Contains Organic Component Patents (Class 507/203)
  • Patent number: 11939516
    Abstract: Provided is a composition that may include a fluid formulation that is a water-in-oil emulsion, having an organic phase and an aqueous phase, the aqueous phase dispersed in the organic phase. The organic phase may include an organic solvent, an emulsifier, and a wetting agent. The aqueous phase may include water, a chelating agent, and a base. Further provided is a method that may include introducing the composition into a wellbore as a single stage treatment, maintaining the wellbore by shutting-in the well, and hydraulic fracturing the wellbore.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: March 26, 2024
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Abdullah Al Moajil, Waddah H. Almahri
  • Patent number: 11739011
    Abstract: A biocide testing system includes test columns, a bypass tube, control valves, and a control system. Each test column includes biocide test coupons. The bypass tube is fluidly coupled to each of the test columns. Each control valve is coupled between a respective test column and the bypass tube. The control system performs operations including: controlling the control valves to fluidly couple the test columns to a water source; controlling a pump to circulate water from the water source into the test columns to immerse each test coupon in water; controlling the control valves to fluidly isolate the test columns from the water source and to fluidly isolate each test column from the other test columns; controlling a particular control valve to fluidly couple a particular test column to a biocide source; and controlling the pump to circulate biocide from the biocide source into the particular test column to immerse the test coupons in the particular test column in biocide.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: August 29, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Abdulmohsen A. Al-Humam, Othman A. Olayan
  • Patent number: 11674071
    Abstract: This disclosure provides drilling fluids and additives as well as fracturing fluids and additives that contain cellulose nanofibers and/or cellulose nanocrystals. In some embodiments, hydrophobic nanocellulose is provided which can be incorporated into oil-based fluids and additives. These water-based or oil-based fluids and additives may further include lignosulfonates and other biomass-derived components. Also, these water-based or oil-based fluids and additives may further include enzymes. The drilling and fracturing fluids and additives described herein may be produced using the AVAP® process technology to produce a nanocellulose precursor, followed by low-energy refining to produce nanocellulose for incorporation into a variety of drilling and fracturing fluids and additives.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: June 13, 2023
    Assignee: GranBio Intellectual Property Holdings, LLC
    Inventors: Jean-Pierre Monclin, Kimberly Nelson, Theodora Retsina
  • Patent number: 11408281
    Abstract: A method for determining sand pumping parameters based on width distribution of fracture, including: acquire basic parameters of a target reservoir, simulate a propagation of the fracture, and obtain a propagation pattern and width distribution of the fracture; determine a maximum proppant particle size for entering the fracture at all width levels according to statistical results of the width distribution of the fracture; determine a multi-size combination of proppants according to a mapping table for particle size vs mesh of proppants, and determine an initial ratio of the proppant with each particle size; conduct a numerical simulation of proppant transportation in the fracture to determine a retention ratio of the proppants with each particle size; correct the initial ratio of the proppants with each particle size; calculate an amount of the proppants with each particle size according to the final ratio and the sand pumping intensity and fracturing interval length.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: August 9, 2022
    Assignee: SOUTHWEST PETROLEUM UNIVERSITY
    Inventors: Qianli Lu, Jianchun Guo, Zhuang Liu, Le He, Songgen He, Yong Ren, Ji Zeng, Shouyi Wang, Shan Ren
  • Patent number: 11254861
    Abstract: A system for slowly releasing an oil-soluble well treatment agent into a well or a subterranean formation includes a composite of the oil-soluble well treatment agent associated with a second component. The amount of the oil-soluble well treatment agent in the composite is from 20 to 35 weight percent and the average particle size of the oil-soluble well treatment agent in the composite is less than or equal to 1 micrometer. The composite may further contain a water-soluble well treatment agent.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: February 22, 2022
    Assignee: Baker Hughes Holdings LLC
    Inventors: Sumit Bhaduri, Frances H. Debenedictis, D. V. Satyanarayana Gupta
  • Patent number: 11098237
    Abstract: A method of servicing a wellbore penetrating a subterranean formation, comprising placing into the wellbore a wellbore servicing fluid comprising a sterically-hindered ester having a general formula R1COOR2 and an aqueous fluid, wherein R1, R2 or both have A-values greater than about 1.76 kcal/mol.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: August 24, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hui Zhou, Jay Paul Deville, Eliane Padua Oliveira
