With Reactant Nitrogen Or Sulfur Compound Patents (Class 523/428)
  • Publication number: 20110272191
    Abstract: A potting material for an electronic component, an electronic component, and a process for positioning ferrites in an electronic material are disclosed. The potting material is formed by curing a mixture. The mixture includes an epoxy component, an organic amine hardener, a viscosity-controlling agent, and a silica. The potting material has a coefficient of thermal expansion between an inorganic ferrite coefficient of thermal expansion and an organic substrate coefficient of thermal expansion of the electronic component. The potting material includes a rigidity permitting via drilling by one or more of mechanical drilling and laser burning.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 10, 2011
    Applicant: TYCO ELECTRONICS SERVICES GMBH
    Inventors: Haiying LI, William Lee Harrison
  • Patent number: 8044154
    Abstract: Disclosed herein is a curing agent for epoxy resins that is comprised of the reaction product of an amine, an epoxy resin, and an elastomer-epoxy adduct. Additionally disclosed is a process comprising agitating a solution of an amine, an epoxy resin, and an elastomer-epoxy adduct as a dispersant at an elevated temperature in an organic medium.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 25, 2011
    Assignee: Trillion Science, Inc.
    Inventors: John J. McNamara, Yurong Ying, Rong-Chang Liang
  • Patent number: 8044119
    Abstract: An insulating material and the method of applying the insulating material to products and systems. The material, method and system may be applied to tubulars used in deep water projects. The insulating material is composed of ceramic particles, epoxy and an acrylate monomer that is a precurser to an acrylic resin, and additives. Equal volumes of a epoxy component mixtures and a curing agent component mixture when heated and mixed together create a liquid insulating material that can be applied to the outer surface of pipe involving a repetitive series of steps controlled by an operator at a main control panel. Pipe unrolled from a pipe reel is straightened and heated. In a heated retort, liquid insulating material is applied to the surface of pipe and cured to the final insulation coating. The final coated pipe can be replaced on the reel for shipment to the job site.
    Type: Grant
    Filed: October 7, 1999
    Date of Patent: October 25, 2011
    Inventors: James E. Landry, Barry E. Burke
  • Publication number: 20110218272
    Abstract: Provided are a thermosetting resin composition suitable for forming a composite material that has excellent mechanical characteristics, such as wet heat resistance and toughness, and also a prepreg using the same. The thermosetting resin composition includes at least a component [A] including thermoplastic resin particles and a thermosetting resin [B]. The component [A] includes a melt blend of at least the components [A-1] and [A-2] given below. In the particles, the component [A-1] and the component [A-2] may be in a non-compatibilized state or a compatibilized state.
    Type: Application
    Filed: November 7, 2009
    Publication date: September 8, 2011
    Applicant: TOHO TENAX CO., LTD.
    Inventors: Hiroshi Numata, Hironori Kawamoto
  • Patent number: 8003737
    Abstract: A curable composition comprising a) an epoxy resin containing on average more than one epoxy group per molecule, and b) as curing agent a hybrid hardener, whereby said hardener is a blend of b1) an aminic compound selected from aliphatic, cycloaliphatic, araliphatic amines, imidazoline group-containing amidoamines based on mono- or polybasic acids, adducts of said amines or amidoamines made from glycidyl compounds, adducts of said amines or amidoamines made from cyclic carbonates, whereby said aminic compound contains, on average per molecule, at least two reactive hydrogen atoms bound to nitrogen atoms, and b2) a DCPD-phenol based novolac, and wherein the DCPD-phenol novolac is used in an amount from 1 to 65 wt %, based on the total weight of the hardener blend b1) and b2), especially useful as protective coatings for metallic and mineral substrates.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: August 23, 2011
    Assignee: Huntsman International LLC
    Inventor: Isabelle Marie Muller-Frischinger
  • Publication number: 20110190420
    Abstract: Curable polymer mixtures comprising at least one oligomeric addition product with hydrolyzable silane groups and additional functional groups as the mediator additive, and a curable polymer system having epoxy group-carrying polymers and curing agents, fillers and optionally addditives; polymer concrete mixtures and molded bodies produced therefrom
    Type: Application
    Filed: August 19, 2009
    Publication date: August 4, 2011
    Applicant: BYK-CHEMIE GMBH
    Inventors: René Nagelsdiek, Bernd Göbelt, Wolfgang Pritschins, Dorothée Greefrath, Stephan Remme, Andrea Esser
  • Publication number: 20110184091
    Abstract: An epoxy resin composition comprising an epoxy resin [A], an amine-based curing agent [B] and a block copolymer [C] as components, wherein the epoxy resin [A] contains [Aa] an epoxy resin having at least one structure selected from a condensed polycyclic structure, biphenyl structure and oxazolidone ring structure; [Ab] an epoxy resin selected from a polyfunctional amine type epoxy resin [Ab1] and a liquid bisphenol type epoxy resin [Ab2], and the block copolymer [C] is at least one block copolymer selected from the group consisting of S-B-M, B-M and M-B-M. The present invention provides an epoxy resin composition that can be cured to form a cured product excellent in heat resistance, elastic modulus and toughness.
