed are, inter alia, methods of forming coated substrates for use in catalytic converters, as well as washcoat compositions and methods suitable for using in preparation of the coated substrates, and the coated substrates formed thereby. The catalytic material is prepared by a plasma-based method, yielding catalytic material with a lower tendency to migrate on support at high temperatures, and thus less prone to catalyst aging after prolonged use. Also disclosed are catalytic converters using the coated substrates, which have favorable properties as compared to catalytic converters using catalysts deposited on substrates using solution chemistry. Also disclosed are exhaust treatment systems, and vehicles, such as diesel vehicles, particularly light-duty diesel vehicles, using catalytic converters and exhaust treatment systems using the coated substrates.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: March 3, 2015
    Assignee: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger, Jayashir Sarkar
  • Publication number: 20150057475
    Abstract: Processes and bi-functional catalysts are disclosed for hydrotreating bio-oils derived from biomass to produce bio-oils containing fuel range hydrocarbons suitable as feedstocks for production of bio-based fuels.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Huamin Wang, Guo-Shuh J. Lee, Suh-Jane Lee
  • Patent number: 8961914
    Abstract: Described is a selective catalytic reduction catalyst comprising an 8-ring small pore molecular sieve promoted with copper and an alkaline earth component. The catalyst is effective to catalyze the reduction of nitrogen oxides (NOx) in the presence of a reductant. A method for selectively reducing nitrogen oxides is also described.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: February 24, 2015
    Assignees: Basf Corporation, N.E. Chemcat Corporation, Heesung Catalysts Corporation
    Inventors: Jaya L. Mohanan, Patrick Burk, Makato Nagata, Yasuyuki Banno, Eunseok Kim
  • Patent number: 8962508
    Abstract: The present invention provides a process for treating shaped catalyst bodies which has the following steps: a) providing finished shaped catalyst bodies, b) impregnating the finished shaped catalyst bodies with a peptizing auxiliary in an amount of liquid which does not exceed the theoretical water absorption of the shaped catalyst bodies, c) thermal treating the impregnated shaped catalyst bodies at from 50° C. to 250° C. and d) calcinating the thermally treated shaped catalyst bodies at from 250° C. to 600° C. A shaped catalyst body which has increased mechanical strength and can be produced by the process of the invention is also provided. The present invention relates to the use of the shaped catalyst bodies of the invention for preparing amines and also in fixed-bed reactors or fluidized-bed reactors and to a chemical synthesis process in the presence of shaped catalyst bodies according to the present invention.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: February 24, 2015
    Assignee: BASF SE
    Inventors: Thomas Heidemann, Claudia Özkozanoglu