Material Contains Compound Of Group Ia (li, Na, K, Rb, Cs, Fr) Or Group Iia (be, Mg, Ca, Sr, Ba, Ra) Metal Wherein Ia Or Iia Metal Is Not Bonded To Hydrogen Or To Carbon Patents (Class 526/123.1)
  • Patent number: 7427653
    Abstract: A catalyst component for olefin (co)polymerization, and in particular for the preparation of LLDPE, comprising Mg, Ti, halogen and an electron donor compound (ED) belonging to ethers, esters, amines, ketones, or nitriles, characterized in that the molar ratio Mg/Ti is higher than 5, and the molar ratio ED/Ti is higher than 3.5. The said catalyst components display a homogeneous distribution of the comonomer in and among the copolymer chains.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: September 23, 2008
    Assignee: Basell Poliolefine Italia S.p.A
    Inventors: Diego Brita, Gianni Collina, Giampiero Morini, Gianni Vitale
  • Publication number: 20080207853
    Abstract: Compounds are provided that are useful as precatlysts in the polymerization of olefins such as ethylene and propylene. Other compounds are useful as intermediates in the production of such precatalysts.
    Type: Application
    Filed: February 23, 2007
    Publication date: August 28, 2008
    Inventors: Omofolami Tesileem Ladipo, Richard Eaves, Alexey Zazybin, Sean Parkin
  • Publication number: 20080161512
    Abstract: An embodiment of the present invention allows for production, with a high productivity, of a water-absorbent resin including an improved relationship between absorption capacity and water-soluble polymer which are conflicting properties of the water-absorbent resin, being easily controlled for polymerization reaction, being of no odor, being less colored, and being of high absorption properties. In one embodiment of the present invention, acrylic acid composition is neutralized with a basic composition including an iron content of 0.2 to 5 ppm by weight (relative to a basic compound exclusive of a solvent); and then polymerizing a resultant neutralized product, the acrylic acid composition including: (i) a methoxyphenol content of 10 to 200 ppm by weight relative to the weight of acrylic acid; and (ii) at least one compound content of which is 0 to 10 ppm by weight relative to the weight of acrylic acid, the compound being selected from the group consisting of protoanemonin and furfural.
    Type: Application
    Filed: April 6, 2006
    Publication date: July 3, 2008
    Inventors: Takaaki Kawano, Hirotama Fujimaru, Kunihiko Ishizaki, Katsuyuki Wada
  • Patent number: 7381780
    Abstract: Improved catalyst compositions, and polymerization processes using such improved catalyst compositions, are provided. An example of an improved catalyst composition is a supported catalyst system that includes at least one titanium compound, at least one magnesium compound, at least one electron donor compound, at least one activator compound, and at least one silica support material, the at least one silica support material having a median particle size in the range of from 20 to 50 microns with no more than 10% of the particles having a size less than 10 microns and no more than 10% of the particles having a size greater than 50 microns and average pore diameter of at least ?220 angstroms.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: June 3, 2008
    Assignee: Univation Technologies, LLC
    Inventors: Maria A. Apecetche, Phuong A. Cao, Michael D. Awe, Ann M. Schoeb-Wolters, Ryan W. Impelman
  • Patent number: 7365138
    Abstract: A method of modifying a Ziegler-Natta type polyolefin catalyst comprises contacting the Ziegler-Natta catalyst with olefin monomer to form a prepolymerized catalyst. The prepolymerized catalyst can comprise a reduced number of catalyst particles having a size of 40 microns or less. The prepolymerized catalyst can be used in a polymerization process to produce polymer fluff particles with a reduced number of polymer fluff fines than the Ziegler-Natta type catalyst.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: April 29, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J Coffy, Edwar S. Shamshoum, Hong Chen
  • Patent number: 7307036
    Abstract: A highly active alpha-olefin polymerization catalyst component is disclosed. In the presence of a co-catalyst, the catalyst component is useful for the production of LLDPE resins. The catalyst component is produced by a method whereby organic silicon compounds are reacted with a transition metal complex and active transition metal species is deposited on a silicon-containing MgCl2 that is prepared in situ in the presence of the organic silicon compounds.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: December 11, 2007
    Assignee: Formosa Plastics Corporation U.S.A.