    Type: Application
    Filed: September 29, 2009
    Publication date: July 28, 2011
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Maki Mizuki, Nobuyuki Tomioka, Takayuki Imaoka, Shiro Honda, Noriyuki Hirano, Jun Misumi, Kaori Narimatsu
  • Publication number: 20110177242
    Abstract: Two-part adhesive compositions are described. The two-part adhesives have a first part and a second part, said composition comprising at least one aromatic epoxy resin in the first part; at least one amine curing agent in the second part; and at least one ester in at least one of the first and/or second part. The ester corresponds to the general formula R2—CO—OR1; wherein R1 is an organic moiety comprising at least one of (i) at least one epoxy group or (ii) at least one acryl group and R2 is a branched alkyl group. The structural adhesive may be used to form bonded joints between adherents having clean surfaces, as well as those having surfaces contaminated with hydrocarbon-containing materials, such as oils, processing aids and lubricating agents.
    Type: Application
    Filed: September 25, 2009
    Publication date: July 21, 2011
    Inventors: Dirk Kolowrot, Matthias Popp
  • Publication number: 20110143856
    Abstract: By completing curing in a short period of time even at low temperatures and using an epoxy resin composition as a matrix resin of a prepreg, it is possible to obtain a fiber-reinforced composite plastic product such as a fiber-reinforced tubular composite with excellent mechanical properties and, more particularly, excellent impact resistance. The epoxy resin composition includes A component, B component, C component, D component and E component, where the content rate of sulfur atoms is equal to or more than 0.2 wt % and equal to or less than 7 wt %, and the content rate of the C component is equal to or more than 1 wt % and equal to or less than 15 wt %. A component: epoxy resins, B component: reactive products of the epoxy resins and an amine compounds including the sulfur atom in a molecule (the unreacted epoxy resins and/or the amine compounds may be included), C component: polyamide compounds soluble in the A component, D component: urea compounds, and E component: dicyandiamide.
    Type: Application
    Filed: August 27, 2009
    Publication date: June 16, 2011
    Applicants: Mitsubishi Rayon Co., Ltd., MAR COMPOSITE PRODUCTS CO.,LTD.
    Inventors: Youhei Miwa, Tadayoshi Saitou, Masato Taguchi, Mikihiro Uchizono, Tetsuya Atsumi, Tsutomu Ibuki
  • Patent number: 7951456
    Abstract: A two-component epoxy adhesive composition comprises a) a first component comprising a first epoxy resin and a second epoxy resin being flexibilized by an elastomer, and b) a second component comprising at least one amine compound with one or more primary and/or secondary amino groups having a molecular weight of less than 450 g/mole. The ratio of the total number of amino groups of the amine compound to the total number of epoxy groups of the epoxy resins is from 0.01:1 to 0.5:1. The mixing of components a) and b) results in a wash-off resistant composition upon heat-curing in a crash-stable structural adhesive.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 31, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Karsten Frick, Andreas Lutz, Isabell Wipf
  • Publication number: 20110117281
    Abstract: This invention relates to aqueous binders comprising mass fractions of from 70% to 98% of chain-extended epoxy amine adducts A and from 2% to 30% of crosslinkers C that are selected from the group consisting of aminoplast resins, phenol resols, triazine tris-alkyl carbamates, and mixtures of such crosslinking agents, a method of making these binder mixtures, and a method of use thereof in coatings for metals, wood, cardboard, plaster, and concrete.
    Type: Application
    Filed: July 6, 2009
    Publication date: May 19, 2011
    Inventors: Roland Feola, Leila Khatai
  • Publication number: 20110111663
    Abstract: Disclosed is an epoxy resin composition comprising at least component [A]: a glycidyl-amino-group-containing polyfunctional epoxy resin, component [B]: an epoxy resin other than the component [A], component [C]: a polyisocyanate compound, component [D]: an aromatic-amine-based curing agent, and component [E]: a thermoplastic resin, characterized in that the epoxy resin composition has an epoxy group concentration of 0.67 to 1.51 Eq/kg of the total amount of the components [A] to [D], and preferably that the component [E] is in a proportion of 10 to 50% by weight of the total epoxy resin composition. Use of a prepreg having the resin composition as a matrix resin makes it possible to obtain a composite material with excellent heat resistance and wet heat resistance together with high mechanical properties.