  • Patent number: 10961443
    Abstract: Oil field chemical delivery fluids containing a mixture of a base fluid and microcapsules having an oil field chemical contained within the microcapsule are described. Chemical groups in the outer surface of the microcapsules interact with the base fluid and promote the dispersibility of the microcapsules in the base fluid. Chemical groups in the outer surface of the microcapsules interact with the targeted areas of a hydrocarbon reservoir and promote the substantivity of the microcapsules to the targeted areas of the reservoir. The oil field chemical delivery fluids provide for the placement of microcapsules in a desired location within the well and/or reservoirs using properties such as the density of the microcapsules. Methods of making oil field chemical delivery fluids, systems containing oil field chemical delivery fluids, methods of fracturing rock in a reservoir and tracing the movement of fluid in a hydrocarbon reservoir using these fluids are described.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: March 30, 2021
    Assignee: Johnson Matthey Public Limited Company
    Inventor: Chun-tian Zhao
  • Patent number: 10941336
    Abstract: The present disclosure provides a method for hydraulic fracturing of a formation penetrated by a wellbore, the method comprising: providing a proppant and a two-component adhesive; injecting a proppant-free fracturing fluid into the wellbore to form a fracture in the formation; pulse-injecting the fracturing fluid into the wellbore, wherein pulse-injection provides for at least one injection pulse of the proppant-laden fracturing fluid comprising the two-component adhesive and at least one injection pulse of the proppant-free fracturing fluid, wherein the proppant is characterized by at least one of the following properties: the resistance of the proppant to crushing is lower than the rock closure pressure; when a pressure of 20.7 MPa is applied to this proppant, at least 5 wt. % of particles with a size of less than 100 ?m are formed; the size distribution of the proppant is 10-1,000 ?m; the sphericity and/or roundness of the proppant is less than 0.6; the solubility of the proppant in acids is 5-20 wt.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: March 9, 2021
    Assignee: Schlumberger Technology Corporation
    Inventor: Danil Sergeevich Pantsurkin
  • Patent number: 10534871
    Abstract: Fluid property modeling that employs a model that characterizes asphaltene concentration gradients is integrated into a reservoir modeling and simulation framework to allow for reservoir compartmentalization (the presence or absence of flow barrier in the reservoir) to be assessed more quickly and easily. Additionally, automated integration of the fluid property modeling into the reservoir modeling and simulation framework allows the compositional gradients produced by the fluid property modeler (particularly asphaltene concentration gradients) to be combined with other data, such as geologic data and other petrophysical data, which allows for more accurate assessment of reservoir compartmentalization.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: January 14, 2020
    Assignee: Schlumberger Technology Corporation
    Inventors: Andrew E. Pomerantz, Youxiang Zuo, John Waggoner, Zulfiquar Ail Reza, Sophie Nazik Godefroy, Thomas Pfeiffer, Denise E. Freed, Oliver C. Mullins
  • Patent number: 10407624
    Abstract: A method of chemically changing extra-heavy/heavy crude oil into lighter crude oil and incrustation deposits in the down well casing's perforation using a chemical formulation under the following condition: 1) a working solution comprising heavy naphtha mixed with the chemical formulation is added to extra-heavy/heavy crude oil at ambient temperature by circulating through a centrifugal pump until the conversion of the heavy crude oil to lighter crude oil is complete and the crude oil is ready for transportation through pipeline or other means; or 2) thermal energy and equivalent to the normal pressure present, is artificially duplicated, at the down well location of perforations to contact the asphaltene incrustations with the formulation without dilution with naphtha or the energy imparted by a centrifugal pump.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: September 10, 2019
    Assignee: DPD CHEMICAL, INC.
    Inventor: Mathew M Zuckerman
  • Patent number: 10293595
    Abstract: An apparatus for fabricating a three-dimensional object includes a flattening unit, a fabrication liquid discharger, and circuitry. The flattening unit transfers and flattens powder deposited on the stage. The fabrication liquid discharger discharges droplets of fabrication liquid on a surface of the powder on the stage to bind the powder together to fabricate a layered fabrication object. The circuitry repeats an operation of transferring and flattening the powder by the flattening unit and an operation of discharging droplets of the fabrication liquid on the surface of the powder on the stage by the fabrication liquid discharger to fabricate the three-dimensional object by a process of lamination. The circuitry discharges a plurality of first droplets of the fabrication liquid on the surface of the powder on the stage such that at least two adjacent first droplets partially overlap.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: May 21, 2019
    Assignee: RICOH COMPANY, LTD.
