And Additional Al Or Si Containing Component Patents (Class 502/63)
  • Patent number: 6303530
    Abstract: A method for preparing a catalyst having one or more noble metals disposed in a relatively homogeneous distribution on a base which includes an inorganic refractory binder and a zeolite. The method provides for uniformly depositing noble metals on the base after it is formed, without unnecessarily displacing desirable nonframework cations, such as sodium, from the zeolite.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: October 16, 2001
    Assignee: BP Corporation North America Inc.
    Inventors: Michael M. Schwartz, William J. Reagan, Jeffrey T. Miller
  • Patent number: 6303531
    Abstract: Porous composite particles are provided which comprise an aluminum oxide component, e.g., crystalline boehmite, and a swellable clay component, e.g., synthetic hectorite, intimately dispersed within the aluminum oxide component at an amount effective to increase the hydrothermal stability, pore volume, and/or the mesopore pore mode of the composite particles relative to the absence of the swellable clay. Also provided is a method for making the composite particles, agglomerate particles derived therefrom, and a process for hydroprocessing petroleum feedstock using the agglomerates to support a hydroprocessing catalyst.
    Type: Grant
    Filed: January 13, 2000
    Date of Patent: October 16, 2001
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Roger Jean Lussier, Stanislaw Plecha, Charles Cross Wear
  • Patent number: 6300269
    Abstract: Pillared trioctahedral micas and/or vermiculites are prepared. The process includes a conditioning operation for the partial reduction of the layer charge through an accelerated weathering process, and also includes a pillaring operation.
    Type: Grant
    Filed: August 2, 1999
    Date of Patent: October 9, 2001
    Assignee: Universite Catholique De Louvain
    Inventors: Georges Poncelet, Francisco Del Rey
  • Patent number: 6294493
    Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions and high catalytic cracking activity, a method for their preparation and their use as FCC catalysts. More particularly, the new SAPOs have a high silica:alumina ratio and favorable Si atom distribution. The new SAPOs may have a small crystal size and may be synthesized from a single- phase synthesis solution.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: September 25, 2001
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Karl G. Strohmaier, David E. W. Vaughan
  • Patent number: 6294494
    Abstract: A novel loop/slurry olefin polymerization process is provided which produces ultra-high molecular weight ethylene homopolymer.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: September 25, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham
  • Patent number: 6284696
    Abstract: A mesopore molecular sieve having a hydrocarbon group bonded directly to a silicon atom in the metal oxide skeleton constituting the molecular sieve, wherein the content of said hydrocarbon group is from 0.01 to 0.6 mol per mol of the metal oxide. Also disclosed is a process for producing a mesopore molecular sieve having a hydrocarbon atom bonded to a silicon atom in the molecular sieve skeleton, which comprises synthesizing the mesopore molecular sieve, in the presence of a template, from: a silane compound represented by the following formula (1): RnSiX(4−n)  (1) wherein R represents a hydrocarbon group selected from C1-16 hydrocarbon groups and hydrocarbon groups substituted with an N—, O-, S-, P- or halogen-containing group; n represents 1, 2 or 3; and X is selected from C1-6 alkoxy groups, aryloxy groups, a hydroxyl group and halogen atoms and a plurality of X may be the same or different; and a metal oxide and/or a precursor thereof.
    Type: Grant
    Filed: March 23, 1999
    Date of Patent: September 4, 2001
    Assignees: Asahi Kasei Kogyo Kabushiki Kaisha, The Noguchi Institute
    Inventors: Masahiko Koya, Hitoshi Nakajima, Itsuho Aishima
  • Patent number: 6274527
    Abstract: Maghnia or Mostaganem bentonites, are activated by contacting the Maghnia or Mostaganem bentonite with an acid solution of selected concentration and then drying the Maghnia or Mostaganem bentonite to form an activated bentonite catalyst. This activated bentonite catalyst may be used to polymerize a vinyl, acrylic, cyclic ether, aldehyde, lactone or olefin monomer. In a further embodiment, a perflourinated amine or diamine is synthesized by contacting a Maghnia or Mostaganem bentonite with an acid solution of selected concentration, drying the Maghnia or Mostaganem bentonite, and absorbing a secondary amine with the Maghnia or Mostaganem bentonite to form a perflouroamide iodide salt. The perflouramide idodide salt can then be extracted with a polar solvent and neutralized by the use of a basic solution.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: August 14, 2001
    Inventors: Mohammed Belbachir, Abdelhak Bensaoula
  • Publication number: 20010008868
    Abstract: A process is described for the preparation of zeolitic catalysts in the form of microspheres, comprising zeolite and oligomeric silica, characterized by a high mechanical resistance. The process consists in subjecting to rapid drying the suspension, to which tetra-alkylorthosilicate is optionally added, resulting from the synthesis of zeolite by hydrothermal treatment at autogenous pressure of the reagent mixture containing tetra-alkylammoniumhydroxide as templating agent, and subjecting the product resulting from the drying to calcination.