    Type: Application
    Filed: June 6, 2009
    Publication date: May 12, 2011
    Applicant: TOHO TENAX CO., LTD
    Inventors: Hironori Kawamoto, Toyoaki Ishiwata
  • Publication number: 20110097568
    Abstract: Disclosed herein are an epoxy resin composition for fiber-reinforced composite materials which has low viscosity, high Tg, high elastic modulus, and excellent fracture toughness and a fiber-reinforced composite material using such an epoxy resin composition which has excellent thermal properties, compressive strength, impact resistance, fatigue resistance, and open-hole tensile strength and which is suitable for producing structural parts of aircraft and the like. The epoxy resin composition comprises at least a given bifunctional epoxy resin as a component (A), a liquid aromatic diamine curing agent as a component (B), and core-shell polymer particles as a component (C), wherein the core-shell polymer particles as the component (C) contain epoxy groups in their shell and have a volume-average particle size of 50 to 300 nm.
    Type: Application
    Filed: March 23, 2009
    Publication date: April 28, 2011
    Inventors: Toshiya Kamae, Shinji Kochi, Masayuki Miyoshi, Kenichi Yoshioka
  • Patent number: 7928170
    Abstract: The present invention is one liquid type cyanate-epoxy composite resin composition comprised of cyanate ester resin (A), epoxy resin (B), and potential curing agent (C), characterized in that the above potential curing agent is the potential curing agent containing phenol resin (b) as well as modified amine (a) which has one or more amino groups having an active hydrogen within a molecule obtained by reacting polyamine compound (a-1) with epoxy compound (a-2). The one liquid type cyanate-epoxy composite resin composition having storage stability, curing properties and high heat resistance properties at the same time can be realized by this composition.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: April 19, 2011
    Assignee: Adeka Corporation
    Inventors: Ryo Ogawa, Yoko Masamune, Shinsuke Yamada
  • Patent number: 7923516
    Abstract: The present invention is a cyanate-epoxy composite resin composition comprised of a cyanate ester resin (A), an epoxy resin (B), and a latent curing agent (C), characterized in that the latent curing agent (C) is composed of a modified polyamine (c1), a phenol resin (c2) and one or more kind of polycarboxylic acid (c3). The above modified polyamine (c1) is a modified polyamine, which is obtained by the reaction of polyamine compound (c1-1) with epoxy compound (c1-2), containing one or more amino group having an active hydrogen within a molecule.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: April 12, 2011
    Assignee: Adeka Corporation
    Inventors: Ryo Ogawa, Mitsunori Ide, Shinsuke Yamada
  • Publication number: 20110079352
    Abstract: A B-stageable dielectric composition for flow control during electronic package assembly is described. The B-stageable composition comprises a resin matrix and flow control agents. The B-stageable composition is particularly useful in laminating substrates for electronic devices and electronic components, where the flow property of the composition must be tightly controlled during the assembly.
    Type: Application
    Filed: October 15, 2010
    Publication date: April 7, 2011
    Inventors: Jayesh Shah, Jing Fan
  • Publication number: 20110011533
    Abstract: Oxygen barrier compositions for electrical devices and their related methods are provided. In certain embodiments, the oxygen barrier compositions comprise a meta-substituted aromatic resin and an additional aromatic epoxy resin. In some embodiments, the compositions have a chlorine content of less than approximately 1000 ppm. The compositions may have an oxygen permeability of less than approximately 0.4 cm3·mm/m2·atm·day at approximately 0% relative humidity and approximately 23° C. In certain embodiments, methods of curing the oxygen barrier compositions comprise partially curing the composition where, the partial cure is achieved through ultraviolet radiation or heat.
    Type: Application
    Filed: July 17, 2009
    Publication date: January 20, 2011
    Inventors: Josh H. Golden, Matthew P. Galla, Luis A. Navarro
  • Publication number: 20110009528
    Abstract: It is an object of the present invention to provide a fiber reinforced composite material combining good properties such as toughness and impact resistance and to provide an epoxy resin composition to obtain this. This object is achieved by the an epoxy resin composition comprising the following [A], [B], [C], and [D]: [A] a diglycidyl ether-type epoxy resin having a molecular weight of 1,500 or more; [B] an epoxy resin in which an SP value of a structural unit thereof is greater by 1.5 to 6.5 than an SP value of a structural unit of [A]; [C] a diglycidyl ether-type epoxy resin having a molecular weight of 500 to 1,200; and [D] an epoxy resin curing agent, in a ratio that satisfies the following formulas (1) to (4): 0.2?A/(A+B+C+E)?0.6;??(1), 0.2?B/(A+B+C+E)?0.6;??(2), 0.15?C/(A+B+C+E)?0.4; and??(3), 0?E/(A+B+C+E)?0.2,??(4) wherein A, B, and C represent weights of [A], [B], and [C], respectively, and E represents a weight of an epoxy resin other than [A], [B], and [C].