    Inventor: Daichi Yamaguchi
  • Patent number: 10221658
    Abstract: Chelating agents and silica scale control additives are often employed separately in conjunction with performing a dissolution process in a subterranean formation containing a siliceous material. Carminic acid and related compounds may be used to perform similar functions dually in various subterranean treatment operations. Methods for treating a subterranean formation can comprise: providing a treatment fluid comprising a carrier fluid and an ortho-dihydroxylated aromatic compound comprising a substance selected from the group consisting of carminic acid, kermesic acid, any salt thereof, any derivative thereof, and any combination thereof; and introducing the treatment fluid into a subterranean formation.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: March 5, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Ravikant S. Belakshe, Sumit Ramesh Songire
  • Patent number: 10183891
    Abstract: The invention relates to a mineral foam stabilized by an association of surfactants comprising: a first surfactant carrying at least one sulfate group; and a second amphoteric surfactant.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: January 22, 2019
    Assignee: RHODIA OPERATIONS
    Inventors: Jean-Christophe Castaing, Katerina Karegianni, Marie-Pierre Labeau, Arnaud Vanberleere
  • Patent number: 10011908
    Abstract: Compounds and compositions are used as corrosion inhibitors for pipelines for crude oil containing water with high salt concentrations. The inhibitors are ionic liquids, imidazoles, benzotriazoles, and mixtures thereof. The composition includes two or more members of the inhibitors with a solvent. The inhibitors reduce corrosion of metallic surfaces of the pipelines containing crude oil having 0.2 and 40 wt % water, 10,000 to 70,000 ppm salt, and 9 to 600 ppm hydrogen sulfide. A synergic effect is provided by two or more different inhibitors. This synergy is derived from interactions with the metallic surface, among themselves or with the corrosive medium depending on the chain length, to inhibit the corrosion with decrease of the formulation dose. The composition can be a ternary formulation of the three families or two components of one family and a third component of a different family.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: July 3, 2018
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Jesus Marin Cruz, Araceli Vega Paz, Luisa Elena Montiel Sanchez, Salvador Castillo Cervantes, Rafael Martinez Palou, Arquimedes Estrada Martinez, Luis Manuel Quej Ake, Jose Luis Rodolfo Benitez Aguilar, Veronica Sanchez Garcia
  • Patent number: 9834722
    Abstract: Various embodiments disclosed relate to delayed crosslinking compositions or reaction products thereof for treatment of a subterranean formation. In various embodiments, the present invention provides a method of treating a subterranean formation including placing in a subterranean formation a subterranean treatment composition including at least one of a delayed crosslinking composition and a reaction product thereof. The delayed crosslinking composition includes a crosslinker including a functionality chosen from —B(OH)2, —B?(OH)2, —O—B(OH)—O—B(OH)—O—, —O—B(OH)—O—B?(OH)(—O—)2, a salt thereof, an ester thereof, and a combination thereof. The delayed crosslinking composition also includes a glycol including at least one of a 1,2-diol and a 1,3-diol.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: December 5, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Shashank Deep Agarwal, Amit Chandrakant Agrawal
  • Patent number: 9663709
    Abstract: Viscosified treatment fluids that include polyol derivatized cellulose may be useful in subterranean operations. For example, a method may include introducing a viscosified treatment fluid into a wellbore penetrating a subterranean formation, wherein the viscosified treatment fluid comprises an aqueous base fluid, borate ions, and a polyol derivatized cellulose, and wherein the polyol derivatized cellulose comprise a cellulosic backbone derivatized with pendants comprising (1) a terminal polyol and (2) at least one of an internal 1,2,3-triazole, an internal ester, and an internal amide.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: May 30, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Aaron Gene Russell, Dipti Singh, Jeremy Holtsclaw, Jim D. Weaver
  • Patent number: 9611423
    Abstract: Provided is a petroleum fracturing proppant prepared from flyash and waste ceramics, the petroleum fracturing proppant being prepared from the following components: 40 wt. %-90 wt. % of main material, the main material being flyash and waste ceramics; 1 wt. %-40 wt. % of auxiliary material, the auxiliary material being potassium feldspar powder and manganese ore powder; and the sum of the main material and the auxiliary material is 100%. The present invention employs low-cost flyash and waste ceramics as raw material, and the petroleum fracturing proppant prepared under a low temperature has low apparent density and strong crushing resistance, and is also low cost and reduces energy consumption.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: April 4, 2017
    Assignee: Hebi Tianrui Petroleum Proppant Co., Ltd
    Inventors: Shengjie Zhang, Linqun Zhang, Yingjun Wang
  • Patent number: 9315720
    Abstract: A downhole fluid comprises a base fluid, for example a hydrocarbon base fluid, and a pyromellitamide gelling agent. The pyromellitamide gelling agent may have the general formula of: with R1, R2, R3, R4, R5, R6, R7, and R8 each being a hydrogen or an organic group. A method comprises introducing the downhole fluid into a downhole formation. A method of making a downhole fluid, the method comprising: combining a base fluid and a pyromellitamide gelling agent. A composition for gelling a downhole fluid, the composition comprising a pyromellitamide gelling agent and a wetting agent.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: April 19, 2016
    Assignee: Synoil Fluids Holdings Inc.