    Inventors: Guangxue Xu, Honglan Lu, Zhongyang Liu, Chih-Jian Chen
  • Patent number: 7259125
    Abstract: Improved catalyst compositions, and polymerization processes using such improved catalyst compositions, are provided. An example of an improved catalyst composition is a supported catalyst system that includes at least one titanium compound, at least one magnesium compound, at least one electron donor compound, at least one activator compound, and at least one silica support material, the at least one silica support material having a median particle size in the range of from 20 to 50 microns with no more than 10% of the particles having a size less than 10 microns and no more than 10% of the particles having a size greater than 50 microns and average pore diameter of at least <220 angstroms.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: August 21, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Maria A. Apecetche, Phuong A. Cao, Michael D. Awe, Ann M. Schoeb-Wolters, Ryan W. Impelman
  • Patent number: 7235615
    Abstract: A method is provided for synthesizing a polymer that has highly-functionalized chain-end moieties. The method functionalizes liquid rubber to terminate a metallic or organometallic initiated living polymer. After the living polymer has been terminated with the functionalized liquid rubber, the functionalities on the residue of the liquid rubber are preferably modified to yield more advantageous functionalities.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: June 26, 2007
    Assignee: The University of Akron
    Inventors: Roderic P. Quirk, Jin-Ping Zhou
  • Patent number: 7220694
    Abstract: The invention relates to a magnesium compound effective in producing olefin polymers having an increased bulk density and a narrowed particle size distribution, not lowering the stereospecificity of the polymers produced and not lowering the polymerization activity in producing the polymers, to an olefin polymerization catalyst comprising the compound, and to a method for producing such olefin polymers. The olefin polymerization catalyst comprises (A) a solid catalyst component prepared by contacting a magnesium compound having a specific particle size distribution index (P), a titanium compound and an electron donor compound with each other, (B) an organometallic compound, and (C) an electron donor. The olefin polymerization method comprises polymerizing an olefin in the presence of the catalyst to give olefin polymers.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: May 22, 2007
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Shohjiroh Tanase, Takehiro Tsuda, Tsuyoshi Ota, Hideo Funabashi
  • Patent number: 7202191
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G?) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: April 10, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael R. Wallace
  • Patent number: 7196152
    Abstract: The invention relates to a modified Ziegler catalyst for preparing a poly-1-olefin in suspension, in solution or in the gas phase, which catalyst comprises the reaction product of a magnesium alkoxide (component a) with a transition metal compound (component b) and an organometallic compound (component c) together with an additional component (d) comprising a compound of the chemical formula M?Rx where M is an element of main group IV of the Periodic Table, R is halogen or an organic radical such as alkyl having from 1 to 10 carbon atoms, oxyalkyl having from 1 to 10 carbon atoms, cycloalkyl having from 4 to 8 carbon atoms in the ring and, if desired, from 1 to 6 substituents R? on the ring, aryl having from 6 to 10 carbon atoms in the aromatic and, if desired, from 1 to 6 substituents R? on the aromatic, where R? is a halogen or an alkyl radical having from 1 to 4 carbon atoms or an OH group or an NO2 group or an oxyalkyl radical having from 1 to 4 carbon atoms, and x is an integer from 1 to 4.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: March 27, 2007
    Assignee: Basell Polyolefine GmbH
    Inventors: Frank Alt, Ludwig Böhm, Friedhelm Gundert
  • Patent number: 7169871
    Abstract: The present invention relates to propylene polymers made by using catalyst components for the polymerization of olefins comprising Mg, Ti, halogen and at least two electron donor compounds, said catalyst component being characterized by the fact that at least one of the electron donor compounds, present in an amount from 20 to 50% by mol with respect to the total amount of donors, is selected from esters of succinic acids which are not extractable, under the conditions described below, for more than 25% by mol and at least another electron donor compound which is extractable, under the same conditions, for more than 35%. The said catalyst component are capable to give polymers with high xylene insolubility, high stereoblock content and broad MWD suitable for making the polymers usable in the BOPP sector.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: January 30, 2007
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Giampiero Morini, Giulio Balbontin
  • Patent number: 7160833
    Abstract: A spray-dried composition comprising the reaction product of a magnesium halide, a solvent, an electron donor compound, and a transition metal compound and an inert filler comprising substantially spherical particles having an average particle size ranging from about 1 ?m to about 12 ?m, and a polymerization process using the same.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: January 9, 2007
    Assignee: Dow Global Technologies Inc.