    Type: Application
    Filed: February 26, 2009
    Publication date: January 13, 2011
    Inventors: Nobuyuki Tomioka, Shiro Honda, Yuki Mitsutsuji, Maki Mizuki, Takayuki Imaoka
  • Publication number: 20100317768
    Abstract: An epoxy resin hardener composition including a reaction product of (i) a compound having at least one vicinal epoxy group, and (ii) an amino alcohol; an epoxy resin composition including the epoxy resin hardener composition and a compound having at least one vicinal epoxy group; and a powder coating composition including particles of the epoxy resin hardener composition and particles of a compound having at least one vicinal epoxy group.
    Type: Application
    Filed: January 6, 2009
    Publication date: December 16, 2010
    Inventors: Joseph Gan, Carola Rosenthal, Matthieu M. Eckert, Bernhard Kainz, Emile C. Trottier
  • Publication number: 20100311870
    Abstract: This invention is directed to two-pack coating compositions comprising epoxy resins B having at least one epoxide group per molecule, and adducts A of epoxy resins A1 having at least one epoxide group per molecule and of multifunctional A2 acids having at least two acidic hydrogen groups per molecule, a process for their preparation, and a method of use thereof in coating of substrates.
    Type: Application
    Filed: January 14, 2009
    Publication date: December 9, 2010
    Applicant: Cytec Surface Specialties Austria Gmbh
    Inventor: Roland Feola
  • Patent number: 7842177
    Abstract: A pigmented granular pigmented coating feedstock is prepared by melting a resin, which can be a solid resin based on polymerizable ethylenically unsaturated monomer or epoxy based resin, and a solid or viscous curing agent, blending the molten mass, and cooling to form a solid. The solid blend of resin and curing agent is ground to produce a granular feedstock. The feedstock is readily storable or shippable to a location for coating preparation. Alternatively a solid coating can be ground after shipping. An aqueous coating is made by dispersing the feedstock in water and mixing to form a dispersion. A salting agent and at least one additive can be added to form an aqueous coating composition. An article can be coated with the dispersion, for example, by electrodeposition.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: November 30, 2010
    Assignee: BASF Coatings GmbH
    Inventor: Charles L. Tazzia
  • Patent number: 7834091
    Abstract: The present invention relates to a two-component epoxy adhesive composition comprising a) a first component comprising a first epoxy resin and a second epoxy resin, the second epoxy resin being flexibilized by an elastomer, and b) a second component comprising at least one amine compound with one or more primary and/or secondary amino groups, said amine compound having a molecular weight of less than 450 g/mol. The ratio of the total number of amino groups of the amine compound to the total number of epoxy groups of the epoxy resins is 0.01:1 to 0.5:1. The mixing of the two components a) and b) results in a wash-off resistant composition. Said wash-off resistant composition results upon heat-curing in a crash-stable structural adhesive.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: November 16, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Karsten Frick, Andreas Lutz, Isabell Wipf
  • Patent number: 7820772
    Abstract: An amine hardener for epoxy resins which comprises an amine adduct (A) and a low-molecular amine compound (B) as major components, wherein the molecular weight distribution of the amine adduct (A), which is defined by the ratio of the weight-average molecular weight to the number-average molecular weight, is 3 or lower and the low-molecular amine compound (B) is contained in an amount of 0.001 to 1 part by mass per 100 parts by mass of the amine adduct (A).