    Inventors: Shaun T. Mesher, Olivia Steward, Daniel Firth
  • Patent number: 9217102
    Abstract: A downhole fluid comprises a base fluid, for example a hydrocarbon base fluid, and a gelling agent. The gelling agent has an aromatic core of one or more aromatic rings, the gelling agent having two or more amide branches distributed about the aromatic core, each of the two or more amide branches having one or more organic groups. An example gelling agent is a pyromellitamide gelling agent. The pyromellitamide gelling agent may have the general formula of: with R1, R2, R3, R4, R5, R6, R7, and R8 each being a hydrogen or an organic group. Methods of use and composition are discussed.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: December 22, 2015
    Assignee: SynOil Fluids Holdings Inc.
    Inventors: Shaun T. Mesher, Olivia Steward, Daniel Firth, Robert Moran
  • Publication number: 20150133355
    Abstract: A method is provided involving altering the viscosity of bio-derived paraffins to produce a paraffinic fluid, where the altering step includes chlorinating the bio-derived paraffins; the bio-derived paraffins include a hydrodeoxygenated product produced by hydrodeoxygenating a bio-based feed where the bio-based feed includes bio-derived fatty acids, fatty acid esters, or a combination thereof; the bio-derived paraffins include n-paraffins; and the n-paraffins have a biodegradability of at least 40% after about 23 days of exposure to microorganisms. Also provided are methods of protecting and/or cleaning a substance by applying the paraffinic fluid.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Inventors: Ramin Abhari, E. Gary Roth, Peter Z. Havlik, H. Lynn Tomlinson
  • Patent number: 9027644
    Abstract: Crosslinked gelling agents employed during subterranean operations use electronically-modified boronic acids to enable higher operating temperatures while allowing reduced gelling agent loadings; the boronic acids having Formula I: X1 and X2 are independently selected from O, CH2, CH2O, OCH2, bond, and null, Y1 and Y2 are independently N or C, Ar is a 5- or 6-membered ring aryl or heteroaryl group with a link L to monomer unit M1, m is 1 or 2, n is 0, 1, 2, or 3, and each Z is independently an electron withdrawing group selected from nitro, ester, carboxylic acids, carboxylates, halogen, cyano, amide, acyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, CF3, a quaternary ammonium salt, polyhaloalkyl, and carbamate, with the proviso that when n is 0, the link L between M1 and Ar includes an electron withdrawing group attached to Ar, and introducing the treatment fluids into subterranean formations.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: May 12, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: James William Ogle, Jeremy Holtsclaw, David Loveless
  • Patent number: 9023770
    Abstract: A method of increasing the fracture complexity in a treatment zone of a subterranean formation is provided. The subterranean formation is characterized by having a matrix permeability less than 1.0 microDarcy. The method includes the step of pumping one or more fracturing fluids into a far-field region of a treatment zone of the subterranean formation at a rate and pressure above the fracture pressure of the treatment zone. A first fracturing fluid of the one or more fracturing fluids includes a first solid particulate, wherein: (a) the first solid particulate includes a particle size distribution for bridging the pore throats of a proppant pack previously formed or to be formed in the treatment zone; and (b) the first solid particulate comprises a degradable material. In an embodiment, the first solid particulate is in an insufficient amount in the first fracturing fluid to increase the packed volume fraction of any region of the proppant pack to greater than 73%.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: May 5, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Bradley L. Todd, Thomas D. Welton
  • Publication number: 20150105302
    Abstract: The present invention generally provides systems, methods, and compositions comprising an emulsion or a microemulsion and chlorine dioxide for use in oil and/or gas wells. In some embodiments, the systems, methods, and/or compositions comprise reducing the viscosity a fluid comprising a polymer, wherein the fluid was utilized in the recovery of oil and/or gas from the oil and/or gas well.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 16, 2015
    Applicant: CESI Chemical, Inc.