    Type: Application
    Filed: September 24, 1998
    Publication date: July 19, 2001
    Inventors: ANGELA CARATI, GIUSEPPE BELLUSSI, MARIA ANGELA MANTEGAZZA, GUIDO PETRINI
  • Patent number: 6248682
    Abstract: A family of innovative composite zeolite materials and methods for making the same are disclosed. Zeolites 3A and 13X have been incorporated into hybrid polysiloxane polymers to form composite materials which are useful as membranes for separating a variety of gaseous and liquid materials. Thermal curing, thermal drying and UV curing were utilized to initiate polymer crosslinking reactions and bond the polymers to zeolite surfaces. Thin film samples exhibited nitrogen adsorption as high as 126 cc/g and specific surface area of up to 390 m2/g. Infrared characterization spectra and TEM analysis indicated that polymeric matrices bonded to zeolite surfaces. Pore size of the composite membrane films may be tailored for specific separation applications through choice of zeolite and polymer compositions, curing method, and post-synthesis membrane treatments.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: June 19, 2001
    Assignee: Worcester Polytechnic Institute
    Inventors: Robert W. Thompson, Bradd E. Libby, Mary B. Berry, Klaus Rose, Karl-Heinz Haas
  • Patent number: 6235670
    Abstract: The invention concerns a catalyst comprising at least one matrix, at least one dioctahedral 2:1 phyllosilicate which is optionally synthesized in a fluorine-containing medium and optionally bridged, at least one metal selected from elements from group VIB and/or group VIII of the periodic table, boron and/or silicon, optionally phosphorous, optionally at least one group VIIA element, and optionally at least one group VIIB element. The invention also concerns the use of the catalyst for hydrocracking hydrocarbon-containing feeds.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: May 22, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Slavik Kasztelan, Nathalie George-Marchal
  • Patent number: 6235955
    Abstract: A composition, a process for producing the composition, and a hydrocarbon conversion process for converting a hydrocarbon stream such as, for example, gasoline, to olefins and C6 to C8 aromatic hydrocarbons such as toluene and xylenes are disclosed. The composition comprises a silylated catalyst which comprises a zeolite, a clay or silica, and a promoter. The process for producing the composition comprises the steps: (1) combining a zeolite with a clay or silica and a promoter under a condition sufficient to bind the clay to the zeolite to produce a clay-bound zeolite; (2) heating the clay-bound zeolite to produce a modified zeolite; and (3) silylating the modified zeolite with a silylating agent. The hydrocarbon conversion process comprises contacting a hydrocarbon stream with the catalyst composition under a condition sufficient to effect the conversion of a hydrocarbon to an olefin and a C6 to C8 aromatic hydrocarbon.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: May 22, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Jianhua Yao, Charles A. Drake
  • Patent number: 6228789
    Abstract: A hydrocarbon conversion process in which the rate of coke formation is reduced without a significant sacrifice in light olefin and BTX yield by the use of a silylated, stabilized metal promoted zeolite catalyst. Another embodiment includes a novel silylated spinel/zeolite catalyst. Another embodiment includes a process for producing a zinc or gallium promoted zeolite in which the promoter is stabilized by a high temperature water vapor treatment in the presence of a metal oxide such as alumina and thereafter the stabilized catalyst precursor is calcined and silylated.
    Type: Grant
    Filed: April 4, 2000
    Date of Patent: May 8, 2001
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6218590
    Abstract: A novel high stability catalyst composition comprising a mixture of zeolite and zinc spinel that has been treated with a reducing gas under high temperature conditions, a method of making such high stability catalyst, and the use thereof for converting paraffin hydrocarbons to olefins and aromatics.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: April 17, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Jianhua Yao, James B. Kimble, Charles A. Drake
  • Patent number: 6214758
    Abstract: A small pore hydrophilic molecular sieve body and method of making same involves forming a plasticized mixture of hydrophilic molecular sieve powder having a pore size of no greater than about 5.0 angstroms, temporary binder, silicone resin binder emulsion, and polar vehicle, shaping the mixture into a green monolithic body, and drying and heat-treating the green monolithic body to impart strength to the green body and form the product molecular sieve monolith. The body is made up of about 80% to 95% by weight molecular sieve with the balance being silica binder.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: April 10, 2001
    Assignee: Corning Incorporated
    Inventors: Shy-Hsien Wu, Kenneth E. Zaun
  • Patent number: 6207605
    Abstract: A high silica content zeolite-based catalyst for use in a reaction which uses a feedstock containing an aromatic hydrocarbon or which gives a product containing an aromatic hydrocarbon, which catalyst satisfies the following requirements (1), (2), (3) and (4): (1) the zeolite constituting a zeolite-based catalyst has an SiO2/Al2O3 molar ratio of from 20 to 200; (2) the zeolite constituting a zeolite-based catalyst has a primary particle diameter of from 0.3 to 3 &mgr;m; (3) when a zeolite-based catalyst is converted into H type, the H type zeolite-based catalyst has a ratio of the number of surface acid sites to the total number of acid sites is from 0.03 to 0.15; and (4) a zeolite-based catalyst exhibits a pyridine-desorbed amount (B) as measured at a temperature of from 500° C. to 900° C. by a hot desorption method when converted into H type after being subjected to a steam treatment at an H2O partial pressure of 0.8 atm and a temperature of 650° C.
