From Hydrocarbon Patents (Class 526/348)
  • Publication number: 20120101235
    Abstract: This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 1 to 25 mol %, prior to use as an activator, where the mol % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the amount of the unknown species is determined by the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
    Type: Application
    Filed: October 18, 2011
    Publication date: April 26, 2012
    Inventors: Donna J. CROWTHER, David M. Fiscus
  • Patent number: 8163853
    Abstract: This invention relates to new transition metal complexes for use in olefin polymerization and oligomerization. The active complex is a pyridine amide having a metallocenyl substituent as part of the ligand structure. The invention also relates to novel precursors for the ligand systems of such complexes obtained from metallocenyl-substituted pyridine compounds through sequences involving addition-condensation or lithium-halogen exchange (with subsequent metathesis) reactions.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: April 24, 2012
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventor: John R. Hagadorn
  • Patent number: 8163837
    Abstract: A method for forming a heat sealable coating on a substrate, wherein the substrate is formed from at least one oriented polymer is shown. The method includes depositing an aqueous polymer dispersion on the substrate, wherein the aqueous polymer dispersion includes (A) at least one thermoplastic resin; (B) at least one dispersing agent; and (C) water; wherein the dispersion has a pH of less than 12, and drying the dispersion to form a first layer.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 24, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Brad M. Moncla, Sarah T. Eckersley, Ralph G. Czerepinksi, Charles F. Diehl, Matthew J. Kalinowski, Dale C. Schmidt
  • Patent number: 8163856
    Abstract: In an embodiment, a method is disclosed to increase the activity of an ionic liquid catalyst comprising emulsifying the ionic liquid catalyst with one or more liquid components. In an embodiment, a method is disclosed comprising introducing into a reaction zone a monomer feed and a reduced amount of ionic liquid catalyst and controlling an amount of shear present in the reaction zone to maintain a desired conversion reaction of the monomer. In an embodiment, a catalyzed reaction system is disclosed comprising a reactor configured to receive one or more liquid components and ionic liquid catalyst; a device coupled to the reactor for adding high shear to the liquid components and ionic liquid catalyst; and a controller coupled to the device for adding high shear and configured to control the amount of shear added to a catalyzed reaction zone to maintain a conversion reaction.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: April 24, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Lee H. Bergman, Kenneth D. Hope, Elizabeth A. Benham, Donald A. Stern
  • Publication number: 20120095157
    Abstract: The present invention describes polymer comprising one or more C3 to C40 olefins and having a Mw of 100,000 or less and a Dot T-Peel of 1 Newton or more. The polymer may have a branching index (g?) of 0.95 or less measured at the Mz of the polymer, and a heat of fusion of 1 to 70 J/g. Also described are polymers of homopolypropylene or a copolymer of propylene and up to 5 mole % ethylene having: an isotactic run length of 1 to 30 as determined by Carbon 13 NMR and a percent of r dyad of greater than 20%, preferably from 20 to 70% as determined by Carbon 13 NMR. Also described are methods of making these and other polymers.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 19, 2012
    Inventors: Peijun Jiang, Armenag Hagop Dekmezian, Jo Ann Marie Canich, Charles Lewis Sims, Ramin Abhari, Cesar Alberto Garcia-Franco, David Raymond Johnsrud
  • Patent number: 8158733
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 metal complex that incorporates a dianionic, tridentate 2-(2-aryloxy)quinoline or 2-(2-aryloxy)dihydroquinoline ligand. In one aspect, supported catalysts are prepared by first combining a boron compound having Lewis acidity with excess alumoxane to produce an activator mixture, followed by combining the activator mixture with a support and the tridentate, dianionic Group 4 metal complex. The catalysts are easy to synthesize, support, and activate, and they enable facile production of high-molecular-weight polyolefins.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: April 17, 2012
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Reynald Chevalier, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko
  • Publication number: 20120088894
    Abstract: A catalyst composition comprising a zirconium complex of a polyvalent aryloxyether and a polymerization processes employing the same, especially a continuous, solution polymerization of ethylene and one or more C3-30 olefins or diolefins to prepare interpolymers having improved processing properties, are disclosed.