    Inventors: John T. Pursley, Glenn S. Penny, Charles Earl Hammond
  • Patent number: 9004167
    Abstract: In a method of gravel packing a wellbore in a subterranean formation, the wellbore comprising a cased section and an uncased section, the method may include pumping into the wellbore a gravel pack composition comprising gravel and a carrier fluid comprising an invert emulsion fluid, where the invert emulsion fluid may comprise: an oleaginous external phase; a non-oleaginous internal phase, wherein a ratio of the oleaginous external phase and non-oleaginous internal phase is less than 50:50 and an emulsifier stabilizing the oleaginous external phase and the non-oleaginous internal phase.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: April 14, 2015
    Assignee: M-I L.L.C.
    Inventors: Mark Luyster, Arvind D. Patel, Sooi Kim Lim
  • Publication number: 20150096750
    Abstract: A water-in-oil type emulsion having a dispersed particle volume fraction of greater than about 60 volume percent, based on the based on the total volume of the emulsion. Methods to produce the emulsion, treatment fluids comprising the emulsion, and uses thereof are also disclosed.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Applicants: M-I L.L.C., Schlumberger Technology Corporation
    Inventors: Anthony Loiseau, Hemant Kumar. J. Ladva, Arvindbhai Patel, Yiyan Chen
  • Patent number: 8980801
    Abstract: A silicate gel composition that is useful for sealing the face of a fracture of a formation. A method of sealing a face of a fracture of a formation with the silicate gel composition and diverting an acid treatment fluid.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: March 17, 2015
    Assignee: Saudi Arabian Oil Company
    Inventors: Saleh Haif Al-Mutairi, Ali Dahmal Al-Aamri, Khalid A. Al-Dossary, Mubarak Auodah Al-Dhufairi
  • Patent number: 8969259
    Abstract: A method is provided involving altering the viscosity of bio-derived paraffins to produce a paraffinic fluid, where the altering step includes oligomerizing bio-derived paraffins, unsaturating bio-derived paraffins, chlorinating bio-derived paraffins, or a combination of any two or more thereof; the bio-derived paraffins are produced by hydrodeoxygenating a bio-based feed; the bio-based feed comprises bio-derived fatty acids, fatty acid esters, or a combination thereof; the bio-derived paraffins comprise n-paraffins; and the n-paraffins have a biodegradability of at least 40% after about 23 days of exposure to microorganisms. Also provided are methods of protecting a substance by applying a paraffinic fluid and a method of producing an orifice in a substrate by at least injecting a paraffinic fluid into the substrate.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: March 3, 2015
    Assignee: Reg Synthetic Fuels, LLC
    Inventors: Ramin Abhari, E. Gary Roth, Peter Z. Havlik, H. Lynn Tomlinson
  • Patent number: 8969264
    Abstract: A treatment fluid comprises: a metal oxide, wherein the metal oxide is capable of forming a chelate complex or coordination complex with a ligand, wherein the chelate complex or coordination complex has a setting time of less than 90 minutes at a temperature of 71° F. and a pressure of 1 atmosphere. A method of treating a portion of a subterranean formation comprises: introducing the treatment fluid into the subterranean formation; allowing or causing a chelate complex or coordination complex to form between the metal oxide and a ligand; and allowing or causing the chelate complex or coordination complex to set.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: March 3, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dale E. Jamison, Donald L. Whitfill, Matthew L. Miller, Kay A. Morris
  • Publication number: 20150057195
    Abstract: Improved hydraulic fracturing compositions are disclosed which help reduce potential negative environmental impact by hydraulic fracturing. The disclosed compositions have flammability and toxicity and are relatively safe for the environment. The compositions may also contain biodegradable components.
    Type: Application
    Filed: November 4, 2014
    Publication date: February 26, 2015
    Inventor: Courtney Gene Rogers
  • Patent number: 8962535
    Abstract: Methods and compositions including a method comprising: providing a treatment fluid comprising an aqueous fluid, a relative permeability modifier, and a chelating agent; introducing the treatment fluid into a well bore that penetrates a subterranean formation; and allowing at least a first portion of the treatment fluid to penetrate into a portion of the subterranean formation so as to substantially divert a second portion of the treatment fluid to another portion of the subterranean formation.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: February 24, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Thomas D. Welton, Bradley L. Todd, Larry S. Eoff
  • Publication number: 20150045260
    Abstract: Aqueous and substantially anhydrous fluids having particularly low thermal conductivities and variable densities are disclosed. The fluids include: one or more organic and/or inorganic salts and at least one aprotic polar organic solvent, a mixture of aprotic and protic polar organic solvents, and/or a polar organic solvent having both protic and aprotic polar functional group linkages. The fluids optionally include one or more viscosifying agents and are free of cross-linking agents. Methods for formulating and using the fluids are also disclosed.