    Inventors: Burkhard Eric Wagner, Mark Wilton Smale, Robert James Jorgensen
  • Patent number: 7157532
    Abstract: A process for preparing olefin homopolymers or copolymers by polymerization of at least one olefin in a hydrocarbon (mixture) in the presence of a molar mass regulator, a mixed catalyst and a substance which increases the electrical conductivity of the hydrocarbon (mixture) and is soluble in the hydrocarbon or the mixture of hydrocarbons or which reacts with components of the mixed catalyst, wherein the mixed catalyst is obtainable by reaction of a magnesium alkoxide with titanium(IV) halide and comprises titanium in the oxidation states four and three and also an organic aluminum compound, where the molar ratio of Ti(IV) to Ti(III) is from 100:1 to 1:100. The process makes it possible to prepare, in particular, polyethylenes having an ultrahigh molecular weight. The formation of deposits on the walls during the polymerization is significantly reduced.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: January 2, 2007
    Assignee: Ticona GmbH
    Inventors: Wolfgang Payer, Jens Ehlers
  • Patent number: 7148302
    Abstract: This invention is based upon the discovery that a catalyst system which is comprised of (a) palladium or a palladium compound and (b) a fluorinated alcohol is effective for polymerizing norbornene-functional monomers into polynorbornene-functional polymers. It has been further discovered that this catalyst system is more effective in polymerizing certain norbornene-functional monomers that are difficult to polymerize, such as norbornene ester monomers, than prior art catalyst systems. The activity of the catalyst systems of this invention can be further improved with respect to polymerizing some monomers by including a Lewis acid and/or a ligand, such as a phosphine or a carbene, in the system. In any case, the catalyst systems of this invention offer the advantage of being soluble in a wide variety of solvents, relatively inexpensive, and capable of polymerizing many norbornene-functional monomers that are difficult to polymerize with conventional catalyst systems.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: December 12, 2006
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: John-Henry Lipian
  • Patent number: 7129303
    Abstract: The present invention provides a method for producing homo- and co-polymers of ethylene, or more particularly a method for producing homo- and copolymers of ethylene in the presence of (a) a solid titanium catalyst produced by preparing a magnesium solution by contact-reacting a halogenated magnesium compound with an alcohol; reacting thereto an ester compound having at least one hydroxyl group and a silicon compound having at least one alkoxy group; and adding a mixture of a titanium compound and a silicon compound; (b) organometallic compounds of Group II or III of the Periodic Table; and (c) an alkoxysilane compound and a haloalkne compound. The catalyst for homo- and co-polymerization of ethylene, produced according to the present invention, exhibits a high activity and the polymers produced by the method of the present invention using said catalyst have the advantages of exhibiting a high bulk density and a narrow molecular weight distribution.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: October 31, 2006
    Assignee: Samsung Atofina Co., Ltd.
