Zeolite Patents (Class 502/64)
  • Patent number: 8617513
    Abstract: One aspect of the present invention relates to mesostructured zeolites. The invention also relates to a method of preparing mesostructured zeolites, as well as using them as cracking catalysts for organic compounds and degradation catalysts for polymers.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: December 31, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Jackie Y. Ying, Javier García-Martínez
  • Publication number: 20130345045
    Abstract: An aromatic alkylation catalyst is presented. The aromatic alkylation catalyst comprised a zeolite, an inorganic oxide, and silanol functional groups of less than about 0.65 area/mg on the surface of the catalyst.
    Type: Application
    Filed: August 22, 2013
    Publication date: December 26, 2013
    Applicant: UOP LLC
    Inventor: Deng-Yang Jan
  • Publication number: 20130340614
    Abstract: Adsorbent compositions useful in adsorption, separation and purification processes are made using silicone-derived binding agents. The adsorbent compositions having enhanced adsorption rate and crush strength properties are made from agglomerated crystallite particles bound with silicone-derived binding agents. The silicone binder precursors are calcined during the manufacturing process to produce the silicone-derived binding agents. The adsorbent compositions are preferably used in air separation processes.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Inventors: PHILIP ALEXANDER BARRETT, STEVEN JOHN PONTONIO, PERSEFONI KECHAGIA, NEIL ANDREW STEPHENSON
  • Patent number: 8614160
    Abstract: Catalyst compositions comprising a siliceous zeolite component, either in separately formed catalyst particles or dispersed in the same binder or matrix as other zeolites of the compositions, are described. The catalyst compositions, for example as blends of three different bound zeolite catalysts, are particularly useful in fluid catalytic cracking (FCC) processes due to the reductions in coke and dry gas yields that allow FCC throughput, which is normally constrained by gas handling and/or catalyst regeneration capacity, to be increased.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: December 24, 2013
    Assignee: UOP LLC
    Inventors: Lawrence L. Upson, Laszlo T. Nemeth
  • Patent number: 8609567
    Abstract: A catalyst is present for use in an olefin cracking process. The catalyst is a zeolite that has been loaded with an alkaline earth metal. The alkaline earth metal loaded catalyst has an increased steaming tolerance and increases the useful life of the catalyst during the cracking process and the regeneration cycle.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Timur V. Voskoboynikov, Aleksey Y. Pelekh, John J. Senetar
  • Patent number: 8609047
    Abstract: A wall-flow filter comprises a catalyst for converting oxides of nitrogen in the presence of a reducing agent, which wall-flow filter comprising an extruded solid body comprising: 10-95% by weight of at least one binder/matrix component; 5-90% by weight of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof; and 0-80% by weight optionally stabilized ceria, which catalyst comprising at least one metal, wherein: the at least one metal is present throughout the extruded solid body alone or in combination with: is also present in a higher concentration at a surface of the extruded solid body; is also carried in one or more coating layer(s) on a surface of the extruded solid body; or both.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: December 17, 2013
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Ralf Dotzel, Rainer Leppelt, Jörg Werner Münch, Hubert Schedel
  • Patent number: 8603432
    Abstract: A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: December 10, 2013
    Inventors: Paul Joseph Andersen, Jillian Elaine Bailie, John Leonello Casci, Hai-Ying Chen, Joseph Michael Fedeyko, Rodney Kok Shin Foo, Raj Rao Rajaram
  • Patent number: 8603932
    Abstract: This invention is directed to hydrocracking catalysts and hydrocracking processes employing a magnesium aluminosilicate clay. The magnesium aluminosilicate clay has a characteristic 29Si NMR spectrum. The magnesium aluminosilicate clay is the product of a series of specific reaction steps. Briefly, the magnesium aluminosilicate clay employed in the catalyst and process of the present invention is made by combining a silicon component, an aluminum component, and a magnesium component, under aqueous conditions and at an acidic pH, to form a first reaction mixture and subsequently the pH of the first reaction mixture is adjusted to greater than about 7.5 to form a second reaction mixture. The second reaction mixture is allowed to react under conditions sufficient to form the magnesium aluminosilicate clay. The resulting magnesium aluminosilicate clay combines high surface area and activity for use in hydrocracking catalysts and processes.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: December 10, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Darren P. Fong
  • Patent number: 8603431
    Abstract: A new process for producing a SAPO molecular sieve is disclosed wherein a mixture of a P source with an Al source is subjected to a digestion step under stirring before adding a Si source and a template. The slurry resulting after addition of all chemicals is subjected to a pH adjustment followed by the usual hydrothermal treatment at higher temperature in an autoclave. In this way, very pure highly crystalline SAPO molecular sieves such as SAPO-34 are obtained with a very high yield. In addition, the SAPOs produced this way have an exceptional activity in the dehydration reactions and can be employed as a active component of catalysts for the production of valuable dehydration products from methanol such as, but not limited to, olefins and dimethylether (DME).