    Type: Grant
    Filed: August 4, 1997
    Date of Patent: March 27, 2001
    Assignee: Sanyo Petrochemical Co., Ltd.
    Inventors: Masatsugu Kawase, Kouji Nomura, Yukito Nagamori, Jiro Kinoshita
  • Patent number: 6200464
    Abstract: An FCC catalyst containing zeolite particles at least 50% of the outer surface of which is coated with a layer of pre-formed inorganic oxide is used in fluidized catalytic cracking of hydrocarbon feeds. The inorganic oxide layer has a thickness in the range of 10 nm to 5 &mgr;m and the ratio between the particle size of the oxide and the mean particle size of the zeolite particles is in the range of 0.001:1 to 0.5:1. The zeolite particles may be coated by contacting uncoated zeolite particles having a mean particle size in the range of 0.1 to 10 &mgr;m with an aqueous medium containing particles of the oxide having a particle size in the range of 10 to 5,000 nm, after which the particles are optionally dried or calcined. The oxide is preferably alumina. The FCC catalysts are less rapidly deactivated by contaminant metals present in heavy feeds and are less susceptible to blocking of the zeolite pores by coke.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: March 13, 2001
    Assignee: Akzo Nobel N.V.
    Inventors: Franciscus Wilhelmus van Houtert, Hendrik Gerard Bruil, Johannes Ebregt, Nicolaas Gerardus Bader
  • Patent number: 6191333
    Abstract: This invention pertains to the use of a catalyst that contains at least one dioctahedral phyllosilicate 2:1, which is preferably synthesized in a fluoride medium in the presence of HF acid and/or another source of fluoride anions, whose reticulate distance is equal to at least 20×10−10 m (2 nm) and which includes pillars that are based on at least one oxide from the elements of groups IVB, VB, VIB, VIII, IB, IIB, IIA, IVA, or any combination of these oxides, and preferably selected from the group composed of SiO2, Al2O3, TiO2, ZrO2, and V2O5, or any combination of the latter and at least one element from group VIII, in a process for isomerization of a feedstock that contains mainly normal paraffins that carry 5 to 10 carbon atoms per molecule.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: February 20, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Jocelyne Brendle, Ronan Le Dred, Jacques Baron, Daniel Saehr
  • Patent number: 6187710
    Abstract: Synthetic clay minerals are made up of elementary three-layer platelets consisting of a central layer of octahedrally oxygen-surrounded metal ions (octahedron layer), which layer is surrounded by two tetrahedrally surrounded, silicon atom-containing layers (tetrahedron layers), a number of such elementary platelets being optionally stacked. The dimensions of the clay platelets vary from 0.01 &mgr;m to 1 &mgr;m, the number of the stacked elementary three-layer platelets varies from on average one platelet to twenty platelets, while in the octahedron layer at most 30 at. % of the metal ions has been replaced by ions of a lower valency and in the tetrahedron layers at most 15 at. % of the silicon ions has been replaced by ions of a lower valency, such a replacement having taken place in at least one of these layers and these layers having a deficiency of positive charge because of the replacement.
