Material Contains Compound Of Group Ia (li, Na, K, Rb, Cs, Fr) Or Group Iia (be, Mg, Ca, Sr, Ba, Ra) Metal Wherein Ia Or Iia Metal Is Not Bonded To Hydrogen Or To Carbon Patents (Class 526/123.1)
  • Patent number: 6799568
    Abstract: The invention is directed to a process for the preparation of a catalyst component for the polymerization of an olefin by: a) contacting metallic magnesium with an organic halide RX, where R is an organic group containing up to 20 carbon atoms and X is a halide, whereupon the dissolved reaction product I is separated from the solid residual products and whereafter, b) an alkoxy group or aryloxy group containing silane compound is added to the obtained reaction product I, whereupon the precipitate formed is purified to obtain reaction product II, c) which reaction product II is subsequently contacted with TiCl4 and the resulting product is purified to obtain the catalyst component. The invention is characterized in that in step b) the silane compound and reaction product I are introduced simultaneously to a mixing device.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: October 5, 2004
    Assignee: DSM N.V.
    Inventors: Vladimir A. Zakharov, Gennady D. Bukatov, Sergei A. Sergeev
  • Patent number: 6800710
    Abstract: Polypropylene sheet for thermoforming having at least one layer comprises a propylene polymer containing at least 0.8% by weight of ethylene and, optionally, one or more C4-C10 &agr;-olefins, or a propylene polymer composition containing at least 0.8% by weight of one or more comonomers selected from the group consisting of ethylene and C4-C10 &agr;-olefins, and having I) a melting temperature of 155° C. or higher; and II) a xylene soluble fraction at room temperature lower than 4% by weight, and a value of the ratio of the polymer fraction collected at 25° C. to 95° C. to the xylene soluble fraction higher than 8.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: October 5, 2004
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Anteo Pelliconi, Angelo Lonardo, Gabriele Mei
  • Patent number: 6784263
    Abstract: A solid catalyst component comprises a transition metal-containing metallocene compound, a non-cyclopentadienyl transition metal compound, a magnesium compound and a polymeric material which acts as a support. The catalyst component is combined with co-catalyst organoaluminum compound or a mixture of organoaluminum compounds to provide a catalyst composition useful for olefin polymerization, e.g., to produce linear low, medium and high density polyethylenes or copolymerization of ethylene with alpha-olefins. Product polyolefin polymers have a varied range of molecular weight distributions. The catalyst composition is prepared by a process comprising combining polymer support particles, magnesium compound, transition metal-containing metallocene compound, and non-cyclopentadienyl transition metal compound to provide a solid catalyst component, and, combining the solid catalyst component with a cocatalyst compound to provide a polyolefin polymerization catalyst composition.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: August 31, 2004
    Assignee: Saudi Basic Industries Corporation
    Inventors: Orass Hamed, Akhlaq Moman, Atieh Abu-Raqabah
  • Patent number: 6777365
    Abstract: The invention relates to a magnesium compound effective in producing olefin polymers having an increased bulk density and a narrowed particle size distribution, not lowering the stereospecificity of the polymers produced and not lowering the polymerization activity in producing the polymers, to an olefin polymerization catalyst comprising the compound, and to a method for producing such olefin polymers. The olefin polymerization catalyst comprises (A) a solid catalyst component prepared by contacting a magnesium compound having a specific particle size distribution index (P), a titanium compound and an electron donor compound with each other, (B) an organometallic compound, and (C) an electron donor. The olefin polymerization method comprises polymerizing an olefin in the presence of the catalyst to give olefin polymers.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: August 17, 2004
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Shohjiroh Tanase, Takehiro Tsuda, Tsuyoshi Ota, Hideo Funabashi
  • Patent number: 6770718
    Abstract: A process is provided for the preparation of a solid catalyst component for the polymerization of olefins, comprising continuously feeding a liquid containing a titanium compound having at least one titanium-halogen bond into a vessel containing a solid comprising a magnesium halide and continuously discharging liquid from the vessel, whereby the concentration of the solid is maintained within the range of between 80 and 300 g/l, and the product between the average residence time of the liquid in the vessel and the concentration of the solid is maintained below 10,000 min*g/l. An advantage of the process is the reduced time and reactor volume necessary to prepare the catalysts, which show good activity and stereospecificity.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: August 3, 2004
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Massimo Covezzi, Anna Fait, Almerinda Di Benedetto
  • Patent number: 6767857
    Abstract: A pre-catalyst is formed by reacting butylethylmagnesium with an alcohol to form a magnesium alkoxide compound, followed by contacting the magnesium alkoxide compound with a phosporous compound to form a magnesium alkoxide phosphorous compound mixture. The magnesium alkoxide phosphorous compound mixture is subsequently reacted with TiCl4 to form a MgCl2 support. The MgCl2 support is then contacted with an internal donor while being heated to form a first catalyst slurry, which is then contacted with TiCl4 while being heated to form a second catalyst slurry. The second catalyst slurry is next contacted with TiCl4 while being heated to form a third catalyst slurry, which is washed and dried, resulting in a highly active pre-catalyst with controlled morphology. The pre-catalyst may be combined with one or more co-catalysts and optionally one or more external electron donors to form an active catalyst system, which may be used for polymerization of olefins.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: July 27, 2004
    Assignee: Fina Technology, Inc.