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: October 26, 2010
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Taketoshi Usui, Kazuhiko Yamamoto, Hisanao Yamamoto, Kazuhiro Daikai
  • Patent number: 7790011
    Abstract: A granular coating feedstock is prepared by melting a resin, which can be a solid, polymerizable, ethylenically unsaturated monomer or epoxy-based resin, and a solid or viscous curing agent, blending the molten mass, and cooling to form a solid. The solid blend of resin and agent is ground to produce a granular coating feedstock. The feedstock is readily storable or shippable to a location for coating preparation. Alternatively the feedstock can be ground after shipping. An aqueous coating composition is made by dispersing the feedstock in water and mixing to form a dispersion. A salting agent and at least one additive can be added to form an aqueous coating composition. An article can be coated with the dispersion, for example, by electrodeposition.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: September 7, 2010
    Assignee: BASF Coatings GmbH
    Inventor: Charles L Tazzia
  • Patent number: 7781499
    Abstract: A process for obtaining aqueous compositions including curing epoxy agents includes providing an aqueous mixture comprising at least one polymercaptan, at least one di- or poly(amido)amine, and water, and reacting the aqueous mixture with an uncured epoxy resin to form a final cured epoxy resin is provided. A process for obtaining aqueous compositions including curing epoxy agents includes providing an aqueous mixture of at least one waterpoxy treated with at least one polymercaptan, and reacting the aqueous mixture with an uncured epoxy resin to form the final cured epoxy resin is also provided.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: August 24, 2010
    Assignee: Cognis IP Management GmbH
    Inventors: Joaquin Bigorra Llosas, Andres Ortuno, Luis Llaurado, Jose Manuel Hierro, Giorgio Sabbadini
  • Patent number: 7745515
    Abstract: The present invention relates to an epoxy resin varnish composition with high glass transition temperature for laminate plate, wherein the resin composition comprises: (A) a new dihydrobenzoxazine thermosetting resin obtained by reacting compounds: (a) phenolic products from reaction of di- or multifunctional epoxy resin and di-functional phenolic compounds; (b) mono- or di-functional primary amines; (c) di-functional phenols; and (d) formaldehyde or paraformaldehyde, (B) one or more epoxy resins, (C) novolac resin curing agents, and (D) curing promoters. For the epoxy resin varnish composition, crosslinking density of resin is increased due to using modified dihydrobenzoxazine thermosetting resin with multiple functional groups, so that mechanical strength and heat resistance of the obtained substrate are remarkably improved, and solubility problem of dihydrobenzoxazine in solvent is solved to greatly elevate production efficiency.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: June 29, 2010
    Assignee: Nan Ya Plastics Corporation
    Inventor: Ming-Jen Tzou
  • Patent number: 7736743
    Abstract: Compositions containing at least one liquid epoxy resin, at least one solid epoxy resin, at least one propellant, at least one curing agent and at least one mica-containing filler produce expandable, thermally curable binder systems which may be used without the addition of hollow glass beads for the production of stiffening and reinforcing laminates and for the production of stiffening and reinforcing moldings. Said laminates according to the invention are suitable for the stiffening and reinforcing of components, in particular in the automotive industry, such as car body frames, doors, boot lids, engine bonnets and/or roof parts. In addition, the mouldings that may be produced from said binders are suitable for the stiffening and reinforcing of hollow metal structures, in particular of hollow car body parts such as body frames, body supports and posts or doors in the automotive industry.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: June 15, 2010
    Assignee: Henkel KGaA
    Inventors: Xaver Muenz, Larissa Bobb
  • Patent number: 7722950
    Abstract: An adhesive for a circuit material, comprises a blend of a cure system; and a solid epoxy resin and a nitrile rubber functionalized with epoxy-reactive groups, wherein the solid epoxy resin and the nitrile rubber are reacted to form an adduct prior to blending with the cure system. The adhesive has low dendritic growth and improved solder resistance.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: May 25, 2010
    Assignee: World Properties, Inc.
    Inventors: David Guo, Carlos L. Barton
  • Publication number: 20100116433
    Abstract: The invention relates to compositions containing at least one solid epoxide resin A, at least one polymer B of formula (I), at least one thixotropic agent C made from a urea derivative and at least one curing agent for epoxide resins D activated by high temperatures. The compositions are particularly suitable for use as adhesives. Low-temperature impact-resistant adhesives can be produced for use in particular as structural adhesives.
    Type: Application
    Filed: July 5, 2006
    Publication date: May 13, 2010
    Applicant: SIKA TECHNOLOGY AG
    Inventors: Jurgen Finter, Andreas Kramer, Jan Olaf Schulenburg, Urs Rheinegger
  • Publication number: 20090184431
    Abstract: A liquid epoxy resin composition comprising (A) a liquid epoxy resin, (B) an aromatic amine curing agent comprising at least 5% by weight of a specific aromatic amine compound, and (C) an inorganic filler has a low viscosity for ease of working, cures into a cured product which has improved adhesion to the surface of silicon chips, and offers an encapsulated semiconductor device that does not suffer a failure even at a reflow temperature of 260-270° C., does not deteriorate under hot humid conditions, and does not peel or crack on thermal cycling.
    Type: Application
    Filed: October 23, 2008
    Publication date: July 23, 2009
    Inventors: Kazuaki Sumita, Toshio Shiobara
  • Patent number: 7521120
    Abstract: Provided are a non-halogen flame retardant epoxy resin composition comprising (A) a silicon-containing, phosphorus-modified epoxy resin, (B) a multifunctional epoxy resin, (C) a mixed curing agent of an amine curing agent and a phenolic curing agent and (D) a metal hydrate inorganic flame retardant, and a prepreg and copper-clad laminate using the same. The epoxy resin composition in accordance with the present invention exhibits excellent flame retardancy without use of a halogen flame retardant, and also advantageously provides well-balanced various physical properties which are to be required in copper-clad laminates, such as higher heat resistance and copper peel strength, and lead heat-resistant characteristics after moisture absorption.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: April 21, 2009
    Assignee: LG Chem, Ltd.