    Type: Application
    Filed: October 23, 2014
    Publication date: February 12, 2015
    Inventors: Jeffrey McKennis, Marshall Chiasson, Mohammad Hossaini, Nam-Sook Bae
  • Patent number: 8936082
    Abstract: A method includes providing a slurry comprising a carrier fluid and a solids mixture, and injecting said slurry in a wellbore wherein the solids mixture comprises at least two volume-averaged particle size distribution (PSD) modes, wherein a first PSD mode comprises solids having a volume-average median size at least three times larger than the volume-average median size of a second PSD mode such that a packed volume fraction (PVF) of the solids mixture exceeds 0.75.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: January 20, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Mohan K. R. Panga, Peter J. Photos, Bruno Drochon, John W. Still, Mehmet Parlar, Balkrishna Gadiyar, Dinesh R. Patel, Graham M. Watson
  • Patent number: 8916506
    Abstract: High solids content slurry, systems and methods. The slurry comprises a carrier fluid and a solids mixture of first, second, third and fourth particle size distribution (PSD) modes wherein the first PSD mode is at least three times larger than the second PSD mode, which is larger than the third PSD mode, which is larger than the fourth PSD mode, and wherein at least one of the second and third PSD modes is less than 3 times larger than the respective third or fourth PSD mode. The method comprises forming the slurry, positioning a screen in a wellbore and circulating the slurry through the wellbore such that the solids mixture is deposited between the screen and the wellbore. The system comprises a pump to circulate the slurry, a workstring to position the screen and means for converting the slurry to a gravel pack.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: December 23, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Mohan K. R. Panga, Jean-Phi Bedel, Yiyan Chen
  • Patent number: 8895476
    Abstract: Aqueous and substantially anhydrous fluids having particularly low thermal conductivities and variable densities are disclosed. The fluids include: one or more organic and/or inorganic salts and at least one aprotic polar organic solvent, a mixture of aprotic and protic polar organic solvents, and/or a polar organic solvent having both protic and aprotic polar functional group linkages. The fluids optionally include one or more viscosifying agents and are free of cross-linking agents. Methods for formulating and using the fluids are also disclosed.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: November 25, 2014
    Assignee: Tetra Technologies, Inc.
    Inventors: Jeffrey McKennis, Marshall Chiasson, Mohammad Hossaini, Nam-Sook Bae
  • Publication number: 20140342950
    Abstract: Methods of treating a subterranean formation including providing a treatment fluid comprising an oil-based fluid component and an oil-soluble weighting agent that comprises a metal, wherein the oil-soluble weighting agent has a density in the range of from about 1.1 g/cm3 to about 22 g/cm3; solubilizing the oil-soluble weighting agent in the oil-based fluid component of the treatment fluid, wherein the oil-soluble weighting agent increases the density of the oil-based fluid component of the treatment fluid; introducing the oil-based treatment fluid into a wellbore in a subterranean formation.
    Type: Application
    Filed: May 20, 2013
    Publication date: November 20, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Cato Russell McDaniel, Dale E. Jamison
  • Patent number: 8887815
    Abstract: Inhibiting gas hydrate formation while transporting hydrocarbon fluids may include providing a kinetic gas hydrate inhibitor, adding the kinetic gas hydrate inhibitor to a fluid capable of producing gas hydrates, and transporting the fluid that comprises the kinetic gas hydrate inhibitor. Generally a kinetic gas hydrate inhibitor may include a heterocyclic compound comprising nitrogen, e.g., poly(vinyl pyrrolidone).