    Inventor: Joseph Lyndon Thorman
  • Patent number: 6727335
    Abstract: The invention relates to polymeric phosphinic acids and their salts of the formula (I) in which X is hydrogen or a 1/m metal of valency m, R1 and R2 are identical or different and are hydrogen, a carboxyl group, a carboxylic acid derivative, an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, phenyl, benzyl or alkyl-substituted aromatics, R3 and R4 are identical or different and are hydrogen or a vinyl group of the formula (VI) —CR1═CHR2  (VI) in which R1 and R2 have the abovementioned meaning, and {overscore (u)} is the average number of monomer units. The invention also relates to a process for the preparation of the abovementioned compounds and their use.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: April 27, 2004
    Assignee: Clariant GmbH
    Inventors: Martin Sicken, Norbert Weferling, Hans-Peter Schmitz
  • Patent number: 6723677
    Abstract: By controlling the hold up times, concentrations and temperatures for mixing the components of aluminum, titanium and magnesium based catalyst for solution polymerization it is possible to prepare a catalyst having a high activity, which prepares high molecular weight polyolefins. Generally, a catalyst loses activity and produces lower molecular weight polymer at higher temperatures. The catalyst of the present invention permits comparable polymers to be produced with higher catalyst activity and at higher reaction temperatures by increasing the concentration of the components used during the preparation of the catalyst.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: April 20, 2004
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Jesus Vela Estrada, Vaclav George Zboril
  • Patent number: 6723809
    Abstract: Bimetal catalyst for the (co)polymerization of &agr;-olefins comprising a co-catalyst consisting of a hydride or an organometallic compound of an element of groups 1, 2 or 13 of the periodic table, and a solid component consisting of at least 95% by weight of titanium, magnesium, hafnium, aluminum, chlorine and R—COO carboxylate groups, wherein R is an aliphatic, cycloaliphatic or aromatic hydrocarbon, containing from 1 to 30 carbon atoms, wherein at least 80% of the titanium is in oxidation state +3, and at least 1% of said titanium in oxidation state +3 has a tetrahedral coordination geometry. Said catalyst allows the production of olefinic polymers, particular polyethylene, with a high molecular weight by means of solution polymerization processes at temperatures exceeding 200° C.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: April 20, 2004
    Assignee: Polimeri Europa S.r.l.
    Inventors: Francesco Menconi, Giuseppe Conti, Alberto Zanellato, Angelo Moalli
  • Patent number: 6716939
    Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2═CHR in which R is hydrogen or a hydrocarbon radical with 1-12 carbon atoms, comprising Mg, Ti, halogen and an electron donor selected from substituted succinates of a particular formula. Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give polymers in high yields and with high isotactic index expressed in terms of high xylene insolubility.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: April 6, 2004
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin, Peter A. A. Klusener
  • Patent number: 6713572
    Abstract: A process as disclosed for producing a low density polyethylene using a particle form polymerization process and a titanium-containing catalyst wherein the ratio of comonomer to ethylene is at least about 1:1 and the titanium-containing catalyst is a special catalyst which has been pretreated with an organometallic reducing agent.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: March 30, 2004
    Assignee: Phillips Petrolium Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham
  • Patent number: 6713585