    Inventors: Chun-Byung Yang, Won-Young Kim, Weon Lee
  • Patent number: 7109143
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G?) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: September 19, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael Ray Wallace
  • Patent number: 7087688
    Abstract: A MgCl2·mEtOH·nH2O adducts, where 3.4<m?4.4, 0?n?0.7, characterized by an X-ray diffraction spectrum, taken under the condition set forth above, in which, in the range of 2? diffraction angles between 5° and 10°, at least two diffraction lines are present at diffraction angles 2? of 9.3±0.2°, and 9.9±0.2°, the most intense diffraction lines being the one at 2? of 9.3±0.2°, the intensity of the other diffraction line being less than 0.4 times the intensity of the most intense diffraction line. Catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity and/or porosity with respect to the catalysts prepared from the adducts of the prior art.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: August 8, 2006
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Daniele Evangelisti, Gianni Collina, Ofelia Fusco, Mario Sacchetti
  • Patent number: 7060763
    Abstract: The present invention relates to a MgCl2.mEtOH adduct in which m is from 2.5 to 3.2 optionally containing water up to a maximum of 1% wt based on the total weight of the adduct, characterized by a DSC profile in which the highest melting Temperature (Tm) peak is over 109° C. and has an associated fusion enthalpy ( H) of 103 J/g or lower. Catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity with respect to the catalysts prepared from the adducts of the prior art.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: June 13, 2006
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Daniele Evangelisti, Gianni Collina
  • Patent number: 7049377
    Abstract: Cyclopolyenic 1,3-diethers wherein the carbon atom in position 2 belongs to a particular cyclic or polycyclic structure containing two or three unsaturations, solid catalyst components and catalysts therefrom, the catalysts comprising the reaction product of: i. a solid catalyst component containing an internal donor; ii. an Al-alkyl compound, and optionally iii. an external donor; the internal donor and/or the external donor being cyclopolyenic 1,3-diethers. The catalysts are useful for the polymerization of alpha-olefins.
    Type: Grant
    Filed: February 20, 1996
    Date of Patent: May 23, 2006
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Giampiero Morini, Enrico Albizzati, Giulio Balbontin, Giovanni Baruzzi, Antonio Cristofori
  • Patent number: 7026265
    Abstract: Process for the preparation of a particular olefin polymerisation catalyst component including magnesium dihalide, titanium tetrahalide and a carboxylic acid ester, in which the precursors of its constituents are reacted in solution from which the component is precipitated, this precipitation being accompanied by co-precipitation of one or more oligoesters of the carboxylic acid formed in a controlled manner.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: April 11, 2006
    Assignee: Borealis Technology Oy
    Inventors: Timo Leinonen, Peter Denifl
  • Patent number: 7022797
    Abstract: A monomer stream containing propylene is supplied to a polymerization reactor which is operated under temperature and pressure conditions effective for the production of a stereoregular propylene polymer fluff. A titanium-based supported Ziegler-Natta catalyst having a titanium content of at least 1.7 wt. % and incorporating an internal electron donor is incorporated into the monomer stream. A trialkylaluminum co-catalyst is supplied to the monomer stream in an amount to provide an aluminum/titanium molar ratio within the range of 50–500. A silicon-based external electron donor is also supplied to the monomer stream in an amount to provide an aluminum/silicon molar ratio within the range of 10–500. Polymer fluff recovered from the polymerization reactor has a melt flow rate of at least 200 grams/10 minutes, and a xylene soluble content of no more than 4 wt. %.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: April 4, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth P. Blackmon, Shabbir Ahmedbhai Malbari
  • Patent number: 7019097
    Abstract: A process for the (co)polymerization ethylene, optionally in mixtures with olefins CH?CHR in which R is hydrogen or a hydrocarbyl radical with 1–12 carbon atoms, carried out in the presence of a catalyst system comprising (A) a solid catalyst component which comprises Mg, halogen an electron donor selected form ethers, esters, or amines, and Ti atoms in an oxidation state such that the weight percentage ratio between Ti(red)/Ti(tot) ranges from about 0.05 to about 1; wherein Ti(red) is the weight percentage on the solid catalyst component of the Ti atoms having a valence less than 4 and Ti(tot) is the weight percentage on the solid catalyst component of all the Ti atoms and (B) an Al-alkyl compound. The said process is capable to produce ethylene polymers with a reduced oligomers content and/or improved mechanical characteristics.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: March 28, 2006
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Mario Sacchetti, Diego Brita
  • Patent number: 7005487
    Abstract: A solid catalyst component for the polymerization of olefins, comprising: an inert porous support, Mg, Ti, halogen and an electron donor selected from succinates of formula (I) wherein the radicals R1 and R2 equal to or different form each other, are hydrocarbon groups, the radicals R3, R4, R5 and R6, equal to or different from each other, are hydrogen or hydrocarbon groups.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: February 28, 2006
    Assignee: Basell Poliolefine Italia S.R.L.