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: November 18, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Alexandra Clare Morrison
  • Patent number: 8877691
    Abstract: Methods of decreasing the viscosity of a treatment fluid through contact with a cyclodextrin modifier. Such methods include providing a cyclodextrin modifier; providing a treatment fluid that comprises a base fluid and a viscosifying agent wherein the viscosifying agent is selected from the group consisting of a hydrophobically modified polymer, a viscoelastic surfactant, a phosphonate surfactant, or a combination thereof; and, introducing the cyclodextrin modifier and the treatment fluid into a well bore penetrating a subterranean formation wherein the viscosity of the treatment fluid is decreased due to the combination of the hydrophobically modified polymer and the cyclodextrin modifier.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: November 4, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: B. Raghava Reddy, Narongsak Tonmukayakul
  • Patent number: 8877692
    Abstract: A well treatment composition comprises: a water-soluble, organic liquid, wherein the organic liquid: (A) comprises the continuous phase of the well treatment composition; and (B) comprises a polyglycol or a derivative of polyglycol; a fluid loss additive, wherein the fluid loss additive: (A) is insoluble in the organic liquid; and (B) comprises a high molecular weight, water-swellable polymer; and a suspending agent, wherein the suspending agent comprises an organophilic clay, wherein the well treatment composition has an activity of at least 15%. A method of cementing in a subterranean formation comprises: introducing a cement composition into the subterranean formation, the cement composition comprising: (i) cement; (ii) water; and (iii) the well treatment composition; and allowing the cement composition to set after introduction into the subterranean formation.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: November 4, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Abhijit Tarafdar, Remitha Ak
  • Patent number: 8871097
    Abstract: A method of reclaiming a formate brine may include increasing the pH of a spent formate brine fluid comprising water-soluble polymers; treating the fluid with an oxidizing agent; and removing at least a portion of suspended solids from the fluid. Further, a method of reclaiming a formate brine may include lowering the pH of the spent formate brine fluid comprising water-soluble polymers; increasing the pH of the spent formate brine fluid to initiate precipitation of materials solubilized in the fluid; treating the fluid with an oxidizing agent to break down remaining water-soluble polymer; and recovering at least a portion of the formate brine.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: October 28, 2014
    Assignee: M-I L.L.C.
    Inventors: Hui Zhang, Robert L. Horton, Charles Svoboda, Frank E. Evans
  • Publication number: 20140305649
    Abstract: Methods of stimulating a well comprising providing a stimulation fluid comprising at least one surfactant and submicron particles, the submicron particles having a particle size between about 200 nm and about 800 nm and a specific surface area greater than about 5 square meters per gram; and introducing the stimulation fluid into a wellbore. Additional methods to enhance oil recovery from subterranean reservoirs accessible via a well are described.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 16, 2014
    Inventors: Hongxin Tang, Zayne Hai Lu
  • Publication number: 20140303057
    Abstract: A method is provided involving altering the viscosity of bio-derived paraffins to produce a paraffinic fluid, where the altering step includes oligomerizing bio-derived paraffins, unsaturating bio-derived paraffins, chlorinating bio-derived paraffins, or a combination of any two or more thereof; the bio-derived paraffins are produced by hydrodeoxygenating a bio-based feed; the bio-based feed comprises bio-derived fatty acids, fatty acid esters, or a combination thereof; the bio-derived paraffins comprise n-paraffins; and the n-paraffins have a biodegradability of at least 40% after about 23 days of exposure to microorganisms. Also provided are methods of protecting a substance by applying a paraffinic fluid and a method of producing an orifice in a substrate by at least injecting a paraffinic fluid into the substrate.
    Type: Application
    Filed: April 26, 2013
    Publication date: October 9, 2014
    Applicant: Syntroleum Corporation
    Inventors: Ramin Abhari, E. Gary Roth, Peter Z. Havlik, H. Lynn Tomlinson
  • Patent number: 8853137
    Abstract: A method of increasing the fracture complexity in a treatment zone of a subterranean formation is provided. The subterranean formation is characterized by having a matrix permeability less than 1.0 microDarcy. The method includes the step of pumping one or more fracturing fluids into a far-field region of a treatment zone of the subterranean formation at a rate and pressure above the fracture pressure of the treatment zone. A first fracturing fluid of the one or more fracturing fluids includes a first solid particulate, wherein: (a) the first solid particulate includes a particle size distribution for bridging the pore throats of a proppant pack previously formed or to be formed in the treatment zone; and (b) the first solid particulate comprises a degradable material. In an embodiment, the first solid particulate is in an insufficient amount in the first fracturing fluid to increase the packed volume fraction of any region of the proppant pack to greater than 73%.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: October 7, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Bradley L. Todd, Thomas D. Welton
  • Publication number: 20140251607
    Abstract: The present disclosure provides methods of using a nonionic surfactant for enhanced oil recovery, where the nonionic surfactant is prepared with a double metal cyanide catalyst. The present disclosure also provides for an emulsion that includes carbon dioxide, a diluent and the nonionic surfactant.