    Abstract: The present invention provides an ethylene copolymer resin that has unique melt elastic properties not observed in ethylene copolymers heretofore known. Specifically, the ethylene copolymer resin of the present invention when in pelletized form has a reduction in melt elasticity (ER) of 10% or more to a final value of 1.0 or less upon rheometric low shear modification or solution dissolution. Moreover, the resin of the present invention when in reactor-made form exhibits at least a partially reversible increase of 10% or more in ER when pelletizing the same. An ethylene polymerization catalyst, a process of preparing the ethylene copolymer resin and a high-impact film are also provided herein.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: March 30, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Harilaos Mavridis, Mark K. Reinking, Ramesh N. Shroff, Joel A. Mutchler, Charles S. Holland, Keta M. Lindstrom, Kiran M. Gupte, Michael H. Treptau, Francis M. Mirabella
  • Patent number: 6706655
    Abstract: The invention relates to a new process for the preparation of an olefin polymerization catalyst component, as well as a new polymerization catalyst component and its use. In the process, a magnesium dialkyl or diahlide or alkyl alkoxide is reacted with an alcohol and the reaction product is reacted with an unsaturated dicarboxylic acid dihalide and a titanium tetrahalide. Especially good catalyst activity and morphology are achieved by using a polyhydric alcohol such as ethylene glycol.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: March 16, 2004
    Assignee: Borealis Technology Oy
    Inventors: Thomas Garoff, Timo Leinonen, Sirpa Ala-Huikku
  • Patent number: 6703456
    Abstract: A process (I) for producing an &agr;-olefin polymerization catalyst whereby (1) a titanium compound is reduced by an organomagnesium compound in the presence of an organosilicon compound to produce a reduction solid, (2) the reduction solid is aged to produce a solid product, (3) the solid product is contacted with an ether compound, titanium tetrachloride and an organic acid halide compound, to produce an organic acid halide-treated solid, (4) the organic acid halide-treated solid is contacted with a mixture of an ether compound, titanium tetrachloride and an ester compound, or with a mixture of an ether compound and titanium tetrachloride to produce a solid catalyst component containing a titanium compound, and (5) the solid catalyst component is contacted with an aluminum compound and an electron donor compound to produce a catalyst for &agr;-olefin polymerization. A process (II) for producing an &agr;-olefin polymer using a catalyst produced by process (I).
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: March 9, 2004
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Jiro Mori, Tomoaki Tanaka, Yasunori Kaminaga
  • Patent number: 6703455
    Abstract: A process for the preparation of an olefin polymerization catalyst component containing a magnesium dihalide, a titanium tetrahalide, and a dicarboxylic acid di- oligo- or polyester as internal electron donors is disclosed. A catalyst component and its use for the polymerization of &agr;-olefins such as propene are also disclosed.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: March 9, 2004
    Assignee: W. R. Grace & Co.-CONN
    Inventors: Thomas Garoff, Timo Leinonen, Sirpa Ala-Huikku
  • Patent number: 6686433
    Abstract: The present invention provides a catalyst system that exhibits unexpected control of desired properties in polyolefin products. The catalyst system includes a titanium-supported catalyst in combination with a mixture of tetraethoxysilane (TEOS) and dicyclopentyldimethoxy-silane (DCPMS). This catalyst system has been found to be effective in making polypropylene and polypropylene copolymers having relatively high melt flow rates and moderately broad molecular weight distribution.
    Type: Grant
    Filed: April 26, 2000
    Date of Patent: February 3, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Nemesio Delgado Miro, George Byron Georgellis, Homer Swei
  • Publication number: 20040010100
    Abstract: A spray-dried composition comprising an inert porous filler and a reaction product of 1) a mixture or reaction product of a magnesium halide, a solvent, an electron donor compound, and a transition metal compound. The filler is substantially spherical and has an average particle size ranging from about 1 &mgr;m to about 12 &mgr;m. Methods of making spray-dried compositions, catalysts and polymerization processes employing such are also described.