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: December 10, 2013
    Assignee: Casale Chemicals S.A.
    Inventors: Cristina Ferrini, Daniel Herein, David Linke, Uwe Rodemerck, Evgeny Kondratenko
  • Patent number: 8603423
    Abstract: A three way catalyst includes an extruded solid body having: 10-95% by weight of at least one binder/matrix component; 5-90% by weight of a zeolitic molecular sieve; and 0-80% by weight optionally stabilized ceria. The catalyst further includes at least one precious metal and optionally at least one non-precious metal. The at least one precious metal is carried in a coating layer on a surface of the extruded solid body; at least one metal is present throughout the extruded solid body and at least one precious metal is also carried in a coating layer on a surface of the extruded solid body; or at least one metal is present throughout the extruded solid body, is present in a higher concentration at a surface of the extruded solid body and at least one precious metal is also carried in a coating layer on the surface of the extruded solid body.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: December 10, 2013
    Assignee: Johnson Matthey Public Limited Co.
    Inventors: Paul Joseph Andersen, Ralf Dotzel, Kwangmo Koo, Rainer Leppelt, Jörg Werner Münch, Jeffery Scott Rieck, Hubert Schedel, Duncan John William Winterborn, Todd Howard Ballinger, Julian Peter Cox
  • Patent number: 8598397
    Abstract: Described is a process for the treatment of at least one zeolite having a pore size of less than or equal to 7 ? comprising at least a) a step for dealumination of said zeolite, b) a cationic exchange step using at least one cation other than H+, c) a step for treatment of said zeolite obtained in step b) in the presence of at least one molecular compound containing at least one silicon atom, and d) at least one heat treatment step. The present invention also concerns the preparation of a catalyst containing the zeolite treated in accordance with the treatment process the subject-matter of the invention and the use of said catalyst in a process for the oligomerization of an olefinic charge containing hydrocarbon molecules having from 2 to 12 carbon atoms per molecule.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: December 3, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Laurent Simon, Sylvie Lacombe
  • Publication number: 20130317269
    Abstract: A mixture can include 0.01 to 30 weight % of a medium or large pore crystalline silicoaluminate, silicoaluminophosphate materials, or silicoaluminate mesoporous molecular sieves (A), and 99.99 to 70 weight % of a MeAPO molecular sieve. The mixture can be included in a catalyst. An XTO process can include contacting an oxygen-containing, halogenide-containing, or sulphur-containing organic feedstock with the catalyst under conditions effective to convert the organic feedstock to olefin products. A combined XTO and OCP process can include contacting the organic feedstock with the catalyst at conditions effective to convert at least a portion of the organic feedstock to form an XTO reactor effluent including light olefins and a heavy hydrocarbon fraction, separating the light olefins from the heavy hydrocarbon fraction, and contacting the heavy hydrocarbon fraction in an OCP reactor at conditions effective to convert at least a portion of the heavy hydrocarbon fraction to light olefins.