    Type: Application
    Filed: December 19, 2011
    Publication date: April 12, 2012
    Applicant: Dow Global Technologies LLC
    Inventors: Wayde V. Konze, Daniel D. VanderLende
  • Publication number: 20120088892
    Abstract: The present invention relates to a process for producing steam using heat recovered from a polymerization reaction. In particular, the present invention relates to a process for producing steam using heat recovered from a polymerization reaction for producing polyolefin, comprising the steps of: thermally contacting said polymerization reaction with a cooling fluid such that the cooling fluid removes heat from said reaction, thermally contacting at least part of said cooling fluid with at least one absorption cycle thereby transferring heat from the cooling fluid to said absorption cycle, using said absorption cycle to produce steam from a condensate, wherein the cooling fluid is used as a hot source for heating at least one evaporator and at least one generator comprised in said at least one absorption cycle. The present invention also relates to a process for cooling a polymerization reaction using a process as described herein. Said invention also relates to a polyolefin producing unit.
    Type: Application
    Filed: July 1, 2010
    Publication date: April 12, 2012
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Pierre Van Grambezen, Mourad Abouahi
  • Publication number: 20120088893
    Abstract: The invention provides a solution polymerization process comprising: A) polymerizing one or more monomers in the presence of a solvent that comprises a heavy hydrocarbon solvent and a light hydrocarbon solvent, to form a polymer solution; B) transferring the polymer solution to a Liquid-Liquid Separator, without adding heat to the solution, and wherein the pressure of the polymer solution is actively reduced in a controlled manner prior to, or within, the Liquid-Liquid Separator, to induce at least two liquid phases, a polymer-rich phase and a solvent-rich phase, and wherein the concentration of polymer in the polymer-rich phase is higher than that in the polymer solution transferred to the Liquid-Liquid Separator; and C) removing the solvent-rich phase.
    Type: Application
    Filed: July 15, 2010
    Publication date: April 12, 2012
    Applicant: Dow Global Technologies LLC
    Inventors: Prasanna K. Jog, Robert D. Swindoll, Nile A. Mead, Pradeep Jain, Alec Y. Wang, Job D. Guzman
  • Patent number: 8153745
    Abstract: Multi-branched polypropylene having a g? of less than 1.00.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: April 10, 2012
    Assignee: Borealis Technology Oy
    Inventors: Eberhard Ernst, Manfred Stadlbauer
  • Patent number: 8153736
    Abstract: A composition that may be useful for thermoforming and blow molding applications comprises a metallocene catalyzed propylene-ethylene random copolymer having an ethylene content of from about 0.1 to about 1.5 weight percent based on the copolymer, and exhibits a flexural modulus of at least about 1,100 MPa, a haze of less than about 40 percent, a melt flow of from about 1.0 dg/min to about 3.0 dg/min, and a xylene solubles content from about 0.2 weight percent to about 1.0 weight percent based on the copolymer. A process for preparing the copolymer and articles prepared therefrom are also disclosed. The composition's properties may make it particularly desirable for applications such as bottles, syringes and containers such as those used for food and medical purposes.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: April 10, 2012
    Assignee: Fina Technology, Inc.
    Inventors: Mike Musgrave, Lu Ann Kelly, Mark Murphy
  • Patent number: 8153068
    Abstract: A method according to one embodiment includes operating a reactor or providing a reactor after operation, wherein the reactor includes a bottom section, a bed section above the bottom section, a distributor plate between the bottom section and the bed section, an expanded section above the bed section, and an upper section above the bed section, wherein the bed section has a height H measured from the distributor plate to the expanded section; measuring a concentration of particulates in the upper section of the reactor to obtain a first determined level of particulates in the upper section; and discharging at least some of the particulates from the reactor at an upper discharge point located above 0.55H as measured vertically from the distributor plate based on the first determined level. Additional systems and methods are also provided.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: April 10, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, R. Eric Pequeno, Larry L. Hjelle
  • Patent number: 8153243
    Abstract: The present invention relates to compositions and processes of making and using interpolymers having a controlled molecular weight distribution. Multilayer films and film layers derived from novel ethylene/?-olefin interpolymers are also disclosed.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: April 10, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Rajen M. Patel, David W. Fuchs, Pradeep Jain, Seema Karande, Mehmet Demirors, Mark Grant Spencer, Kim L. Walton, Angela N. Taha, Phillip D. Hustad, Roger L. Kuhlman, Anthony J. Castelluccio
  • Patent number: 8148482
    Abstract: A process for forming tactic polymers employing at least one olefin polymerization catalyst comprising a non-racemic mixture of the R- and S-enantiomers of a metal complex containing at least one asymmetrically substituted (chiral) carbon atom, and a chain shuttling agent, a polar aprotic organic compound, or both a chain shuttling agent and a polar aprotic organic compound.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: April 3, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Vincenzo Busico, Harold W. Boone, James C. Stevens, Francesca Alfano, Roberta Cipullo
  • Publication number: 20120076983
    Abstract: An interior surface panel such as a ceiling tile is free of PVC materials and otherwise possesses desirable properties that make it suitable for installation in a variety of environments including schools, household and commercial kitchens and healthcare facilities. The panel can include a base mat and a facing material of a polyolefin or polyester polymer or copolymer bonded to the base mat. The facing material is resistant to ultraviolet light and possesses superior scrubbability. The PVC-free facing has a preferred thickness, opacity and surface roughness and a texture pattern that is non-directional and discontinuous. In an embodiment in which the PVC-free facing is white, it has a preferred light reflectance. The PVC-free facing is resistant to deformation under tension. In addition, the facing has low anisotropy; that is, the facing exhibits minimal differences in its physical properties in different directions. The facing also has good dimensional stability.