    Type: Application
    Filed: July 15, 2002
    Publication date: January 15, 2004
    Inventors: Burkhard Eric Wagner, Robert James Jorgensen, Mark Wilton Smale
  • Patent number: 6677266
    Abstract: There are described a process for preparing catalyst components comprising vanadium, titanium, electron donor and magnesium chloride, supported or unsupported; catalyst systems incorporating the catalyst components; and the use of the catalyst systems in olefin polymerizations and interpolymerizations.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: January 13, 2004
    Assignee: Eastman Chemical Company
    Inventor: Francesco De Rege Thesauro
  • Patent number: 6667380
    Abstract: Processes for the formulation of Ziegler-type catalysts from a plurality of catalyst components including transition metal, organosilicon electron donor, and organoaluminum co-catalyst components. The components are mixed together in the course of formulating the Ziegler-type catalyst to be charged to an olefin polymerization reactor. Several orders of addition of the catalyst components can be used in formulating the Ziegler catalyst. One involves mixing of the transition metal component with the organoaluminum co-catalyst to formulate a mixture having an aluminum/transition metal mole ratio of at least 200. This mixture is combined with the organosilicon electron donor component to produce a Ziegler-type catalyst formulation having an aluminum/silicon mole ratio of no more than 50. There may be an initial pre-polymerization of the catalyst prior to introducing the catalyst into an olefin polymerization reactor.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: December 23, 2003
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher, Shabbir A. Malbari
  • Patent number: 6657036
    Abstract: The invention relates to polycondensation resins which are prepared by polycondensation of compounds having a low molecular weight and separation of small molecules in the presence of at least one hetergeneous catalyst. The invention also relates to polyaddition resins which are prepared by polyaddition in the presence of at least one heterogeneous catalyst. The invention further relates to the use of said polycondensation resins and polyaddition resins for the preparation of moulded parts, adhesives and coating materials.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: December 2, 2003
    Assignee: BASF Coatings AG
    Inventors: Werner-Alfons Jung, Heinz-Peter Rink, Eberhard Fuchs, Wolfgang Straehle
  • Patent number: 6642325
    Abstract: The present invention relates to a silica gel-supported catalyst component suitable for ethylene (co)polymerization, a catalyst therefrom and use of the same. The catalyst component according to the present invention is obtained by supporting the reaction product of a titanium compound, a halide promoter, a magnesium compound and an electron donor on silica gel having a larger specific surface area. When the resultant catalyst is used for ethylene polymerization, especially gas phase fluidized bed polymerization, not only the activity is substantially enhanced, but also the hydrogen response and the copolymerizability of ethylene with other alpha-olefins are improved. The catalyst is especially suitable for the fluidized bed polymerization operated in a condensed state, with high quality LLDPE resins being obtained.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: November 4, 2003
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry
    Inventors: Hekuan Luo, Ruiguo Tang, Kejing Gao, Qinfang Zhao, Jingyan An, Hua Yang, Jinsheng Huo
  • Publication number: 20030199649
    Abstract: An apparatus and method for allowing the industrial use of a high-concentration supply of an organometallic composition, such as an alkyllithium composition, with processes requiring low-concentration organometallic feeds by blending a supply of organometallic with a supply of hydrocarbon solvent, analyzing the concentration of organometallic within the blend using spectroscopic analysis to determine the concentration of organometallic, communicating the concentration value to a control apparatus which compares the actual concentration value with a previously determined desired concentration value and, adjusting the rate of supply of the organometallic, the rate of supply of the hydrocarbon solvent, or the rate of supply of both the organometallic and the solvent to obtain a blended organometallic stream of the desired concentration.
    Type: Application
    Filed: March 24, 2003
    Publication date: October 23, 2003
    Inventors: David Robert Orbison, Philip James Hardwick, James Samuel Birch
  • Patent number: 6630544
    Abstract: A process for polymerizing propylene is disclosed. The process involves charging propylene and about 90 to 99% of an organoaluminum cocatalyst to a reactor and heating this mixture to at least about 50° C. This is followed by addition of a premix of 1 to 10% of the organoaluminum cocatalyst with a magnesium halide-supported Ziegler-Natta catalyst. The temperature of the reaction mixture is maintained to produce a propylene polymer. The process gives improved catalyst activity.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: October 7, 2003
    Assignee: Equistar Chemicals, LP
    Inventors: Douglas D. Klendworth, Mark K. Reinking, Edward D. Kist, Karen E. Meyer
  • Patent number: 6627710
    Abstract: The invention relates to catalyst components, suitable for the preparation of homopolymers and copolymers of ethylene having a broad molecular weight distribution (MWD), which comprise Ti, Mg, Cl, and are characterized by the following properties: surface area, determined by BET method, of lower than 100 m2/g, a total porosity, measured by the mercury method, of higher than 0.25 cm3/g, a pore radius distribution such that at least 45% of the total porosity is due to pores with radius up to 0.1 &mgr;m.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: September 30, 2003
    Assignee: Basell Polyolefine GmbH
    Inventors: Mario Sacchetti, Diego Brita
  • Patent number: 6617405
    Abstract: A process of polymerizing ethylene or ethylene and one or more comonomers in one or more fluidized bed reactors with a catalyst system comprising (i) a supported or unsupported magnesium/titanium based precursor in slurry form, said precursor containing an electron donor; and (ii) an activator containing aluminum in an amount sufficient to essentially complete the activation of the precursor is disclosed. In the process, the precursor and the activator are mixed prior to introduction into the reactor in at least one mixing procedure, and then the mixture is contacted again with additional activator to essentially complete activation of the precursor. In the method, the atomic ratio of aluminum to titanium is in the range of about 1:1 to about 15:1 and the mole ratio of activator to electron donor is about 1:1 to about 2:1, and no additional activator is introduced into the reactor(s).