    Type: Application
    Filed: April 22, 2013
    Publication date: November 28, 2013
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Sander Van Donk
  • Patent number: 8586496
    Abstract: A method is described for preparing a molecular sieve-containing catalyst for use in a catalytic process conducted in a stirred tank reactor. The method comprises providing a mixture comprising a molecular sieve crystal and forming the mixture into catalyst particles having an average cross-sectional dimension of between about 0.01 mm and about 3.0 mm. The mixture may include a binder and the catalyst particles are then calcined to remove water therefrom and, after calcination and prior to loading the catalyst particles into a reactor for conducting the catalytic process, the catalyst particles are coated with a paraffin inert to the conditions employed in the catalytic process.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: November 19, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Carolyn B. Duncan, Jon E. R. Stanat, Daria N. Lissy, Jane C. Cheng
  • Publication number: 20130303816
    Abstract: A composite catalyst is presented. The composite catalyst comprises a substrate. The substrate comprises a zeolite and an inorganic oxide. The composite further comprises a carbonaceous material disposed on a surface of the substrate. The carbonaceous material comprises greater than about 2.8 weight percent of the composite catalyst.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 14, 2013
    Applicant: UOP LLC
    Inventors: Deng-Yang Jan, Jacob M. Anderson, Pelin Cox
  • Patent number: 8580702
    Abstract: The present invention discloses a catalyst for toluene shape selective disproportionation, comprising: a) 45 to 95 wt % of ZSM-5 molecular sieve having an average particle size of from 0.3 to 6 ?m and a molar ratio of SiO2 to Al2O3 of from 20 to 120; b) 0.01 to 30 wt % of at least one metal selected from the group consisting of Group IIB metals, Group IIIB metals, rare earth elements and Group VIII metals other than nickel, or oxide(s) thereof; c) 0 to 20 wt % of at least one metal selected from the group consisting of Group VA metals, Group VIB metals and alkaline earth metals, or oxide(s) thereof; d) 1 to 25 wt % of a silica inert surface coating derived from an organopolysiloxane; and e) 1 to 50 wt % of a binder. The present invention further discloses a process for shape selectively disproportionating toluene into p-xylene, comprising contacting a reaction stream containing toluene with the catalyst for toluene shape selective disproportionation under toluene disproportionation conditions.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: November 12, 2013
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zaiku Xie, Dejin Kong, Zhirong Zhu, Wei Li, Qingling Chen, Rong Zhang
  • Patent number: 8580228
    Abstract: The present invention relates to a process for reducing cold start emissions in an exhaust gas stream (such as from an internal combustion engine) by contacting the exhaust stream with a combination of molecular sieves comprising (1) a small pore crystalline molecular sieve or mixture of molecular sieves having pores no larger than 8 membered rings selected from the group consisting of SSZ-13, SSZ-16, SSZ-36, SSZ-39, SSZ-50, SSZ-52 and SSZ-73 molecular sieve and having a mole ratio at least 10 of (a) an oxide of a first tetravalent element to (b) an oxide of a trivalent element, pentavalent element, second tetravalent element which is different from said first tetravalent element or mixture thereof and (2) a medium-large pore crystalline molecular sieve having pores at least as large as 10 membered rings selected from the group consisting of SSZ-26, SSZ-33, SSZ-64, zeolite Beta, CIT-1, CIT-6 and ITQ-4 and having a mole ratio of at least 10 of (a) an oxide of a first tetravalent element to (b) an oxide of a tr
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: November 12, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Cabral M. Williams, Tecle S. Rufael, Allen W. Burton
  • Patent number: 8575055
    Abstract: Surface-modified zeolites and methods for preparing surface-modified zeolites are provided. A hybrid polymer formed from a silicon alkoxide and a metal alkoxide, a co-monomer, or both, is contacted with a zeolite suspension. The zeolite suspension comprises a sodium-, an ammonium-, or a hydrogen-form zeolite and a solvent. The hybrid polymer and zeolite suspension are contacted under conditions sufficient to deposit hybrid polymer on external surfaces of the zeolite to form a treated zeolite. Solvent is removed therefrom. The treated zeolite is dried and calcinated to form a dried and calcinated treated zeolite. Forming of the zeolite suspension and the contacting, removing, drying, and calcinating steps are provided in one selectivation sequence to produce a surface-modified zeolite from the ammonium-form zeolite and the hydrogen-form zeolite. If the dried and calcinated treated zeolite is a sodium-form zeolite, the sodium is exchanged with ammonium and then additionally dried and calcinated.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: November 5, 2013