    Type: Grant
    Filed: November 10, 1997
    Date of Patent: February 13, 2001
    Inventors: Roland Jacobus Martinus Josephus Vogels, John Wilhelm Geus
  • Patent number: 6184167
    Abstract: Disclosed herein are thermally stable ZSM-5 zeolite materials. The novel materials having substantially uniform micropores narrower (about 0.49 nm) or wider (about 0.55 nm and above) than those of conventional ZSM-5 zeolite (0.52-0.54 nm). Also disclosed is a preparation method (desilication/reinsertion/stabilization or DRS) for converting conventional ZSM-5 zeolite materials to the thermally stable zeolite materials of the present invention. The method of the present invention comprises the steps of sequentially treating ZSM-5 zeolite with aqueous solutions of sodium carbonate and sodium hydroxide to obtain a desilication of the zeolite, reinserting some of the silicon species (mainly sodium orthosilicate and sodium pyrosilicate) which have been selectively removed from the zeolite framework during the desilication operation, and activating the resulting materials in air or in the presence of steam at high temperatures. The amount of the reinserted silicon species depends on the pore size wanted.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: February 6, 2001
    Assignee: Concordia University
    Inventors: Raymond Le Van Mao, David Ohayon
  • Patent number: 6177596
    Abstract: An active highly acidic microporous solid catalyst comprising sulphated metal oxide and at least one of carbon molecular sieve and/or heteropoly acid and having pore volume in the range of 0.1-0.2 m3/g and pore size distribution in the range of 25-40 Å for use in acid catalized organic reactions which occur in the microporous range of the catalysts such as nitration of aromatic compounds, cyclization of terpenoids and more particularly relates to the preparation of modified sulphated zirconia catalysts. The invention also covers the process for producing the abovesaid solid catalyst and its use in producing isopulegol-rich in 1-isopulegol isomer from d-citronellal and in process for mononitration of aromatic compounds C6H4R1R2 wherein R1=—CH3, —C2H5, —Cl, —Br or —I and R2—H or —CH3.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: January 23, 2001
    Assignee: Secretary, Dept. of Science and Technology, Government of India
    Inventors: Ganapati Dadasaheb Yadav, Jayesh Janardhan Nair, Vikas Narendra
  • Patent number: 6165439
    Abstract: The invention concerns a NU-86 zeolite comprising silicon and at least one element T selected from the group formed by aluminium, iron, gallium and boron, preferably aluminium, characterized in that element T has been extracted from the framework, and in that it has a global Si/T atomic ratio of more than about 20. Element T is extracted from the zeolitic framework (or network) by means of at least one heat treatment, optionally carried out in the presence of steam, followed by at least one acid attack using at least one solution of a mineral or organic acid, or by direct acid attack. The invention also concerns a catalyst comprising the zeolite which is at least partially in its acid form, and the use of the catalyst for the conversion of hydrocarbons, in particular for the oligomerization of olefins.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: December 26, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Nicolas Chouteau, Herve Cauffriez
  • Patent number: 6162352
    Abstract: A catalyst composition containing a sulfided mixture of a zinc spinel, a zeolite, alumina, cobalt and molybdenum, and a method of preparing such catalyst composition, are disclosed. The thus-obtained catalyst composition is employed as a catalyst in the hydrodesulfurization of a hydrocarbon feedstock containing gasoline.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: December 19, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake, Ralph J. Melton
  • Patent number: 6153548
    Abstract: The invention concerns a process for improving the pour point of a feed comprising paraffins containing more than 10 carbon atoms, in which process the feed to be treated is brought into contact with a catalyst comprising NU-85 zeolite and at least one hydro-dehydrogenating element, at a temperature which is in the range 170.degree. C. to 500.degree. C., a pressure in the range 1 to 250 bar and an hourly space velocity in the range 0.05 to 100 h.sup.-1, in the presence of hydrogen in a proportion of 50 to 2000 l/l of feed. The oils obtained have good pour points and high viscosity indices (VI). The process is also applicable to gas oils and other feeds requiring a reduction of pour point. The invention also concerns a NU-85 zeolite from which a portion of elements T (Al, Ga, Fe or B) have been removed and which has an Si/T atomic ratio of at least 18.
    Type: Grant
    Filed: June 25, 1998
    Date of Patent: November 28, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Nathalie George-Marchal, Christophe Gueret, Patrick Briot, Alain Billon, Pierre Marion
  • Patent number: 6150293
    Abstract: The preparation of zeolite bound zeolite comprising zeolite core crystals other than MFI structure zeolite which are bound by MFI structure type zeolite and the use of the zeolite bound by MFI structure type zeolite prepared by the process as an adsorbent or as a catalyst for hydrocarbon conversion. The zeolite bound zeolite is produced by including seed crystals of MFI structure type zeolite into the silica bound aggregate forming mixture and then converting the silica binder of the aggregate to the MFI binder crystals. The resulting zeolite bound zeolite has good strength and integrity.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: November 21, 2000
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Johannes P. Verduijn, deceased, Machteld Maria Mertens, Wilfried Jozef Mortier
  • Patent number: 6139719
    Abstract: The invention relates to dioctahedral phyllosilicates 2:1 whose basal spacing is at least equal to 2.0.times.10.sup.-9 m and which in the interlayer space comprise pillars based on at least one of the compounds that is selected from the group that is formed by SiO.sub.2, Al.sub.2 O.sub.3, TiO.sub.2, ZrO.sub.2, V.sub.2 O.sub.5, or any combination of the latter. Preferably, they contain fluorine. The invention also relates to a process for their preparation that includes treatment with a surfactant, followed by treatment with a primary or secondary amine and at least one alkoxide of an element that is selected from the group that is formed by the elements Si, Al, Zr, Ti and V. The invention also relates to a catalyst that comprises said phyllosilicate, at least one matrix, and optionally a zeolite Y. The invention also relates to a process for converting hydrocarbons with this catalyst, and in particular a hydrocracking process.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: October 31, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Jocelyne Brendle, Ronan Le Dred, Jacques Baron, Daniel Saehr, Nathalie Georges-Marchal, Sylvie Lacombe
  • Patent number: 6136290
    Abstract: The invention concerns IM-5 zeolite with a chemical composition with the following formula, expressed in terms of the mole ratios of the oxides for the anhydrous state: 100XO.sub.2,mY.sub.2 O.sub.3, pR.sub.2/n O where m is 10 or less; p is in the range 0 to 20; R represents one or more cations with valency n; X represents silicon and/or germanium; Y represents one or more of the following elements: aluminum, iron, gallium, boron and titanium. The zeolite is characterized by an Xray diffraction diagram, in its as synthesized state, which comprises the results shown in Table 1 of the description. The invention also concerns the preparation of the zeolite, any catalyst containing the zeolite and any catalytic process using such a catalyst.