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: September 9, 2003
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventor: Robert James Jorgensen
  • Patent number: 6617403
    Abstract: A copolymer of ethylene and a higher alpha-olefin having broadened melt processing windows and reduced melt fracture can be produced using a chromium-containing catalyst system and a trialkyl boron cocatalyst. The polymerization process must be carefully controlled to produce a copolymer resin that easily can be made into articles of manufacture.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: September 9, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Ashish M. Sukhadia, Elizabeth A. Benham, Joseph J. Bergmeister, Rex L. Bobsein, Gerhard K. Guenther, Eric T. Hsieh, Max P. McDaniel, Steven J. Secora, Joseph S. Shveima, John D. Stewart
  • Patent number: 6586543
    Abstract: The present invention provides a process for preparing a substantially amorphous poly-&agr;-olefin, which includes: a) preforming a solid catalyst and, optionally, a first amount of a trialkylaluminum cocatalyst, by contacting the catalyst and optionally the cocatalyst with at least one selected from the group including oxygen and a compound which includes active oxygen, to form a preformed catalyst, wherein the solid catalyst includes magnesium, aluminum and titanium, and wherein said trialkylaluminum cocatalyst includes 1 to 9 carbon atoms in each alkyl group; b) contacting the preformed catalyst with a second amount of the cocatalyst, wherein a molar ratio of trialkylaluminum to the titanium ranges from 40:1 to 700:1, to form a catalyst mixture; c) polymerizing, in the liquid phase, with the catalyst mixture, an olefin or an olefin mixture at a temperature between 30 and 160° C., to produce the poly-&agr;-olefin.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: July 1, 2003
    Assignee: Degussa AG
    Inventors: Hans Guenther Wey, Norbert Schlueter
  • Publication number: 20030114592
    Abstract: Processes for improving the thermal stability of living polymer anions are provided. The invention further improves the efficiency of subsequent functionalization and linking reactions of such living polymer anions.
    Type: Application
    Filed: October 24, 2001
    Publication date: June 19, 2003
    Applicant: FMC Corporation
    Inventors: Thorsten Werner Brockmann, Vijay C. Mehta
  • Patent number: 6573345
    Abstract: The present invention is directed to processes of polymerizing olefin monomers and copolymerizing olefin monomer(s) with functionalized alpha-olefin monomers in the presence of certain late transition metal pyrrolaldimine chelates, especially bidenate or in the presence of a combination of a transition metal in its zero valence and a pyrrolaldimine represented by the formula: wherein each R1, R2, R3, R4, R5, R6, M and L are defined in the specification herein below.
    Type: Grant
    Filed: January 15, 1998
    Date of Patent: June 3, 2003
    Assignee: Cryovac, Inc.
    Inventors: Donald Albert Bansleben, Stefan K. Friedrich, Todd Ross Younkin, Robert Howard Grubbs, Chunming Wang, Robert Tan Li
  • Publication number: 20030096925
    Abstract: Formulations of alkyllithium species having improved thermal stability are provided. The compositions include one or more alkyllithium compounds and one or more additives. The additive includes one or more organometallic compounds or precursors thereof capable of forming ate complexes with alkyllithiums.