    Assignee: UOP LLC
    Inventors: Laszlo Nemeth, Feng Xu
  • Patent number: 8568882
    Abstract: A mesostructured material is described, which consists of at least two elementary spherical particles, each one of said particles comprising a mesostructured matrix based on aluminium oxide, said matrix having a pore diameter ranging between 1.5 and 30 nm, and an aluminium oxide content representing more than 46 wt. % of the mass of said matrix, which has amorphous walls of thickness ranging between 1 and 30 nm, said elementary spherical particles having a diameter D greater than 10 ?m and less than or equal to 100 ?m (10<D(?m)?100). Said mesostructured matrix can also contain silicon oxide. Each spherical particle of the mesostructured material can also contain zeolite nanocrystals so as to form a mixed porosity material of both mesostructured and zeolitic nature. The preparation of said material is also described.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 29, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Alexandra Chaumonnot, Aurelie Coupe, Clement Sanchez, Cedric Boissiere, Michel Martin
  • Publication number: 20130281754
    Abstract: A method for producing a zeolite catalyst includes mixing a zeolite material with a filler material comprising transition phase and alpha alumina, a porosity enhancing agent, and water to produce a paste; mulling the paste; extruding the paste to produce a shaped extrudate; and drying and calcining the shaped extrudate to produce a zeolite catalyst, wherein the zeolite catalyst has a total porosity greater than about 0.60 ml/gm and greater than 15% of a total pore volume of pores in the range from about 550 ? to about 31,000 ?.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Applicant: UOP LLC
    Inventor: Deng-Yang Jan
  • Publication number: 20130281284
    Abstract: [Object] To provide a catalyst for nitrogen oxide removal having no degradation problem caused by adsorbed water when a temperature is raised sharply and exhibiting excellent nitrogen oxide removal performance and retentive characteristic thereof. [Solution] A catalyst for nitrogen oxide removal, containing a metal-loading zeolite, wherein the zeolite contains a silicon atom, an aluminum atom, and a phosphorus atom in a framework structure, and the amount of water adsorption of the catalyst at 25° C. and a relative vapor pressure of 0.5 is 0.05 to 0.2 (kg-water/kg-catalyst) or less. A method for manufacturing this catalyst for nitrogen oxide removal, the method including the steps of drying a mixed slurry containing a metal source, the zeolite, and metal oxide particles having an average particle diameter of 0.1 to 10 ?m and/or an inorganic binder and calcining the resulting dry powder.
    Type: Application
    Filed: December 26, 2011
    Publication date: October 24, 2013
    Applicant: MITSUBISHI PLASTICS, INC.
    Inventors: Takeshi Matsuo, Takahiko Takewaki, Kazunori Oshima, Haijun Chen, Daisuke Nishioka, Caio Tagusagawa
  • Patent number: 8563135
    Abstract: A mesostructured aluminosilicate material is described, which consists of at least two elementary spherical particles, each one of said spherical particles consisting of a matrix based on silicon oxide and aluminium oxide, said matrix having a pore diameter ranging between 1.5 and 30 nm, a Si/Al molar ratio at least equal to 1 and amorphous walls of thickness ranging between 1 and 30 nm, said elementary spherical particles having a diameter D such that 10<D(?m)?100. A method of preparing said material and its application in the spheres of refining and petrochemistry are also described.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 22, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Alexandra Chaumonnot, Aurelie Coupe, Clement Sanchez, Cedric Boissiere, Michel Martin
  • Patent number: 8557106
    Abstract: This invention relates to a process involving hydrocracking of a feedstream in which a converted fraction can exhibit relatively high distillate product yields and maintained or improved distillate fuel properties, while an unconverted fraction can exhibit improved properties particularly useful in the lubricant area. In this hydrocracking process, it can be advantageous for the yield of converted/unconverted product for gasoline fuel application to be reduced or minimized, relative to converted distillate fuel and unconverted lubricant. Catalysts and conditions can be chosen to assist in attaining, or to optimize, desirable product yields and/or properties.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: October 15, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William J. Novak, Robert A. Bradway, Stuart S. Shih, Timothy L. Hilbert, Michel Daage
  • Publication number: 20130267406
    Abstract: This disclosure relates to a catalyst composition comprising (a) MCM-22 family material; and (b) a binder comprising at least 1 wt.% of a titanium compound based on the weight of said catalyst composition, wherein said titanium compound was anatase and rutile phases.