    Type: Grant
    Filed: October 21, 1997
    Date of Patent: October 24, 2000
    Assignee: Institut Francais de Petrole
    Inventors: Eric Benazzi, Jean-Louis Guth, Loic Rouleau
  • Patent number: 6132594
    Abstract: A hydrocracking catalyst for hydrocarbon oil, comprising a complex oxide with at least 2 different elements selected from Group 3b, Group 4a, Group 4b and Group 5b of the Periodic Table, zeolite having a solid Al-NMR spectrum wherein the ratio A/B of the peak area A in a chemical shift of -30 to 18 ppm to the peak area B in a chemical shift of 20-100 ppm is 0.01-0.39 and whose surface area of pores of diameter 10 angstrom or smaller constitutes 10-85% of the total surface area, and at least one metal selected from Group 6a and Group 8 of the Periodic Table. Also, a hydrocracking method characterized by hydrocracking of petroleum distillates with a boiling point of 250-600.degree. C. using the hydrocracking catalyst in the presence of hydrogen, under conditions with a reaction temperature of 100-800.degree. C., a reaction pressure of 3-30 MPa, an LHSV of 0.01-10 h.sup.-1 and a hydrogen/oil ratio of 100-2500 Nm.sup.3 /m.sup.3.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: October 17, 2000
    Assignee: Nippon Mitsubishi Oil Corp.
    Inventors: Hajime Okazaki, Hisao Sakoda, Michiaki Adachi, Shigeo Kure
  • Patent number: 6133184
    Abstract: A carrier containing silicon carbide, inorganic bonding component, and at least one oxide selected from the group consisting of a niobium oxide, an antimony oxide, and a tungsten oxide carries at least one oxide selected from the group consisting of a vanadium oxide and a molybdenum oxide as catalytically active component. An inexpensive catalyst for catalytic oxidation use can be thus offered that does not change its properties over a period of time, that boasts stable catalytic activity over a period of time, and that is suitable for, e.g., manufacture of an acid anhydride and a nitrile compound by conducting a catalytic gas-phase oxidation reaction (partial oxidation reaction) on a hydrocarbon.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: October 17, 2000
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Yasushi Kiyooka, Masaaki Okuno
  • Patent number: 6126912
    Abstract: The present invention provides a process for reducing oxides of nitrogen to molecular nitrogen in a medium which is superstoichiometric in oxidizing agent using reducing agents in the presence of a catalyst comprising:at least one refractory inorganic oxide at least in part constituted by a zeolite from the group formed by NU-86, NU-87 and EU-1;optionally, at least one element (A) from groups VIB, VIIB, VIII and IB, the transition metals;optionally, at least one element (B) from group VIII, the noble metals comprising platinum, rhodium, ruthenium, iridium and palladium;and optionally at least one element (C) from group IIA, the alkaline-earths and/or group IIIB, the rare earths.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: October 3, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Patrick Bourges, Gil Mabilon, Matthias Bouchez, Sylvie Lacombe
  • Patent number: 6124227
    Abstract: A composition, a process for producing the composition, and a hydrocarbon conversion process for converting a hydrocarbon stream such as, for example, gasoline, to olefins and C.sub.6 to C.sub.8 aromatic hydrocarbons such as toluene and xylenes are disclosed. The composition comprises a silylated catalyst which comprises a zeolite, a clay or silica, and a promoter. The process for producing the composition comprises the steps: (1) combining a zeolite with a clay or silica and a promoter under a condition sufficient to bind the clay to the zeolite to produce a clay-bound zeolite; (2) heating the clay-bound zeolite to produce a modified zeolite; and (3) silylating the modified zeolite with a silylating agent. The hydrocarbon conversion process comprises contacting a hydrocarbon stream with the catalyst composition under a condition sufficient to effect the conversion of a hydrocarbon to an olefin and a C.sub.6 to C.sub.8 aromatic hydrocarbon.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: September 26, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Jianhua Yao, Charles A. Drake
  • Patent number: 6110858
    Abstract: Catalysts for olefin polymerization which consist essentially of a transition metal compound, a modified clay compound and an organic aluminum compound, wherein the modified clay compound comprises a reaction product of a clay mineral and a proton acid salt of a specific amine compound, as well as a method of polymerizing olefins using such catalysts. It is possible thereby to obtain olefin polymers with high productivity and low ash content.