    Type: Application
    Filed: September 29, 2010
    Publication date: March 29, 2012
    Applicant: USG INTERIORS, INC.
    Inventors: Qing Yu, Gregory Palm
  • Publication number: 20120074450
    Abstract: An optical gel member to be used in a gap between light-emitting diode which is a backlight light source of an optical device and light guide plate, as well as an assembling method for an optical device and an optical device using the same. The optical gel member etc. to be used in an interposed state between light guide plate and light-emitting device consisting of a light-emitting diode (LED) in an optical device, characterized by satisfying the following requirements (i) to (iii). (i) The optical gel member consists of a transparent gel such as silicone type gel or acryl type gel, which has a hardness of 0 to 80 in JIS-A hardness according to JIS K6253, or 20 to 200 in penetration (25° C.) in accordance with JIS K2207; (ii) The optical gel member is in a string-like form, and the peripheral surface thereof is in contact with light guide plate and light-emitting device; (iii) The optical gel member has a repulsive force of 12 MPa or less at a compression rate of 30%.
    Type: Application
    Filed: August 11, 2010
    Publication date: March 29, 2012
    Applicant: TAICA CORPORATION
    Inventors: Hirohisa Sakurai, Yuichi Shiratori, Takahiro Sasazawa, Masahiko Masuda
  • Patent number: 8143184
    Abstract: The invention is directed to a process for producing an olefin polymerization catalyst wherein a solution of a soluble magnesium complex containing an element of is Group 13 or 14 of the Periodic Table (IUPAC) is contacted with a halogen containing transition metal compound of Group 3 to 10 of the Periodic Table (IUPAC) to obtain a solid catalyst complex comprising as essential components Mg, said element of is Group 13 or 14 of the Periodic Table (IUPAC) and said transition metal compound.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: March 27, 2012
    Assignee: Borealis Technology Oy
    Inventors: Thomas Garoff, Päivi Waldvogel
  • Patent number: 8143358
    Abstract: Installation for the gas-phase polymerization of at least one olefinic monomer, comprising a horizontal stirred reactor (1) consisting of an undivided space, provided with a number of gas feeds (13a-13) in the bottom section of the reactor (1) and a number of liquid feeds (7a-7) in the top section of the reactor (1) and at least two gas outlets (9, 11) at the top of the reactor (1), the installation being provided with means (43, 45) to regulate the discharge capacities of the gas outlets.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: March 27, 2012
    Inventors: Paul J. Diepen, Stanislaus M. P. Mutsers
  • Publication number: 20120070596
    Abstract: Provided is an ethylene copolymer having improved hygienic property. More particularly, the ethylene copolymer satisfies a correlation between a density thereof and an extract content. The ethylene copolymer having improved hygienic property can be applied in injection molding, rotation molding, or blow molding.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 22, 2012
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Seung Bum KWON, Se Won OH, Hyeong Taek HAM, Choon Sik SHIM, Sung Seok CHAE, Dae Ho SHIN
  • Patent number: 8138286
    Abstract: Cycloolefin copolymers which are distinguished by the presence of racemic diads of repeating polycyclic units and additionally by racemic triads of repeating polycyclic units are described. These copolymers can be prepared by copolymerization of polycyclic olefins with linear olefins in the presence of metallocene catalysts which have no Cs symmetry in relation to the centroid-M-centroid plane. The novel copolymers can be used for the production of shaped articles, in particular of films.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: March 20, 2012
    Assignee: Topas Advanced Polymers GmbH
    Inventors: Dieter Ruchatz, Anne-Meike Schauwienold, Peter Jörg
  • Patent number: 8138284
    Abstract: A production process of a propylene block copolymer, comprising the steps of (I) contacting a solid catalyst component containing titanium atoms, magnesium atoms and halogen atoms with an organoaluminum compound and an external electron donor represented by the defined formula, thereby forming a polymerization catalyst, (II) polymerizing propylene in the presence of the polymerization catalyst, thereby forming a polymer component (1) having an intrinsic viscosity, [?]1, and (III) copolymerizing propylene with an olefin other than propylene in the presence of the polymer component (1), thereby forming a polymer component (2) having an intrinsic viscosity, [?]2, which is three times or more [?]1.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 20, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Yasuki Fujiwara
  • Publication number: 20120065346
    Abstract: An ethylene-?-olefin copolymer comprising monomer units derived from ethylene and monomer units derived from an ?-olefin having 3 to 20 carbon atoms, having a density (d) of 860 to 950 kg/m3, having a melt flow rate (MFR) of 0.01 to 100 g/10 min, having a bimodal molecular weight distribution, and having a single melting peak measured by a differential scanning calorimeter (DSC).