    Inventors: Mok Yong Jung, Eunhae Koo
  • Patent number: 7511097
    Abstract: The present invention relates to a two-component epoxy adhesive composition comprising a) a first component comprising a first epoxy resin and a second epoxy resin, the second epoxy resin being flexibilized by an elastomer, and b) a second component comprising at least one amine compound with one or more primary and/or secondary amino groups, said amine compound having a molecular weight of less than 450 g/mol. The ratio of the total number of amino groups of the amine compound to the total number of epoxy groups of the epoxy resins is 0.01:1 to 0.5:1. The mixing of the two components a) and b) results in a wash-off resistant composition. Said wash-off resistant composition results upon heat-curing in a crash-stable structural adhesive.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: March 31, 2009
    Assignee: Dow Global Technologies, Inc.
    Inventors: Karsten Frick, Andreas Lutz, Isabell Wipf
  • Patent number: 7498384
    Abstract: Multi-component epoxy-amine primer systems are disclosed, which comprise an amine component that comprises a polythioether. Also disclosed are substrates coated with such primer systems as well as methods for coating substrates with such primer systems.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: March 3, 2009
    Assignee: PPG Industries Ohio, Inc.
    Inventors: John A. Walker, Scott C. Peterson
  • Publication number: 20090048370
    Abstract: Two-component epoxy-based structural adhesives are disclosed which exhibit excellent impact resistance, even when cured at approximately room temperature. The adhesives include an epoxy resin component which includes an epoxy resin and a reactive tougher. The adhesives also include a hardener component, which includes from 15 to 50 weight percent of an amine-terminated polyether, from 4 to 40 weight percent of an amine terminated rubber having a glass transition temperature of ?40° C. or below, and from 10 to 30 weight percent of an amine-terminated polyamide having a melting temperature of no greater than 50° C.
    Type: Application
    Filed: August 12, 2008
    Publication date: February 19, 2009
    Inventors: Andreas Lutz, Beda Steiner
  • Patent number: 7465477
    Abstract: This invention concerns an epoxy coating for use as a non-skid surface for applications such as the deck of an aircraft carrier. The epoxy coating can be formulated from (a) an amine curing agent, (b) an epoxide-containing toughening agent such as a polysulfide and/or a polythioether, (c) an epoxy resin, (d) a rubber toughening agent, and (e) an optional fire retardant, a glass fiber thixotrope and impact toughening agent, an optional pigment, an optional corrosion inhibitor, an optional moisture penetration inhibitor, an optional ultraviolet light stabilizer, an optional abrasive aggregate, or a combination thereof.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: December 16, 2008
    Assignee: Texas Research International, Inc.
    Inventors: George P. Hansen, Rock A. Rushing, John W. Bulluck, Joshua B. Lightfoot, Brad A. Rix
  • Patent number: 7435767
    Abstract: This invention concerns an epoxy coating for use as a non-skid surface for applications such as the deck of an aircraft carrier. The epoxy coating can be formulated from (a) an amine curing agent, (b) an epoxide-containing toughening agent such as a polysulfide and/or a polythioether, (c) an epoxy resin, (d) a rubber toughening agent, and (e) an optional fire retardant, a glass fiber thixotrope and impact toughening agent, an optional pigment, an optional corrosion inhibitor, an optional moisture penetration inhibitor, an optional ultraviolet light stabilizer, an optional abrasive aggregate, or a combination thereof.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: October 14, 2008
    Assignee: Texas Research International, Inc.
    Inventors: George P. Hansen, Rock A. Rushing, John W. Bulluck, Joshua B. Lightfoot, Brad A. Rix
  • Patent number: 7435451
    Abstract: This invention concerns an epoxy coating for use as a non-skid surface for applications such as the deck of an aircraft carrier. The epoxy coating can be formulated from (a) an amine curing agent, (b) an epoxide-containing toughening agent such as a polysulfide and/or a polythioether, (c) an epoxy resin, (d) a rubber toughening agent, and (e) an optional fire retardant, a glass fiber thixotrope and impact toughening agent, an optional pigment, an optional corrosion inhibitor, an optional moisture penetration inhibitor, an optional ultraviolet light stabilizer, an optional abrasive aggregate, or a combination thereof.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: October 14, 2008
    Assignee: Texas Research International, Inc.
    Inventors: George P. Hansen, Rock A. Rushing, John W. Bulluck, Joshua B. Lightfoot, Brad A. Rix
  • Publication number: 20080099955
    Abstract: A method of making High Temperature Resistant Models and Tools is provided. An assembly of substrates can be formed with intermediate adhesive layer of curable paste and same curable paste can be used as topcoat or sealer. The curable paste can be machine dispensed from a mixer mixing 2 components composition. The composition can contain a resin, a filler, a chemical thixotropy agent, a latent hardener and another hardener. The method provides easy and cost-effective manufacture of models or tools.