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: August 29, 2000
    Assignee: Tosoh Corporation
    Inventors: Toshiyuki Kaneko, Akihiro Yano
  • Patent number: 6106698
    Abstract: The invention provides a hydrocracking catalyst comprising at least one matrix, a zeolite selected from the group formed by NU-85, NU-86 and NU-87 zeolites, at least one metal selected from the group formed by metals from group VIB and VIII of the periodic table, at least one element selected from the group formed by boron and silicon, optionally phosphorous, optionally at least one group VIIA element, and optionally at least one group VIIB element. The invention also relates to the use of the catalyst for hydrocracking hydrocarbon feeds.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: August 22, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Nathalie George-Marchal, Slavik Kasztelan
  • Patent number: 6103653
    Abstract: This invention provides an attrition resistant catalyst composition and method for producing such composition. The catalyst is comprised of an acidic zeolite, rho or chabazite, and a particulate binder, kaolin, bentonite, alpha-alumina, or titania, which can be optionally modified by treatment with a compound containing Si, Al, P or B. This invention further provides a process for producing methylamines, preferably dimethylamine, comprising reacting methanol and/or dimethyl ether and ammonia in the presence of a catalytic amount of an attrition resistant catalyst of the invention.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: August 15, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Konstantinos Kourtakis, Horacio Enrique Bergna, George Carl Sonnichsen, David Richard Corbin, Loren D. Brake
  • Patent number: 6103949
    Abstract: Zeolite/clay/phosphate catalysts can be prepared by a process wherein a composition of zeolite-clay-phosphate is brought to a pH level of about 7.0 to about 14.0. The resulting slurry is then age reacted for about 0.5 to about 24 hours. Thereafter the slurry is dried to produce a zeolite/clay/phosphate catalyst particles that are particularly characterized by their high levels of zeolite stability.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: August 15, 2000
    Assignee: Bulldog Technologies U.S.A., Inc.
    Inventors: Edward J. Demmel, Albert A. Vierheilig
  • Patent number: 6100211
    Abstract: This invention provides an attrition resistant catalyst composition and method for producing such composition. The catalyst is comprised of an acidic zeolite, rho or chabazite, and a particulate binder, kaolin, bentonite, alpha-alumina, or titania, which can be optionally modified by treatment with a compound containing Si, Al, P or B. This invention further provides a process for producing methylamines, preferably dimethylamine, comprising reacting methanol and/or dimethyl ether and ammonia in the presence of a catalytic amount of an attrition resistant catalyst of the invention.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: August 8, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Konstantinos Kourtakis, Horacio Enrique Bergna, George Carl Sonnichsen, David Richard Corbin, Loren D. Brake
  • Patent number: 6084143
    Abstract: A catalytic composition is described for the alkylation or transalkylation of aromatic compounds consisting of zeolite Beta, as such or modified by the isomorphic substitution of aluminium with boron, iron or gallium or by the introduction of alkaline/earth-alkaline metals following ion exchange processes, and of an inorganic ligand, wherein the extrazeolite porosity, i.e. the porosity obtained by adding the mesoporosity and macroporosity fractions present in the catalytic composition itself, is such as to be composed for a fraction of at least 25% of pores with a radius higher than 100 .ANG..
    Type: Grant
    Filed: July 15, 1998
    Date of Patent: July 4, 2000
    Assignee: Enichem Synthesis S.p.A.
    Inventors: Gianni Girotti, Oscar Cappellazzo
  • Patent number: 6083865
    Abstract: A catalyst composition, a process for producing the composition, and a hydrotreating process for converting a hydrocarbon stream such as, for example, gasoline, to olefins and C.sub.6 to C.sub.8 aromatic hydrocarbons such as toluene and xylenes are disclosed. The catalyst composition comprises a zeolite, a clay, and a promoter. The process for producing the composition comprises the steps: (1) combining a zeolite with a clay and a promoter under a condition sufficient to bind the clay to the zeolite to produce a clay-bound zeolite; and (2) heating the clay-bound zeolite to produce a modified zeolite. The hydrotreating process comprises contacting a hydrocarbon stream with the catalyst composition under a condition sufficient to effect the conversion of a hydrocarbon to an olefin and a C.sub.6 to C.sub.8 aromatic hydrocarbon.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: July 4, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, An-hsiang Wu, Jianhua Yao
  • Patent number: 6080697
    Abstract: A process to produce a composition is provided. Said process comprises: contacting a zeolite component, a silicon component, a Group 14 metal component, and a phosphorus component together to form a first mixture; treating said first mixture to form a second mixture; contacting said second mixture with a binder component to form a third mixture; agglomerating said third mixture to form a fourth mixture; and treating said fourth mixture to form said composition.