    Type: Application
    Filed: September 20, 2012
    Publication date: September 11, 2014
    Applicant: DOW Global Technologies LLC
    Inventors: Aaron W. Sanders, Sayeed Abbas, Shawn Maynard, Matthew Miller
  • Patent number: 8822387
    Abstract: A waxy oil-external emulsion is provided for injection into a selected zone of a subsurface formation. The selected zone is typically a high permeability zone. The emulsion generally comprises oil, added wax, and water. The emulsion may also include an emulsifying agent and a solvent. The emulsion is formulated to be a liquid at a temperature greater than a targeted temperature in the subsurface formation, but a solid at the targeted temperature. The targeted temperature is typically the maximum operating temperature for the formation. A method of formulating the emulsion is also provided. Further, a method of plugging a high permeability zone using the emulsion is disclosed.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: September 2, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: James R. Bragg, Joseph P. Lederhos, Sergio A. Leonardi, Scott E. Hommema, Amy L. Chen, Shan H. Yang
  • Publication number: 20140243246
    Abstract: A method for improving the performance of fracturing processes in oil production fields may rely on polymer coated particles carried in the fracturing fluid. The particles may include heavy substrates, such as sand, ceramic sand, or the like coated with polymers selected to absorb water, increasing the area and volume to travel more readily with the flow of fluid without settling out, or allowing the substrate to settle out. Ultimately, the substrate may become lodged in the fissures formed by the pressure or hydraulic fracturing, resulting in propping open of the fissures for improved productivity.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 28, 2014
    Applicant: AQUASMART ENTERPRISES, LLC
    Inventor: Calder Hendrickson
  • Patent number: 8813847
    Abstract: An improvement over known hydraulic fracturing fluids. Boundary layer kinetic mixing material is added to components of fracturing fluid wherein kinetic mixing material is a plurality of particles wherein at least 25% of particles are several types, i.e., having surface characteristics of thin walls, three dimensional wedge-like sharp blades, points, jagged bladelike surfaces, thin blade surfaces, three-dimensional blade shapes that may have shapes similar to a “Y”, “V” or “X” shape or other geometric shape, slightly curved thin walls having a shape similar to an egg shell shape, crushed hollow spheres, sharp bladelike features, 90° corners that are well defined, conglomerated protruding arms in various shapes, such as cylinders, rectangles, Y-shaped particles, X-shaped particles, octagons, pentagon, triangles, and diamonds.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: August 26, 2014
    Assignee: Ecopuro, LLC
    Inventor: William L. Johnson, Sr.
  • Publication number: 20140228259
    Abstract: According to one aspect of the inventions, emulsion compositions are provided. Emulsions according to this aspect include: (a) a water-insoluble resinous material; (b) water; and (c) an emulsifier, wherein the emulsifier comprises a non-ionic, a cationic, or a zwitterionic emulsifier; wherein the continuous phase of the emulsion comprises the water; wherein a dispersed phase of the emulsion comprises the resinous material; wherein the dispersed phase is in the form of droplets having a size distribution range such that at least 50% of the droplets have a size of 0.5 micrometers-500 micrometers; wherein the resinous material of the droplets is in a concentration of at least 5% by weight of the water; and wherein the composition of the droplets has a viscosity of less than 2,000 Poise measured at 20° F. According to another aspect of the inventions, methods are provided for treating a portion of a subterranean formation.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 14, 2014
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Ian D. Robb, Sherry G. Gaskins, Jimmie D. Weaver, Phillip D. Nguyen
  • Patent number: 8800658
    Abstract: An aqueous slurry composition for use in industries such as petroleum and pipeline industries that includes: a particulate, an aqueous carrier fluid, a chemical compound that renders the particulate surface hydrophobic, and a small amount of an oil. The slurry is produced by rendering the surface of the particulate hydrophobic during or before the making of the slurry. The addition of the oil greatly enhances the aggregation potential of the hydrophobically modified particulates once placed in the well bore.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: August 12, 2014
    Assignee: Trican Well Service Ltd.
    Inventor: Kewei Zhang
  • Patent number: 8794325
    Abstract: This invention relates to oil and gas production, more specifically, to the methods of producing polymer emulsion for downhole operations and mixing degradable (hydrolysable) polymer emulsion with the treatment fluid.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: August 5, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Dean Willberg, Christopher N Fredd, Vadim Kamilievich Khlestkin, Denis Olegovich Menshikov
  • Publication number: 20140202700
    Abstract: A biodegradable and environmentally friendly oil external emulsion for the removal of asphaltenes, paraffin's, and/or scales which accumulate in the well bores and walls of the pipes used to bring the oil up from the underground deposits, and methods of using and formulating the composition are disclosed. The emulsion comprises oil extracted from orange peels as the external continuous phase and acid as the internal phase. The emulsion has a particular utility in cleaning asphaltenes and paraffin residues from the well formation surface, well cuttings, and down hole and surface oil well drilling and production equipment.
    Type: Application
    Filed: January 24, 2013
    Publication date: July 24, 2014
    Applicant: CUDD PRESSURE CONTROL, INC.
    Inventor: Cecil Curtis Blair