    Type: Application
    Filed: November 9, 2005
    Publication date: May 1, 2008
    Inventor: Matthew Cleaver
  • Publication number: 20080093021
    Abstract: Two-component adhesives (K), which includes two components K1 and K2. Component K1 includes at least one epoxy resin A with more than one epoxy group per molecule on average; at least one epoxy adduct B with more than one epoxy group per molecule on average that is an epoxy adduct of type B1 and optionally combined with an epoxy adduct of type B2; at least one reaction product F between an epoxy adduct B and a compound C, which has at least two isocyanate groups, in addition to at least one curing agent D for epoxy resins, which is activated by increased temperature. The component K2 comprises a compound E, which includes at least two isocyanate groups.
    Type: Application
    Filed: February 25, 2005
    Publication date: April 24, 2008
    Applicant: SIKA TECHNOLOGY AG
    Inventors: Peter Merz, Jurgen Finter
  • Patent number: 7294660
    Abstract: An epoxy resin composition which comprises 100 parts by weight of an epoxy resin and 1 to 800 parts by weight of an aluminum borate whisker having an average fiber diameter of 0.25 ?m or less. The epoxy resin composition contains a large amount of the aluminum borate whisker being dispersed uniformly therein, is excellent in mechanical strength, and is suppressed with respect to the anisotropy of a mechanical property due to the direction of application.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: November 13, 2007
    Assignee: Asahi Denka Co., Ltd.
    Inventors: Seiichi Saito, Yoshihiro Fukuda, Takahiro Mori, Yoshinori Takahata
  • Patent number: 7213739
    Abstract: The invention is directed to a fluxing curative for curing an underfill that comprises an epoxy resin and for fluxing a solder during a solder assembly of an electronic component to an electronic device substrate and a method for producing the fluxing curative. Specifically, the fluxing curative comprises a salt that is a reaction product of an imidazole component and a carboxylic acid component having at least 10 carbon atoms per molecule. Additionally, the invention is directed to an underfill solution comprising the fluxing curative and a method of attaching an integrated circuit device using the underfill solution.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: May 8, 2007
    Assignee: Fry's Metals, Inc.
    Inventors: Mark Wilson, James M. Hurley
  • Patent number: 7179552
    Abstract: Resin compositions which comprise the following components (A) to (E) are useful for interlayer insulation of a multilayer printed wiring board: (A) an epoxy resin having 2 or more epoxy group in one molecule and which exists in a liquid state at a temperature of 20° C.; (B) an aromatic epoxy resin having 3 or more epoxy groups in one molecule and an epoxy equivalent of 200 or less; (C) a phenol type curing agent; (D) one or more resins selected from the group consisting of a phenoxy resin, a polyvinyl acetal resin, a polyamide resin, a polyamideimide resin, and mixtures thereof, and having a glass transition temperature of 100° C. or more; and (E) an inorganic filler.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: February 20, 2007
    Assignee: Ajinomoto Co., Inc.
    Inventors: Shigeo Nakamura, Kenji Kawai
  • Patent number: 7094844
    Abstract: A liquid epoxy resin composition comprising a liquid epoxy resin, an aromatic amine curing agent having a phenolic hydroxyl group in a skeleton, an inorganic filler, and a cure accelerator is useful for semiconductor encapsulation. The composition is adherent to the surface of silicon chips, does not deteriorate under hot humid conditions, and is fully resistant to thermal shocks.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: August 22, 2006
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Kazuaki Sumita, Shingo Ando, Toshio Shiobara
  • Patent number: 7064157
    Abstract: The present invention relates to a phosphorus-containing epoxy resin, which is an epoxy resin modified with a side chain having a reactive phosphorus-containing compound. Also, the present invention relates to a flame-retardant resin composition, which comprises: (1) the phosphorus-containing epoxy resin, (2) a halogen-free hardener having a reactive hydrogen capable of reacting with the epoxy group in epoxy resin, and (3) a hardener promoter. The flame-retardant resin composition described above has improved excellent heat resistance and flame retardant property, and is especially suitable for adhesive laminates, composite materials, printed circuit boards, adhesive material for copper foils, and is suitable for IC packaging materials.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: June 20, 2006
    Assignee: Chang Chun Plastics Co., Ltd.
    Inventors: Kuen Yuan Hwang, Hong-Hsing Chen, An Pang Tu, Huan-Chang Chao
  • Patent number: 7037586
    Abstract: The present invention relates to a film for a circuit board characterized in that the following A layer is adjacent to the following B layer is disclosed in the present application. A circuit board excellent in adhesion strength of a conductor layer can easily be produced by using this film. A layer: a heat-resistant resin layer with a thickness of from 2 to 250 ?m which layer is made of a heat-resistant resin having a glass transition point of 200° C. or more or a decomposition temperature of 300° C. or more, and B layer: a roughenable cured resin layer with a thickness of from 5 to 20 ?m which layer is made of a cured product of a thermosetting resin composition containing at least component (a) of an epoxy resin having two or more epoxy groups in a molecule and component (b) of an epoxy curing agent, the cured product being capable of roughening with an oxidizing agent.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: May 2, 2006
    Assignee: Ajinomoto Co., Inc.