    Type: Grant
    Filed: October 7, 1998
    Date of Patent: June 27, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6074974
    Abstract: The present invention relates to a manufacturing method of granulated complex molecular sieve composition having multifunction and useful for removal agent of harmful gas of cigarette or treatment agent of water purification etc. as having multifunctioned adsorption capacity and excellent anti-abrasion property, and convenient process, in particular, to a manufacturing method which is comprised of granulating by mixing alkali metal silicate aqueous solution to mixture of zeolites of various types and active carbon and treating it with water solution of alkali earth metal salt without calcination, and drying.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: June 13, 2000
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Jung-Min Lee, Jeong-Kwon Suh, Soon-Yong Jeong, Hang-Kyo Jin, Byung-Ki Park, Chun-Hee Park, Jeong-Hwan Park, Si-Wang Kim, Jong-An Kim, Yeoun-Kee Park, Chang-Whan Lim
  • Patent number: 6069280
    Abstract: Process for the preparation of a modified ammonium mordenite, characterized in that it comprises the steps of(1) drying an ammonium mordenite under conditions such that the mordenite is maintained in ammonium form and(2) treating the dried ammonium mordenite thus obtained with tetrachlorosilane in the gas phase at a temperature of between 300 and 600.degree. C.The modified ammonium mordenite obtained by this process is suitable for use as a catalyst in the production of methylamines by reaction of ammonia and methanol, allowing high selectivities in dimethylamine.
    Type: Grant
    Filed: January 6, 1998
    Date of Patent: May 30, 2000
    Assignee: UCB, S.A.
    Inventors: August Van Gysel, Jean Passelcq
  • Patent number: 6066770
    Abstract: A catalyst, method for preparing the catalyst, and method for using the catalyst having improved para-selectivity in the conversion of alkyl-substituted benzene to para-dialkyl-substituted benzene. The catalyst being prepared by calcining a starting zeolite material, selectivating the calcined zeolite using a silicon-containing selectivating agent, physically mixing the calcined and selectivated zeolite with a binder, shaping the resulting zeolitic physical blend into a form suitable for use in a hydrocarbon conversion process, selectivating the shaped zeolitic physical blend using a silicon-containing selectivating agent, and calcining the selectivated shaped zeolitic physical blend.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: May 23, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6051517
    Abstract: A modified zeolite or molecular sieve membrane for separation of materials on a molecular scale. The modified membrane is fabricated to wholly or partially block regions between zeolite crystals to inhibit transfer of larger molecules through the membrane, but without blocking or substantially inhibiting transfer of small molecules through pores in the crystalline structure. The modified membrane has a monomolecular layer deposited on the zeolite surface which has coordinated groups of atoms that include (i) a metal atom bonded to oxygen atoms that are bonded to the zeolite substrate atoms (e.g., silicon atoms) and (ii) either hydroxyl groups bonded to the metal atoms or additional oxygen atoms bonded to the metal atoms.
    Type: Grant
    Filed: January 26, 1999
    Date of Patent: April 18, 2000
    Assignee: University Technology Corp.
    Inventors: Hans H. Funke, Jason W. Klaus, Steven M. George, Andrew W. Ott, John L. Falconer, Richard D. Noble
  • Patent number: 6048815
    Abstract: A novel high stability catalyst composition comprising a mixture of zeolite and zinc spinel that has been treated with a reducing gas under high temperature conditions, a method of making such high stability catalyst, and the use thereof for converting paraffin hydrocarbons to olefins and aromatics.
    Type: Grant
    Filed: November 9, 1998
    Date of Patent: April 11, 2000
    Assignee: Philips Petroleum Company
    Inventors: Jianhua Yao, James B. Kimble, Charles A. Drake
  • Patent number: 6043177
    Abstract: A process for modifying surfaces of zeolites and molecular sieve membranes to decrease effective pore size for separation of materials includes atomic layer controlled vapor or liquid deposition. The atomic layer controlled deposition process steps include (i) exposing the surface to a metal atom coordinated with ligand groups having bonds that are hydrolyzable to form molecular bonded structures on the surface, which structures comprise the metal atoms coordinated with the ligand group or a modified ligand group and then (ii) hydrolyzing the bonds and possibly, but not necessarily, cross-linking the bonds in the ligand or modified ligand group.