    Inventors: Giulio Balbontin, Giampiero Morini
  • Patent number: 6998458
    Abstract: The present invention relates to butene-1 homopolymers, or copolymers containing up to 20% by weight of alpha olefins having from 2 to 10 carbon atoms other than butene-1, characterized by the following properties: (i) a Molecular Weight Distribution (MWD) in terms of Mw/Mn, measured by GPC analysis according to the method specified, of lower than 6; and (ii) a melt strength (measured according to the method specified below) higher than 2.8.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: February 14, 2006
    Assignee: Basell Poliolefine Italis S.p.A.
    Inventors: Gianni Vitale, Giampiero Morini, Giuliano Cecchin
  • Patent number: 6982237
    Abstract: A spray-dried catalyst precursor composition and method of making a spray-dried catalyst precursor composition with an inert filler, magnesium, a transition metal, solvent, and one electron donor compound. The catalyst precursor composition is substantially free of other electron donor compounds, the molar ratio of the electron donor compound to magnesium is less than or equal to 1.9, and comprises spherical or substantially spherical particles having a particle size of from about 10 to about 200 ?m. Catalysts made from the spray-dried catalyst precursors and polymerization methods using such catalysts are disclosed.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: January 3, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Burkhard Eric Wagner, Robert James Jorgensen
  • Patent number: 6967231
    Abstract: A process for polymerizing ethylene is disclosed. A magnesium chloride-alcohol is used to support an organometallic complex comprising a Group 3 to 10 transition metal and an indenoindolyl ligand. The supported organometallic complex is mixed with an activator and ethylene and the ethylene is polymerized. Use of magnesium chloride containing an alcohol as the support provides an unexpected boost in catalyst activity and improves polymer rheological properties.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: November 22, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Douglas D. Klendworth, Mark K. Reinking
  • Patent number: 6958378
    Abstract: The present invention provides a method for producing homo- and co-polymers of ethylene, or more particularly a method for producing homo- and co-polymers of ethylene in the presence of (a) a solid titanium catalyst produced by preparing a magnesium solution by contact-reacting a halogenated magnesium compound with an alcohol; reacting thereto an ester compound having at least one hydroxyl group and a silicon compound having at least one alkoxy group; and adding a mixture of a titanium compound and a silicon compound; (b) organometallic compounds of Group II or III of the Periodic Table; and (c) a cyclic nitrogen compound. The catalyst for homo- and co-polymerization of ethylene, produced according to the present invention, exhibits high activity, and the polymers produced by the method of the present invention by using said catalyst have the advantages of exhibiting high bulk densities and narrow molecular weight distributions.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: October 25, 2005
    Assignee: Samsung Atofina Co., Ltd.
    Inventors: Chun-Byung Yang, Sang-Yull Kim, Yong-Bok Lee, Weon Lee
  • Patent number: 6956092
    Abstract: The present invention provides a novel high-molecular substance having a unique function and a process for producing the same. That is, it is a poly(meth)acrylamide which has a syndiotacticity of 50% or lower and is highly isotactic or heterotactic. The poly(meth)acrylamide is obtained by radical-polymerizing an acrylamide or methacrylamide in the presence of a Lewis acid catalyst.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: October 18, 2005
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Yoshio Okamoto, Yutaka Isobe
  • Patent number: 6916895
    Abstract: A new synthesis of a Ziegler-Natta catalyst uses a multi-step preparation that includes treating a magnesium dialkoxide compound with halogenating/titanating agents, an organoaluminum preactivating agent, and a heat treatment. The catalyst may be used in the polymerization of olefins, particularly ethylene, to control the molecular weight distribution of the resulting polyolefins.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: July 12, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy
  • Patent number: 6900281
    Abstract: A gas-phase olefin polymerization process in a plug flow reactor uses a catalyst system containing a magnesium halide supported titanium-containing component, an organoaluminum component, and at least one external electron donor component; in the process a first external donor component is added to the reactor at an injection point axially near an injection point for the supported transition metal containing component, and at least a second external donor component is added to the reactor axially downstream from the injection point for the first external donor component.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: May 31, 2005
    Inventors: Jerome A. Streeky, David A. Kreider, Chi-Hung Lin, Mark G. Reichmann
  • Patent number: 6897274
    Abstract: The present invention relates to a method for the prepolymerization of ?-olefin in the presence of a catalyst system which comprises (a) a magnesium supported solid complex titanium catalyst and (b) an organometallic compound of metal of Group I or III of the Periodic Table, characterized in that an inert solvent having high viscosity with molecular weight of 300 g/mole or more is used as a reaction medium.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: May 24, 2005
    Assignee: Samsung Atofina Co., Ltd.