    Inventors: Tadahiko Yokota, Shigeo Nakamura
  • Patent number: 7037958
    Abstract: This invention concerns an epoxy coating for use as a non-skid surface for applications such as the deck of an aircraft carrier. The epoxy coating can be formulated from (a) an amine curing agent, (b) an epoxide-containing toughening agent such as a polysulfide and/or a polythioether, (c) an epoxy resin, (d) a rubber toughening agent, and (e) an optional fire retardant, a glass fiber thixotrope and impact toughening agent, an optional pigment, an optional corrosion inhibitor, an optional moisture penetration inhibitor, an optional ultraviolet light stabilizer, an optional abrasive aggregate, or a combination thereof.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: May 2, 2006
    Assignee: Texas Research International, Inc.
    Inventors: George P. Hansen, Rock A. Rushing, John W. Bulluck, Joshua B. Lightfoot, Brad A. Rix
  • Patent number: 7005185
    Abstract: An epoxy composition includes an epoxy resin, a latent curing agent, and a catalyst. The composition includes two epoxide groups per molecule, and the latent curing agent is preferably a dicyanopolyamide, and most preferably dicyandiamide. The catalyst includes 2,4-toluene bis dimethyl urea, preferably in a concentration exceeding 70% by weight. The composition can be used in prepregs. The relative concentrations of the epoxy resin, curing agent, and catalyst are selected to achieve desired properties, including specific curing times and temperatures, and glass transition temperatures that enable a cured resin composition to be removed from a mold after being heated to its curing temperature, without being cooled. Exemplary formulations have reduced cure times, at both high and low curing temperatures, as compared to prior art formulations.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: February 28, 2006
    Assignee: Toray Composites (America), Inc.
    Inventors: Wei (Helen) Li, Kishio Miwa
  • Patent number: 6936664
    Abstract: The present invention discloses reworkable epoxy compositions suitable for encapsulation of and underfill for electronic components comprising (a) a curable epoxy component which is the reaction product of an epoxidized 1-alkenyl ether or 1-cycloalkenyl ether and a polycarboxylic acid, the reaction product being substantially free of unreacted acid or acid impurities; and (b) a curing agent for the epoxy component, wherein the reaction products of the epoxy composition are reworkable. The cured epoxy compositions of this invention contain thermally labile weak ?-alkoxy ester linkages which provide for the reworkable aspect of the invention.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: August 30, 2005
    Assignee: Henkel Corporation
    Inventors: John G. Woods, Susanne D. Morrill, Jianzhao Wang, Brendan J. Kneafsey
  • Patent number: 6884854
    Abstract: Condensation products prepared from cyclic carboxylic anhydrides of dicarboxylic acids, tricarboxylic anhydrides or tetracarboxylic anhydrides and difunctional polyamines, in particular polyoxyalkyleneamines, are suitable as a builder component for epoxy resin compositions. The reaction products based on tricarboxylic anhydrides or tetracarboxylic anhydrides are distinguished by having on average more than one imide group and carboxyl group per molecule. The compositions may optionally also contain condensation products obtained from tri- or poly-functional polyols and/or tri- or poly-functional amino-terminated polymers and cyclic carboxylic anhydrides, wherein the latter reaction products contain on average more than one carboxyl group per molecule. These compositions additionally contain conventional rubber-modified epoxy resins together with liquid and/or solid polyepoxy resins and conventional hardeners and accelerators and optionally fillers and rheology auxiliaries.
    Type: Grant
    Filed: March 31, 2001
    Date of Patent: April 26, 2005
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Rainer Schoenfeld, Hubert Schenkel, Harald Kuester
  • Patent number: 6844379
    Abstract: Compositions having high moisture resistance and flexibility comprise an organic component and a filler. The organic component comprises a long-chain cycloaliphatic epoxy resin, a short-chain cycloaliphatic epoxy resin, a cyanate ester, and a Lewis acid catalyst. Preferably the organic component further comprises a Bronsted acid co-catalyst and/or a flexibilizing modifier. The compositions are useful in various semiconductor applications, including as die attach adhesives, underfills, encapsulants, via fills, prepreg binders, polymer solder masks and polymer bumps on flip chip or BGA assemblies.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: January 18, 2005
    Assignee: Honeywell International Inc.
    Inventors: Xiao-Qi Zhou, Henry Wevick, Nancy Iwamoto, Shao Wei Li, Alan Grieve