    Type: Application
    Filed: June 4, 2013
    Publication date: October 10, 2013
    Inventors: Christine N. Elia, Frederick Y. Lo, Jeffrey T. Elks, Darryl D. Lacy, Mohan Kalyanaraman
  • Patent number: 8551900
    Abstract: Method for preparation of an adsorbent that comprises successive shaping stages by co-granulation of a faujasite-type zeolite powder A, with a powder B that consists of alumina, whereby the ratio per unit of mass of the powder A in the mixture of powders A and B is between 10 and 70%, for treatment under water vapor and drying. The invention also relates to a process for adsorption of organic contaminants that contain at least one heteroatom and that are present in an olefinic feedstock that comprises at least 50% by volume of hydrocarbons, whereby this process comprises the stage for bringing the olefinic feedstock into contact with the adsorbent that is obtained by the preparation method according to the invention.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: October 8, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Olivier Ducreux, Christophe Nedez, Catherine Pommier
  • Patent number: 8551901
    Abstract: A nitrogen-oxide-removing catalyst includes ? zeolite bearing a rare earth metal oxide, and titanium dioxide bearing a rare earth metal oxide; includes ?-zeolite bearing a rare earth metal oxide and iron oxide or iron hydroxide, and titanium dioxide bearing a rare earth metal oxide and iron oxide or iron hydroxide; or includes a carrier made of a ceramic or metallic material, and a layer of the nitrogen-oxide-removing catalyst supported on the carrier.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: October 8, 2013
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventor: Kiyoshi Shinoda
  • Patent number: 8551431
    Abstract: A method for modifying the properties of a sorbent comprising washing a sorbent with a washing solution so as to achieve an exchange of ions between the sorbent and the washing solution, and applying a halogen compound to the sorbent that has been washed with the washing solution to achieve a predetermined concentration of the halogen on the sorbent.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 8, 2013
    Assignee: Cabot Corporation
    Inventors: Patton Adams, Dennis O. Rester, Misty Williams
  • Patent number: 8545608
    Abstract: Embodiments of crystalline, titanium silicate molecular sieves are described having a formula representing mole ratios of oxides of nM1O:TiO2:ySiO2:zH2O:wX where M1 refers to a metal cation or mixture of metal cations; n is from about 1 to about 2; y is from about 1 to about 10; z is from 0 to about 100; X is a halide anion other than fluorine, or combination of halide anions that excludes fluorine; and w is greater than 0. The pore size of the sieves can be adjusted by ion exchanging M1 cations with a suitable amount of another species. Embodiments of the invention are useful for various adsorptive fluid separation processes, including pressure swing adsorption processes. For example, disclosed embodiments are useful for separating methane from air.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: October 1, 2013
    Assignee: The Governors of the University of Alberta
    Inventors: James A. Sawada, Edward J. Rode, Steven M. Kuznicki, Christopher Chih Itao Lin
  • Patent number: 8546628
    Abstract: The present invention is directed to a hydroisomerization process using a new crystalline molecular sieve designated SSZ-81, which is synthesized using a structure directing agent selected from 1,5-bis(1-azonia-bicyclo[2.2.2]octane)pentane dications, 1,5-bis(1,4-diazabicyclo[2.2.2]octane)pentane dications, and mixtures thereof.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: October 1, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Cong-Yan Chen, Stacey I. Zones
  • Patent number: 8546286
    Abstract: In a process for producing a metal containing catalyst composition suitable for effecting hydrocarbon hydrogenation and/or dehydrogenation reactions, a catalyst support comprising a porous crystalline material combined with an amorphous binder is treated with an anchoring material capable of bonding to the surface of the support and to a metal component. In addition, a precursor to the metal component is deposited on the surface of the catalyst support and then the treated catalyst support having the precursor deposited thereon is subjected to conditions effective to convert the precursor to the metal component and to cause the anchoring material to bond to the surface of the support and to the metal component.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: October 1, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Jean W. Beeckman
  • Patent number: 8545798
    Abstract: The present invention is directed to a method for preparing a new crystalline molecular sieve designated SSZ-81 using a structure directing agent selected from 1,5-bis(1-azonia-bicyclo[2.2.2]octane)pentane dications, 1,5-bis(1,4-diazabicyclo[2.2.2]octane)pentane dications, and mixtures thereof.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: October 1, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Anna Jackowski
  • Publication number: 20130253079
    Abstract: Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt deposited on hybrid supports. The hybrid supports contain an acidic zeolite component and a silica-containing material. It has been found that the use of the hybrid Fischer-Tropsch catalysts in synthesis gas conversion reactions results in high C5+ productivity, high CO conversion rates and low olefin formation.
    Type: Application
    Filed: September 5, 2012
    Publication date: September 26, 2013
    Applicant: CHEVRON U.S.A . INC.