    Inventors: Yoo-Kyoung Kim, Kun Lo, Il-Seop Kim
  • Patent number: 6891019
    Abstract: Anionic polymerization initiators useful in the preparation of polymers having a protected amine functional group. The amine functionality includes a first protecting group, which can be aralkyl, methyl, allyl or tertiary alkyl group. The other of the amine protecting groups can be the same as the first protecting group. Alternatively, the second protecting group can be different from the first protecting group, in which case it is selected to have differential stability to agents used to remove the aralkyl, methyl, allyl or tertiary alkyl protecting group.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: May 10, 2005
    Assignee: FMC Corporation
    Inventors: Thorsten Werner Brockmann, Randy W. Hall
  • Patent number: 6870022
    Abstract: An ?-olefin polymer having extremely high stereoregularity, exhibiting excellent fluidity and containing a decreased amount of catalyst residues in the polymer can be obtained industrially advantageously in accordance with a process for producing an ?-olefin polymer which comprises homopolymerizing an ?-olefin or copolymerizing two or more ?-olefins in the presence of (A) a solid catalyst component comprising magnesium, titanium and a halogen, (B) an organoaluminum compound having a content of hydroaluminum compounds of 0.1% by weight or smaller and (C) an organozinc compound.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: March 22, 2005
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Takeshi Iwasaki, Tadanori Jyunke, Kiyokazu Katayama, Kenji Tanaka
  • Patent number: 6867160
    Abstract: By controlling the hold up times and temperatures for mixing the components of aluminum, titanium and magnesium based catalyst for solution polymerization it is possible to prepare a catalyst having a high activity, which prepares high molecular weight polyolefins. Generally, catalyst loses activity and produces lower molecular weight polymer at higher temperatures. The catalyst of the present invention permits comparable polymers to be produced at higher reaction temperatures.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: March 15, 2005
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Jesus Vela Estrada, Vaclav George Zboril
  • Patent number: 6861487
    Abstract: The present invention relates to a catalyst precursor for homo- or copolymerization of olefins comprising a metallocene compound, a magnesium containing compound and a thermoplastic polymer support, and optionally further comprising a metal alkoxy compound, an aluminum containing compound, a silicon containing compound and/or an alcohol. The invention further relates to the process of polymerizing olefins using the inventive catalyst precursor.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: March 1, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Orass Hamed, Akhlaq A. Moman, Atieh Abu-Raqabah, Abdulaziz Al-Nezari
  • Patent number: 6858685
    Abstract: There is provided a process for producing a catalyst for olefin polymerization, which comprises the step of contacting (1) an organ aluminum compound, (2) an external electron donor compound and (3) a solid catalyst component obtained by a process comprising the steps of; (i) reducing a titanium compound represented by the following formula [I] with an organomagnesium compound in the presence of a fine particle and an organosilicon compound having an Si—O bond to obtain a solid product, and (ii) contacting the solid product, a halogenocompound having halogenation ability and an internal electron donor compound to obtaining the solid catalyst component.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: February 22, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Ken Yoshimura, Shin-ichi Kumamoto, Makoto Satoh
  • Patent number: 6846887
    Abstract: A method of modifying a Ziegler-Natta type polyolefin catalyst comprises contacting the Ziegler-Natta catalyst with olefin monomer to form a prepolymerized catalyst. The prepolymerized catalyst can comprise a reduced number of catalyst particles having a size of 40 microns or less. The prepolymerized catalyst can be used in a polymerization process to produce polymer fluff particles with a reduced number of polymer fluff fines than the Ziegler-Natta type catalyst.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: January 25, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy, Edwar S. Shamshoum, Hong Chen
  • Patent number: 6841632
    Abstract: Solid catalyst components comprising Ti,Mg, halogen and internal electron-donor compound selected from the 1,3-diethers of formula (I) in which R is a C1-C10 alkyl group, R1 is a linear or branched primary alkyl radical having at least three carbon atoms, optionally containing a heteroatom, and R2 is a secondary alkyl or cycloalkyl radicals different from i-propyl, optionally containing a heteroatom. The catalysts obtained by using as internal electron-donor compound the said 1,3-diethers display in the (co)polymerization of olefins an excellent balance of activity and stereospecificity that cannot be reached with the ethers known in the art.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: January 11, 2005