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: March 28, 2000
    Assignee: University Technology Corporation
    Inventors: John L. Falconer, Steven M. George, Andrew W. Ott, Jason W. Klaus, Richard D. Noble, Hans H. Funke
  • Patent number: 6034283
    Abstract: A process for producing a cyclic alcohol by a catalytic hydration reaction of a starting cyclic olefin represented by the following formula (1) and water:C.sub.s H.sub.2s-2-t R.sub.t (1)wherein R is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a phenyl group or a cyclohexyl group; s is an integer of 5 to 12; and t is an integer of 1 to 4, which comprises supplying a part or the whole of a residue left after separation of said cyclic alcohol from an oil phase containing said cyclic alcohol, unreacted cyclic olefin and impurities having a boiling point between the boiling point of said starting cyclic olefin and that of said cyclic alcohol to a distillation column(s), and recycling the unreacted cyclic olefin obtained after removal of said impurities.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: March 7, 2000
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Masakazu Ban, Mineyuki Iwasaki
  • Patent number: 6034187
    Abstract: A novel catalyst for polymerization of olefin is provided which comprises a modified clay compound (a) having an average particle diameter of less than 10 .mu.m, a transition metal compound (b), and an organoaluminum compound (c). This catalyst exhibits improved initial polymerization behavior, and produces an olefin polymer of less ash content at a high productivity.
    Type: Grant
    Filed: May 21, 1998
    Date of Patent: March 7, 2000
    Assignee: Tosoh Corporation
    Inventors: Seiji Maehama, Akihiro Yano, Morihiko Sato
  • Patent number: 6034291
    Abstract: A catalytic composition is described for the alkylation and/or transalkylation of aromatic hydrocarbons consisting of beta zeolite, as such or modified by the isomorphous substitution of aluminum with boron, iron or gallium or by the introduction of alkaline and/or earth alkaline metals following an ion-exchange process, and an inorganic ligand, wherein the extrazeolite porosity, i.e. the porosity obtained by adding the mesoporosity and macroporosity fractions present in the catalytic composition itself, is such that a fraction of at least 25% is composed of pores with a radius higher than 100 .ANG., said composition being characterized by a total volume of extrazeolitic pores greater than or equal to 0.80 ml/g.
    Type: Grant
    Filed: December 10, 1997
    Date of Patent: March 7, 2000
    Assignee: Enichem S.p.A.
    Inventors: Gianni Girotti, Oscar Cappellazzo, Elena Bencini, Giannino Pazzuconi, Carlo Perego
  • Patent number: 6027666
    Abstract: There are provided mesoporous silica materials containing in their pores stabilized clusters of silicon atom, of size 2 nanometers or less, and capable of photoluminescence to emit fast photons. They are prepared by chemical vapor deposition of silicon or a silicon precursor such as disilane, under soft conditions such as temperature of 100-150.degree. C., into the mesopores of silicate films which have mesoporous channels prepared by growth of the films using a template to control their sizes, but without removing the template residues from the films prior to the chemical vapor deposition. The template residues serve to limit the size of the silicon clusters which conform. The use of the soft conditions on CVD retains the template residues in an intact, substantially unchanged form. The resultant films have clusters of silicon, of 2 nanometer size or less, anchored to the mesopores, and air stable, so that they can be used in optoelectronic devices in conjunction with standard silicon semiconductors.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: February 22, 2000
    Assignee: The Governing Council of the University of Toronto
    Inventors: Geoffrey A. Ozin, Omer Dag, Hong Yang
  • Patent number: 6020281
    Abstract: Difluoromethane (R-32) is of current interest as a partial replacement for chlorodifluoromethane (R-22) refrigerant heretofore widely used in vapor compression refrigeration systems. R-32 has, however, proved to be more reactive than is desirable with the zeolite A adsorbent-desiccant compositions used in such systems to prevent corrosion and freeze-up problems. The potassium cation form of a zeolite A molecular sieve--with at least 60 per cent of the sodium cations replaced with potassium ions, agglomerated with a clay binder and pore-reduced to essentially exclude the adsorption of R-32, and having essentially no reactivity with difluoromethane--has been found to be an effective desiccant for refrigerants comprising difluoromethane.
    Type: Grant
    Filed: June 20, 1997
    Date of Patent: February 1, 2000
    Assignee: UOP LLC
    Inventors: MaryEllen Lavin, Alan P. Cohen, Jack E. Hurst
  • Patent number: 5997729
    Abstract: A catalytic cracking catalyst, which comprises (1) a zeolite, (2) a silica.cndot.alumina or an alumina and (3) a kaolin, has a pore diameter distribution having a peak at a pore diameter of 450 to 3,000 .ANG., and has 40 to 75% of a pore volume of pores of not less than 200 .ANG. and less than 2,000 .ANG. in pore diameter and 5 to 45% of a pore volume of pores of not less than 2,000 .ANG. and less than 18,000 .ANG. in pore diameter, both based on a pore volume of pores of 40 to 18,000 .ANG. in pore diameter.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: December 7, 1999
    Assignees: Idemitsu Kosan Co., Ltd., Petroleum Energy Center
    Inventor: Toshio Itoh