    Inventors: Kandaswamy Jothimurugesan, Robert James Saxton
  • Patent number: 8530367
    Abstract: The present invention relates to agglomerated zeolitic adsorbents based on zeolite X with an Si/Al ratio such that 1.15<Si/AL<1.5, consisting of crystals with a mean diameter of 1.7 mm or less and of an inert binder, at least 90% of the exchangeable cationic sites of the zeolite X being occupied by barium ions. They may be obtained by agglomerating a zeolite X powder having a mean diameter of 1.7 mm or less with a binder, followed by zeolitization of the binder, exchange of the zeolite ions with barium (and potassium) ions and activation of the adsorbents thus exchanged.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: September 10, 2013
    Assignees: CECA S.A., IFP Energies Nouvelles
    Inventors: Ludivine Bouvier, Stephane Kieger, Catherine Laroche, Philibert Leflaive, Dominique Plee
  • Publication number: 20130231515
    Abstract: The present invention provides a method for producing a silica composite by the steps of: preparing a raw material mixture containing silica and zeolite; drying the raw material mixture to obtain a dried product; and calcining the dried product, wherein the method comprising the step of allowing the raw material mixture to contain phosphoric acid and/or phosphate or bringing a solution of phosphoric acid and/or phosphate into contact with the zeolite and/or the dried product, or a combination thereof to thereby adjust a phosphorus content in the silica composite to 0.01 to 1.0% by mass based on the total mass of the silica composite.
    Type: Application
    Filed: November 24, 2011
    Publication date: September 5, 2013
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Kenji Akagishi, Ryusuke Miyazaki
  • Patent number: 8524624
    Abstract: One aspect of the present invention relates to mesostructured zeolites. The invention also relates to a method of preparing mesostructured zeolites, as well as using them as cracking catalysts for organic compounds and degradation catalysts for polymers.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: September 3, 2013
    Assignee: Massachusetts Institute of Technology
    Inventor: Javier Garcia-Martinez
  • Publication number: 20130225397
    Abstract: The present invention relate to a binderless molecular sieve catalyst and a process for preparing the same, which are mainly useful for solving the problems of the current catalysts, such as lower activity, less pore volume and worse diffusivity. The present invention relates to a novel binderless molecular sieve catalyst, comprising, based on the weight of the catalyst, 90-100 wt. % of a molecular sieve, 0-10 wt. % of a binder, and 0-10 wt. % of an anti-wear agent, wherein said catalyst has a pore volume of 0.1-0.5 ml/g, an average pore diameter of 50-100 nm, and a porosity of 20-40%; the anti-wear agent is selected from the rod or needle-like inorganic materials having a length/diameter ratio of 2-20. Said catalyst has the advantages of higher activity, greater pore volume, larger average pore diameter and porosity, and better diffusivity, and well solves said problems and can be used for the industrial preparation of binderless molecular sieve catalysts.
    Type: Application
    Filed: August 23, 2011
    Publication date: August 29, 2013
    Applicants: SHANGHAI RESEARCH INSTITUTE OF PETROCHEMICAL TECHNOLOGY, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Guangwei Ma, Huiming Zhang, Jingxian Xiao, Liang Chen, Xiqiang Chen
  • Patent number: 8518847
    Abstract: A aromatic alkylation catalyst, processes for producing the catalyst, and aromatic alkylation processes employing the catalysts are disclosed. The catalyst comprises a UZM-8 zeolite and nitrogen, and the catalyst has a nitrogen to zeolite aluminum molar ratio of at least about 0.015. In an exemplary alkylation process, the catalyst provides improved product yield.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: August 27, 2013
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, James A. Johnson, Robert J. Schmidt, Mathias P. Koljack
  • Patent number: 8518239
    Abstract: This invention is directed to hydrocracking catalysts and hydrocracking processes employing a magnesium aluminosilicate clay. The magnesium aluminosilicate clay has a characteristic 29Si NMR spectrum. The magnesium aluminosilicate clay is the product of a series of specific reaction steps. Briefly, the magnesium aluminosilicate clay employed in the catalyst and process of the present invention is made by combining a silicon component, an aluminum component, and a magnesium component, under aqueous conditions and at an acidic pH, to form a first reaction mixture and subsequently the pH of the first reaction mixture is adjusted to greater than about 7.5 to form a second reaction mixture. The second reaction mixture is allowed to react under conditions sufficient to form the magnesium aluminosilicate clay. The resulting magnesium aluminosilicate clay combines high surface area and activity for use in hydrocracking catalysts and processes.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: August 27, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Darren P. Fong
  • Publication number: 20130213018
    Abstract: Disclosed are, inter alia, methods of forming coated substrates for use in catalytic converters, as well as washcoat compositions and methods suitable for using in preparation of the coated substrates, and the coated substrates formed thereby. The catalytic material is prepared by a plasma-based method, yielding catalytic material with a lower tendency to migrate on support at high temperatures, and thus less prone to catalyst aging after prolonged use. Also disclosed are catalytic converters using the coated substrates, which have favorable properties as compared to catalytic converters using catalysts deposited on substrates using solution chemistry. Also disclosed are exhaust treatment systems, and vehicles, such as diesel vehicles, particularly light-duty diesel vehicles, using catalytic converters and exhaust treatment systems using the coated substrates.