    Assignee: Basell Poliolefine Italis S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin, Ronald R. Andrea, Van Loon Jan Dirk
  • Patent number: 6841503
    Abstract: There are disclosed a process for producing a solid catalyst component and a catalyst for ?-olefin polymerization, and a process for producing an ?-olefin polymer, wherein the process for producing a solid catalyst component comprises the steps of: (1) reducing a specific titanium compound with an organomagnesium compound in the presence of an organosilicon compound having an Si—O bond (and an ester compound), thereby obtaining a solid product, and (2) contacting the solid product with a halogeno compound of the 14 group element, at least one member selected from the group consisting of an electron donor compound and an organic acid halide, and a compound having a Ti-halogen bond, thereby obtaining the solid catalyst component.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: January 11, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasuki Fujiwara, Makoto Satoh
  • Publication number: 20040259723
    Abstract: A spray-dried composition comprising the reaction product of a magnesium halide, a solvent, an electron donor compound, and a transition metal compound and an inert filler comprising substantially spherical particles having an average particle size ranging from about 1 &mgr;m to about 12 &mgr;m, and a polymerization process using the same.
    Type: Application
    Filed: July 13, 2004
    Publication date: December 23, 2004
    Inventors: Burkhard Eric Wagner, Mark Wilton Smale, Robert James Jorgensen
  • Patent number: 6828269
    Abstract: A catalytic composition is obtained by mixing at least one chromium compound with at least one aryloxy compound of an element M selected from the group formed by magnesium, calcium, strontium and barium, with general formula M(RO)2-nXn, where RO is an aryloxy radical containing 6 to 80 carbon atoms, X is a halogen or a hydrocarbyl radical containing 1 to 30 carbon atoms and n is a whole number that can take values of 0 to 2, and with at least one aluminum compound selected from hydrocarbylaluminum compounds (tris(hydrocarbyl)-aluminum, chlorinated or brominated hydrocarbylaluminum compounds) and aluminoxanes. The catalytic composition can be used in an ethylene oligomerization process, in particular to produce 1-hexene.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: December 7, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Dominique Commereuc, Sébastien Drochon, Lucien Saussine
  • Publication number: 20040242406
    Abstract: A process for producing a Gp 2/transition metal olefin polymerisation catalyst component, in which a Gp 2 metal complex is reacted with a transition metal compound so as to produce an oil-in-oil emulsion, the disperse phase containing the preponderance of the Mg being solidified by heating to provide a catalyst component of excellent morphology. Polymerisation of olefins using a catalyst containing such a component is also disclosed. The process may be employed in the production of Ziegler-Natta catalysts.
    Type: Application
    Filed: June 28, 2004
    Publication date: December 2, 2004
    Inventors: Peter Denifl, Timo Leinonen
  • Patent number: 6825309
    Abstract: The present invention relates to catalyst components for the polymerization of olefins comprising Mg, Ti, halogen and at least two electron donor compounds, said catalyst component being characterized by the fact that at least one of the electron donor compounds, present in an amount from 20 to 50% by mol with respect to the total amount of donors, is selected from esters of succinic acids which are not extractable, for more than 25% by mol and at least another electron donor compound which is extractable, for more than 35%. The said catalyst component are capable to give polymers with high xylene insolubility, high stereoblock content and broad MWD suitable for making the polymers usable in the BOPP sector.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: November 30, 2004
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin
  • Publication number: 20040235643
    Abstract: A process for preparing a diether-based catalyst component in which: a) a slurry is obtained by contacting a solid support comprising a magnesium halide or a precursor thereof, one or more 1,3-diethers and a liquid phase containing a titanium compound, and b) the obtained slurry is then subjected to a solid/liquid separation step in order to isolate a diether-based catalyst component; said separation step b) being characterized in that the ratio between the solid/liquid separation velocity and the final amount of separated solid must be higher than 0.5 liter/(min.Kg).