    Type: Application
    Filed: May 27, 2010
    Publication date: March 15, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yoshinobu Nozue, Naoko Ochi
  • Publication number: 20120065351
    Abstract: An ethylene-?-olefin copolymer comprising monomer units derived from ethylene and monomer units derived from an ?-olefin having 3 to 20 carbon atoms, having a density (d) of 850 to 970 kg/m3, having a melt flow rate (MFR) of 0.01 to 100 g/10 min, having a bimodal molecular weight distribution, and having a ratio (Mw/Mn) of the weight average molecular weight (Mw) thereof to the number average molecular weight (Mn) thereof of 31 to 70, wherein the number (NLCB) of branches having 5 or more carbon atoms measured by 13C-NMR is from 0.7 to 1.0 per 1000 carbon atoms. This copolymer is superior in a balance between a melt tension, an extrusion load at extruding, and a mechanical strength.
    Type: Application
    Filed: May 27, 2010
    Publication date: March 15, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yoshinobu Nozue, Naoko Ochi
  • Patent number: 8133963
    Abstract: The invention is directed to a polypropylene resin, which is suitable for manufacturing an air quenched blown film. The resin has a melt flow rate of greater than 5 g/10 min, less than 2% xylene solubles, a pentad isotacticity of greater than 95%, an isotactic pentad/triad ratio of greater than 95%, a crystallinity of at least 65%, and a crystallization temperature of at least 127° C. The polypropylene resin contains from 500 ppm to 2500 ppm of a nucleator/clarifier additive. An quenched blown film made from resin exhibits a crystallization onset temperature of at least 116° C. and a crystallization half-life time of less 4.1 seconds or less when tested using fast DSC analysis with a scan rate of 200° C./minute.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: March 13, 2012
    Assignee: Braskem America, Inc.
    Inventors: Peter E. Pierini, Shaun E. Pirtle
  • Publication number: 20120058063
    Abstract: The disclosed invention relates to a process, comprising: conducting unit operations in at least two process zones in a process microchannel to treat and/or form a non-Newtonian fluid, a different unit operation being conducted in each process zone; and applying an effective amount of shear stress to the non-Newtonian fluid to reduce the viscosity of the non-Newtonian fluid in each process zone, the average shear rate in one process zone differing from the average shear rate in another process zone by a factor of at least about 1.2.