    Type: Application
    Filed: October 24, 2001
    Publication date: May 22, 2003
    Applicant: FMC Corporation
    Inventors: Thorsten Werner Brockmann, Vijay C. Mehta
  • Patent number: 6566464
    Abstract: There are disclosed a process for producing a solid catalyst component and a catalyst for &agr;-olefin polymerization, and a process for producing an &agr;-olefin polymer, wherein the process for producing a solid catalyst component comprises the steps of: (1) reducing a specific titanium compound with an organomagnesium compound in the presence of an organosilicon compound having an Si—O bond (and an ester compound), thereby obtaining a solid product, and (2) contacting the solid product with at least one member selected from the group consisting of an electron donor compound (E1) and an organic acid halide, and a compound having a Ti-halogen bond, thereby obtaining the solid catalyst component.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: May 20, 2003
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasuki Fujiwara, Makoto Satoh
  • Patent number: 6566463
    Abstract: This invention provides the multifunctional coagents of the metallic salt of unsaturated carboxylic acid that obtained by the reaction from two mols of mono-basic acid and two mols of di-basic acid as an unsaturated carboxylic acid, and three mols of divalent metal oxide. For making these multifunctional coagents of metallic salt of unsaturated carboxylic acid, one kind or two kinds of mono-basic acid can be used among acrylic acid and methacrylic acid as an unsaturated carboxylic acid. As a di-basic acid, only one kind can be used among maleic acid and fumaric acid. And, as a metal complex for making this multifunctional metallic coagents, the divalent metal oxide such as zinc oxide, magnesium oxide and calcium oxide that can be used. One kind or two and over kinds of metal oxide can be used.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: May 20, 2003
    Inventor: In Hong Hwang
  • Patent number: 6559249
    Abstract: The present invention provides a catalyst for producing an ultra high molecular weight polyethylene and also a method for preparation of an ultra high molecular weight polyethylene with the use of said catalyst. The catalyst of the present invention is prepared by a process comprising: (i) producing a magnesium compound solution by contact-reacting a magnesium compound and an aluminum or boron compound with alcohol; (ii) contact-reacting the said solution with an ester compound containing at least one hydroxy group and a silicon compound containing an alkoxy group; and (iii) producing of a solid titanium catalyst by adding a mixture of a titanium compound and a silicon compound thereto. The catalyst prepared by the present invention has excellent catalytic activity, and it helps to produce an ultra-high molecular weight polyethylene with large bulk density and narrow particle distribution without too large and minute particles.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: May 6, 2003
    Assignee: Samsung General Chemicals Co. Ltd.
    Inventors: Chun-Byoung Yang, Ho-Sik Chang, Weon Lee
  • Patent number: 6552136
    Abstract: Provided are a catalyst for olefin polymer production, which contains an organosilicon compound having a specific structure and with which olefin polymers produced have increased stereospecificity and increased melt fluidity; and a method for producing such olefin polymers.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: April 22, 2003
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Tsuyoshi Ota, Takanori Sadashima, Yasunori Kadoi, Toshio Isozaki, Kiyokazu Katayama
  • Publication number: 20030069372
    Abstract: An olefin polymerization catalyst is described which includes: (A) a solid catalyst component being prepared by copulverizing a magnesium compound, an aluminum compound, an electron donor and a titanium compound, and (B) an organoaluminum compound. The present invention is also directed to a process for preparing polyolefins using the aforesaid catalyst system to polymerize olefins.
    Type: Application
    Filed: October 9, 2001
    Publication date: April 10, 2003
    Applicant: Formosa Plastics Corporation, U.S.A.
    Inventors: Bing Lu, Honglan Lu, Chih-Jian Chen
  • Patent number: 6545106
    Abstract: Process for the polymerization of olefins, according to which at least one olefin is placed in contact with a catalytic system comprising: a) a solid catalytic complex based on magnesium, transition metal and halogen, the said catalytic complex being prepared by reacting, in a first step, at least one magnesium compound with at least one compound of a transition metal from group IVB or VB of the Periodic Table, until a liquid complex is obtained, and, in a subsequent step, by precipitating the said liquid complex using a halogen-containing organoaluminium compound of general formula AlRnX3-n in which R is a hydrocarbon radical, X is a halogen and n is less than 3, in order to collect a solid catalytic complex, and b) an organometallic compound of a metal from groups IA, IIA, IIB, IIIA and IVA of the Periodic Table, c) at least one electron donor used after the first step in the preparation of the solid catalytic complex leading to the production of a liquid complex.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: April 8, 2003
    Assignee: Solvay (Societe Anonyme)
    Inventor: Jiang Bian
  • Patent number: 6534613
    Abstract: A novel process for producing homopolymers and copolymers of ethylene which involves contacting ethylene and/or ethylene and at least one or more other olefin(s) under polymerization conditions with a Ziegler-Natta type catalyst, at least one halogenated hydrocarbon, at least one compound of the formula XnER3-n as a co-catalyst and at least one compound containing at least one carbon-oxygen-carbon linkage (C—O—C) of the formula R1—O(—R2—O)n—R3 as an external electron donor. Also provided are films and articles produced therefrom.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: March 18, 2003
    Assignee: Eastman Chemical Company
    Inventors: Randal Ray Ford, William Albert Ames, Kenneth Alan Dooley, Jeffrey James Vanderbilt, Alan George Wonders
  • Publication number: 20030032550
    Abstract: A process of forming a bimetallic catalyst composition comprising a cocatalyst (a trialkylaluminum compound) and a catalyst precursor. The precursor comprises at least two transition metals; a metallocene complex is a source of one of said two transition metals. The precursor is produced in a single-pot process by contacting a porous carrier, in sequence, with a dialkylmagnesium compound, an aliphatic alcohol, a non-metallocene transition metal compound, a contact product of a metallocene complex and a trialkyl-aluminum compound, and methylalumoxane.