    Type: Application
    Filed: February 5, 2004
    Publication date: November 25, 2004
    Inventors: Gianni Vitale, Massimo Cimarelli, Giampiero Morini, Leo Cabrini
  • Patent number: 6818684
    Abstract: The present invention is directed, in part, to improved polymer compositions and processes for preparing same. Specifically, in one embodiment, there is provided a process for preparing a polymer, wherein the process comprises: providing a reaction mixture comprising a portion of at least one polar monomer and at least one multivalent cation; adding the remaining portion of the polar monomer to the reaction mixture; and polymerizing the monomer to form the polymer. In certain embodiments, the reaction mixture in the providing step comprises at least two molar equivalents or greater of the total amount of polar monomer with respect to one molar equivalent of multivalent cation.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: November 16, 2004
    Assignee: Rohm and Haas Company
    Inventor: Robert Victor Slone
  • Publication number: 20040209764
    Abstract: The present invention relates to a catalyst precursor for homo- or copolymerization of olefins comprising a metallocene compound, a magnesium containing compound and a thermoplastic polymer support, and optionally further comprising a metal alkoxy compound, an aluminum containing compound, a silicon containing compound and/or an alcohol. The invention further relates to the process of polymerizing olefins using the inventive catalyst precursor.
    Type: Application
    Filed: April 15, 2003
    Publication date: October 21, 2004
    Inventors: Orass Hamed, Akhlaq A. Moman, Atieh Abu-Raqabah, Abdulaziz Al-Nezari
  • Patent number: 6806221
    Abstract: A method of making a spray-dried composition using a solution or mixture comprising the reaction product of a magnesium halide, a solvent, an electron donor compound, and a transition metal compound and an inert filler comprising substantially spherical particles having an average particle size ranging from 1 &mgr;m to about 12 &mgr;m.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: October 19, 2004
    Assignee: Dow Global Technologies Inc.
    Inventors: Burkhard Eric Wagner, Robert James Jorgensen, Mark Wilton Smale
  • Patent number: 6803427
    Abstract: The present invention relates to a method for producing a polymer and copolymer of ethylene, and more particularly to a method for producing an ethylene polymer and copolymer by reacting a compound of an organic metal of Group 2, 12, or 13 on the periodic table of elements with an alkoxy silane compound in the presence of a titanium catalyst, the said titanium catalyst being produced by a process of preparing a magnesium compound by contact-reacting a halogenated magnesium compound and alcohol, of reacting the said solution with an ester compound which contains at least one hydroxy group and a silicon compound containing an alkoxy group, and also of reacting it with a solid matter obtained by reaction of a mixture of a titanium compound and a silicon compound with a titanium compound.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: October 12, 2004
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Chun-Byung Yang, Sang-Yull Kim, Weon Lee
  • Publication number: 20040198931
    Abstract: The invention relates to a magnesium compound effective in producing olefin polymers having an increased bulk density and a narrowed particle size distribution, not lowering the stereospecificity of the polymers produced and not lowering the polymerization activity in producing the polymers, to an olefin polymerization catalyst comprising the compound, and to a method for producing such olefin polymers. The olefin polymerization catalyst comprises (A) a solid catalyst component prepared by contacting a magnesium compound having a specific particle size distribution index (P), a titanium compound and an electron donor compound with each other, (B) an organometallic compound, and (C) an electron donor. The olefin polymerization method comprises polymerizing an olefin in the presence of the catalyst to give olefin polymers.
    Type: Application
    Filed: April 26, 2004
    Publication date: October 7, 2004
    Applicant: IDEMITSU PETROCHEMICAL CO., LTD.
    Inventors: Shohjiroh Tanase, Takehiro Tsuda, Tsuyoshi Ota, Hideo Funabashi