    Type: Application
    Filed: August 17, 2012
    Publication date: August 22, 2013
    Applicant: SDCmaterials, Inc,
    Inventors: Qinghua YIN, Xiwang QI, Maximilian A. BIBERGER, Jayashir SARKAR
  • Patent number: 8511483
    Abstract: A method of making a porous membrane is disclosed. One such method optionally includes: forming a plurality of pillars in an array form over a substrate; and forming a layer with a mixture of a porous material precursor and a surfactant over the substrate. The method optionally includes removing the pillars to leave cavities in the layer; filling the cavities in the layer with a cavity filler; and removing the surfactant from the layer. The porous membrane can be used as, for example, a sieve for separating molecules from a chemical reaction.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: August 20, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Publication number: 20130210611
    Abstract: This invention relates to a hydrocracking catalyst for preparing valuable light aromatic hydrocarbons from polycyclic aromatic hydrocarbons derived from oil, which includes (i) beta-zeolite, (ii) pseudo-boehmite, and (iii) one or more metals selected from among metals of Groups VIII and VIB, and which further includes a cocatalyst component, thereby producing a maximum amount of BTX (Benzene, Toluene, Xylene) from LCO (Light Cycle Oil).
    Type: Application
    Filed: October 21, 2011
    Publication date: August 15, 2013
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Do Woan Kim, Jae Hyun Koh, Sang II Lee, Seung Woo Lee, Seung Hoon Oh, Jae Suk Koh, Yong Seung Kim, Gyung Rok Kim, Sun Choi, Hong Chan Kim, Sang Hun Oh
  • Patent number: 8507404
    Abstract: Provided are improved regenerable SOx trap formulations for on-board vehicle applications. The regenerable sulfur trap formulations reduce the rate of sulfur poisoning of a downstream nitrogen storage reduction (NSR) catalyst trap in exhaust gas cleaning systems for combustion engines by adsorbing SOx as metal sulfate under lean exhaust conditions and desorbing the accumulated SOx under rich exhaust conditions. The regenerable sulfur oxides trap catalyst compositions include a metal (M) oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof and a metal (M)-La—Zr oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof. In addition, provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: August 13, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul J. Polini
  • Patent number: 8507403
    Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 13, 2013
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
  • Publication number: 20130204018
    Abstract: The present invention relates to a micropowder, wherein the particles of the micropowder have a Dv10 value of at least 2 micrometer and the micropowder comprises mesopores which have an average pore diameter in the range of from 2 to 50 nm and comprise, based on the weight of the micropowder, at least 95 weight-% of a microporous aluminum-free zeolitic material of structure type MWW containing titanium and zinc.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 8, 2013
    Inventors: Andrei-Nicolae PARVULESCU, Ulrich Mueller, Joaquim Henrique Teles, Bianca Seelig, Philip Kampe, Markus Weber, Robert Bayer, Karsten Seidel, Peter Resch
  • Patent number: 8497223
    Abstract: A process for production of a DDR-type zeolite membrane, which comprises: both a seed crystal-forming step of immersing a porous substrate in a seed crystal-forming raw material solution which contains a DDR-type zeolite powder dispersed therein and performing hydrothermal synthesis to form plural DDR-type zeolite crystal particles on surface of the porous substrate, and a membrane-forming step of immersing the resulting porous substrate with DDR-type zeolite crystal particles on the surface in a membrane-forming raw material solution which is free from DDR-type zeolite powder and performing hydrothermal synthesis to form a DDR-type zeolite membrane on the surface of the porous substrate. According to the process, a dense DDR-type zeolite membrane can be formed, and the vessel used in the synthesis can be prevented from being damaged.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: July 30, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makiko Niino, Kenji Yajima
  • Publication number: 20130175202
    Abstract: The present invention relates to a hydrocracking catalyst for hydrocarbon oil comprising a support containing a framework-substituted zeolite-1 in which zirconium atoms and/or hafnium atoms form a part of a framework of an ultrastable y-type zeolite and a hydrogenative metal component carried thereon and a method for producing the same. The hydrocracking catalyst of the present invention makes it easy to diffuse heavy hydrocarbon oils such as VGO, DAO and the like into mesopores, is improved in a cracking activity and makes it possible to obtain a middle distillate at a high yield as compared with catalysts prepared by using zeolite comprising titanium and/or zirconium carried thereon.