    Type: Application
    Filed: June 3, 2002
    Publication date: February 13, 2003
    Inventors: Robert I. Mink, Yury V. Kissin, Thomas E. Nowlin, Pradeep P. Shirodkar, Grace O. Tsien, Sandra D. Schregenberger
  • Publication number: 20030008983
    Abstract: The invention is directed to a process for the preparation of a catalyst component for the polymerization of an olefin by:
    Type: Application
    Filed: March 27, 2002
    Publication date: January 9, 2003
    Inventors: Vladimir A. Zakharov, Gennady D. Bukatov, Sergei A. Sergeev
  • Patent number: 6489427
    Abstract: Polyethylenes are prepared having a density in the range 900-980 kg/m3 and a weight average molecular weight ≧375,000 characterized by a fracture toughness at −40° C. >20 kJ/m2 and a dynamic viscosity of <3000 Pa.s at 100 rad/sec. The polymers also having a die swell of 10-80% and show a desirable combination of physical and processing properties. The polymers are prepared by the use of catalysts comprising a metallocene component and a Ziegler component.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: December 3, 2002
    Assignee: BP Chemicals Limited
    Inventors: Edward Quentin Clutton, Philip Stephen Hope
  • Patent number: 6451935
    Abstract: A process for preparing highly functionalized polymers comprising the steps of admixing anionically-polymerizable monomers and at least one anionic-polymerization initiator to form an admixture of living polymers, adding at least one lithium alkoxide stabilizer to the admixture of living polymers to form a stabilized admixture, and adding a functionalizing agent to the stabilized admixture.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: September 17, 2002
    Assignee: Bridgestone Corporation
    Inventors: John R. Schreffler, Mark L. Stayer, Jr., Thomas A. Antkowiak
  • Patent number: 6444605
    Abstract: A solid self-supported cycloalkadienyl catalyst component is disclosed that includes: (i) a mixed metal alkoxide complex which is the reaction product of a magnesium alkoxide or aryloxide and at least one group IVB metal-containing alkoxide or aryloxide; and (ii) Cp, where Cp is a cyclic or polycyclic hydrocarbon having from 3-30 carbon atoms. A self-supported hybrid catalyst also is disclosed which contains the above components (i) and (ii), as well as (iii) a Ziegler-Natta catalyst species. A method of making the self-supported cycloalkadienyl catalyst and the self-supported hybrid catalyst and a method of polymerizing olefins using the catalysts also are disclosed. The catalysts are capable of producing polyolefins in high yield having a broad molecular weight distribution, or a bimodal distribution.
    Type: Grant
    Filed: December 28, 1999
    Date of Patent: September 3, 2002
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Robert Charles Job, Walter Thomas Reichle
  • Patent number: 6429269
    Abstract: A process for the gas phase polymerization of one or more alpha-olefins in the presence of a polymerization catalyst system under reactive conditions in a fluidized bed reactor which process comprises introducing into the reactor a deactivating agent characterized in that the deactivating agent is introduced close to the reactor wall and that said introduction does not terminate the polymerization reaction.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: August 6, 2002
    Assignee: BP Chemicals Limited
    Inventor: Patrick Leaney
  • Patent number: 6420499
    Abstract: The invention relates to a novel process for the preparation of an olefin polymerization catalyst component comprising magnesium, titanium, a halogen and an electron donor.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: July 16, 2002
    Assignee: Borealis Technology Oy
    Inventors: Thomas Garoff, Timo Leinonen, Sirpa Ala-Huikku
  • Patent number: 6420500
    Abstract: A novel supported catalyst component useful for &agr;-olefin polymerization and a method of polymerizing an &agr;-olefin using the same. The catalyst component is characterized by being prepared by contacting a complex represented by general formula (I) wherein R1 and R2 are the same or different and each represents a C1-6 linear or branched alkyl, a C1-3 haloalkyl, or optionally substituted phenyl; and X represents a halogeno with magnesium compound.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: July 16, 2002
    Assignee: Tosoh Akzo Corporation
    Inventors: Kazuo Soga, Toshiya Uozumi, Eiichi Kaji
  • Patent number: 6417130
    Abstract: A process of forming a bimetallic catalyst composition comprising a cocatalyst (a trialkylaluminum compound) and a catalyst precursor. The precursor comprises at least two transition metals; a metallocene complex is a source of one of said two transition metals. The precursor is produced in a single-pot process by contacting a porous carrier, in sequence, with a dialkylmagnesium compound, an aliphatic alcohol, a non-metallocene transition metal compound, a contact product of a metallocene complex and a trialkylaluminum compound, and methylalumoxane.
    Type: Grant
    Filed: March 25, 1996
    Date of Patent: July 9, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Robert I. Mink, Yury V. Kissin, Thomas E. Nowlin, Pradeep P. Shirodkar, Grace O. Tsien, Sandra D. Schregenberger
  • Patent number: 6391989
    Abstract: A catalyst system comprising a) at least one support, b) at least one metallocene and c) at least one compound of the formula (I)  where M1 is an element of group IIa, IIIa, IVa or Va of the Periodic Table of the Elements, x is 0 or 1, y is 0 or 1, z is 0 or 1, A is a cation of group Ia, IIa, IIIa of the Periodic Table of the Elements, a carbenium, oxonium, phosphonium or sulfonium cation or a quaternary ammonium compound, Q1, Q2, Q3 are each a ligand system based on a biphenyl framework bound to M1 via the positions 2 and 12 and having the formula (II)  where R1, R2, R3, R4, R5, R6, R7 and R8 are identical or different and are each a hydrogen atom, a halogen atom, a C1-C40 group, or an OSiR39 group, where R9 are identical or different and are each a hydrogen atom, a halogen atom, a C1-C40 group and two or more radicals R1 to R8 may be joined to one another so as to form a monocyclic or polycyclic ring system which may be substituted.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: May 21, 2002
    Assignee: Basell Polypropylen GmbH
    Inventors: Hans Bohnen, Cornelia Fritze, Frank Kueber
  • Publication number: 20020058763
    Abstract: There are described chloro-, hydroxy- and alkoxysilane derivatives of polysaccharides or oligosaccharides as novel compounds which are polymerizable and cross-linkable, and a method for obtaining them; novel support materials obtained from said derivatives and containing said silane derivatives of polysaccharides or oligosaccharides chemically grafted by a covalent bond with the support and polymerized and cross-linked in a three-dimensional network and a method for obtaining them; as well as the use of said material supports in separation or in preparation of enantiomers, through employment in gaseous, liquid or supercritical chromatography, by electrophoresis, electrochromatography or by percolation processes through membranes containing said support materials.
    Type: Application
    Filed: March 15, 2001
    Publication date: May 16, 2002
    Applicant: Institut Francais du Petrole
    Inventor: Raphael Duval
  • Patent number: 6388028
    Abstract: The present invention relates to spherical solid catalyst components for the polymerization of olefins, comprising a titanium compound, supported on a magnesium halide, containing more than one Ti-halogen link and optionally containing groups different from halogen in an amount lower than 0.5 mole per mole of Ti. Spherical solid compounds of the invention are characterized by having a surface area, measured by the BET method, of lower than 70 m2/g, a total porosity, measured by the mercurium method, higher than 0.5 cm3/g and a pore radius such that at least 50% have values higher than 800 Å.
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: May 14, 2002
    Assignee: Basell Technology Company bv
    Inventors: Mario Sacchetti, Illaro Cuffiani, Gianni Pennini
  • Patent number: 6376628
    Abstract: A method for preparing an &agr;-olefin polymer comprising the step of polymerizing or copolymerizing an &agr;-olefin in the presence of a catalyst containing a solid catalyst constituent (A) which contains magnesium, titanium, a halogen element and an electron donor, an organoaluminum compound constituent (B), an organosilicon compound constituent (C) represented by the following general formula (1); and an organosilicon compound constituent (D) represented by the following general formulas (2) or (3) to prepare an &agr;-olefin polymer RnSi(OR)4−n  (1) wherein R is a hydrocarbon group having 1 to 8 carbon atoms, n is integer of 1 or 2; wherein R1 is a hydrocarbon group having 1 to 8 carbon atoms, R2 is a hydrocarbon group having 1 to 8 carbon atoms, a hydrocarbylamino group having 2 to 24 carbon atoms, or a hydrocarbylalkoxy group having 1 to 24 carbon atoms, R3N is a polycyclic amino group having 7 to 40 carbon atoms, wherein the carbon atoms and the nitrogen atom form a c
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: April 23, 2002
    Assignee: Grand Polymer Co., Ltd.
    Inventors: Shigeru Ikai, Hiroyuki Ikeuchi, Yasuhisa Sakakibara, Hiroshi Satoh