    Type: Application
    Filed: August 2, 2011
    Publication date: July 11, 2013
    Applicants: SAUDI ARABIAN OIL COMPANY, JAPAN COOPERATION CENTER, PETROLEUM, JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji, Ali Mahmood Al-Somali, Ali H. Al-Abdul'Al, Mishaal Al-Thukair, Masaru Ushio, Ryuzo Kuroda, Takashi Kameoka, Koji Nakano, Yuichi Takamori
  • Patent number: 8481443
    Abstract: In a process for producing xylene by transalkylation of a C9+aromatic hydrocarbon feedstock with a C6 and/or C7 aromatic hydrocarbon, the C9+aromatic hydrocarbon feedstock, at least one C6 and/or C7 aromatic hydrocarbon and hydrogen are contacted with a first catalyst under conditions effective to dealkylate aromatic hydrocarbons in the feedstock containing C2+alkyl groups and to saturate C2+olefins formed so as to produce a first effluent. At least a portion of the first effluent is then contacted with a second catalyst under conditions effective to transalkylate C9+aromatic hydrocarbons with said at least one C6-C7 aromatic hydrocarbon to form a second effluent comprising xylene.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: July 9, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Doron Levin, April D. Ross, James H. Beech, Jr.
  • Patent number: 8481442
    Abstract: An arrangement for aftertreatment of exhaust gas for lean-burn internal combustion engines such as diesel engines and Otto engines with direct injection has a NOx storage catalyzer installed in the exhaust gas train for reducing nitrogen oxides and at which nitrogen oxides are stored in lean operating phases and these stored nitrogen oxides are reduced in rich operating phases. At least one molecular sieve which keeps sulfur dioxide away from the at least one NOx storage catalyzer is arranged upstream of the NOx storage catalyzer.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: July 9, 2013
    Assignee: MAN Truck & Bus AG
    Inventor: Andreas Döring
  • Publication number: 20130168290
    Abstract: A composition of a value added RFCC catalyst and a process of preparation of a composition for a dual function additive catalyst from a spent catalyst are disclosed. The value added spent FCC catalyst offers improved performance, options such as either employing as an additive for passivation of both vanadium and nickel and enhancing catalytic activity, for initial start-up or make-up for attrition losses. The value addition process does not harm any of physical properties of starting material with respect to ABD, attrition index, surface area and particle size distribution. Value added catalyst can be used in a range from 1-99 wt % in fluid catalytic cracking process in which, feeds may have higher metals and carbon.
    Type: Application
    Filed: July 4, 2011
    Publication date: July 4, 2013
    Applicant: INDIAN OIL CORPORATION LTD.
    Inventors: Prabhu K. Mohan, A.V. Karthikeyani, Manish Agarwal, Biswanath Sarkar, Balaiah Swamy, V. Chidambaram, P.S. Choudhury, S. Rajagopal
  • Publication number: 20130172649
    Abstract: A catalyst containing nanosize zeolite particles supported on a support material for alkylation reactions, such as the alkylation of benzene to form ethylbenzene, and processes using such a catalyst is disclosed.
    Type: Application
    Filed: December 12, 2012
    Publication date: July 4, 2013
    Inventors: Sivadinarayana Chinta, Joseph Pelati
  • Publication number: 20130165719
    Abstract: A reforming process includes an endpoint reduction zone for converting C11+ components via selective hydrogenation and hydrodealkylation to lower boiling point aromatics, such as benzene, toluene, and xylene, or their single ring aromatic C9-C10 precursors.
    Type: Application
    Filed: November 21, 2012
    Publication date: June 27, 2013
    Applicant: UOP LLC
    Inventor: UOP LLC