    Type: Application
    Filed: October 26, 2011
    Publication date: March 8, 2012
    Inventors: Anna Lee Tonkovich, Ravi Arora, David Kilanowski, Eric Daymo
  • Publication number: 20120058526
    Abstract: A method including: (a) selectively reacting a first sugar in a mixture which includes at least one second sugar to form a product mixture comprising a product of said first sugar; (b) separating said product of said first sugar from said product mixture; and (c) separating at least one of said at least one second sugar from said product mixture.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 8, 2012
    Applicant: HCL CleanTech Ltd
    Inventors: Robert Jansen, Aharon Eyal
  • Patent number: 8128877
    Abstract: A manufacturing process for producing polyolefin, having a feed system, a reactor system including at least one polymerization reactor, a diluent/monomer recovery system, a fractionation system, and an extrusion/loadout system having an extruder. The manufacturing process is configured to consume less than 325 kilowatt-hours of electricity per metric ton of polyolefin produced.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: March 6, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Robert R. McElvain, John D. Hottovy, Ralph W. Romig, Donald W. Verser, David H. Burns, John H. Tait, Richard Peacock, James E. Hein, Scott E. Kufeld, Carl W. Fenderson, Anurag Gupta, Dale A. Zellers, Penny A. Zellers, legal representative
  • Patent number: 8129481
    Abstract: A method for treating at least one interior surface (for example, a bed wall) of a fluidized bed polymerization reactor system, including by applying a solution catalyst (preferably at least substantially uniformly and in liquid form) to each surface, and optionally (where a catalyst component of the solution catalyst comprises at least one chromium containing compound) oxidizing at least some of the applied chromium containing compound in a controlled manner.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: March 6, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Robert O. Hagerty, Kevin B. Stavens, Randall B. Laird, Zerong Lin, Michael E. Muhle, Agapios K. Agapiou, David M. Glowczwski, Fathi D. Hussein, Gary D. Mohr, Ted A. Powell, Michael E. Sieloff, Edward F. Smith, Keith W. Trapp
  • Patent number: 8128878
    Abstract: A method for preparing polyolefin from alpha-olefin with high productivity using an internal circulating fluidized bed polymerization reactor is disclosed. The method for gas-phase polymerization of alpha-olefin comprising the steps of: supplying circulation gas including one or more alpha-olefins and inert gas into a polymerization reactor; polymerizing the alpha-olefin to polyolefin in two separated polymerization areas in the polymerization reactor; and discharging produced polyolefin from the polymerization reactor.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: March 6, 2012
    Inventors: Sung Woo Kang, Nam Kyu Kim, Young Jae Jun, Man Jung Kim, Kil Su Kim
  • Patent number: 8129488
    Abstract: Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amido or alcoxy group is introduced is coordinated, a method of synthesizing the same, and olefin polymerization using the transition metal complex. Compared to a conventional transition metal complex having a silicon bridge and an oxido ligand, the transition metal complex has a phenylene bridge, so that a monomer easily approaches the transition metal complex in terms of structure and a pentagon ring structure of the transition metal complex is stably maintained. The catalyst composition including the transition metal complex is used to synthesize a polyolefin copolymer having a very low density less than 0.910 g/cc.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: March 6, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Choong Hoon Lee, Eun-Jung Lee, Seungwhan Jung, Jong Joo Ha, Beomdoo Seo, Bun Yeoul Lee, Ui Gab Joung, Dae June Joe
  • Patent number: 8129490
    Abstract: A propylene polymer composition having a Flexural modulus lower than 500 MPa, a total ethylene content from 9 to 30% by weight, a xylene soluble fraction at room temperature higher than 25% by weight, a melting temperature measured by DSC (Tm° C.) from 130 to 150° C. and a ratio between the weight of xylene soluble fraction at 25° C. and the hexane soluble fraction determined on plaque (100 ?m) of higher than 4.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: March 6, 2012
    Assignee: Basell Poliolefine Italia S.R.L.
    Inventors: Camillo Cagnani, Enrico Beccarini, Claudio Cavalieri
  • Patent number: 8129489
    Abstract: The present invention provides an ethylene polymer that has excellent fluidity and moldability as well as gives a molded product having excellent mechanical strength. The ethylene polymer of the present invention contains 0.02 to 1.50 mol % of a constitutional unit derived from ?-olefin having 6 to 10 carbon atoms, and has the density of 945 to 975 kg/m3, which satisfies both of the following requirements [1] and [2] simultaneously: [1] in CFC, all the components having a molecular weight of 100,000 or more are eluted at a temperature of 85° C. or higher; and [2] the components eluted at a temperature of 80° C. or lower account for up to 5% of all the components eluted in CFC.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: March 6, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Masahiko Okamoto, Tetsuji Kasai, Yasushi Tohi, Koji Endo, Shiro Otsuzuki, Takahiro Akashi, Kenji Iwamasa, Yoshiyuki Hirase, Keiko Fukushi, Shinichi Nagano
  • Patent number: 8129487
    Abstract: A process for forming a high molecular weight, multi-block copolymer comprising two or more chemically distinguishable segments or blocks, the process comprising polymerizing one or more olefin monomers in the presence of a chain shuttling agent and a catalyst composition comprising two or more olefin polymerization catalysts capable of preparing polymers having differing chemical or physical properties under equivalent polymerization conditions, or a catalyst composition comprising at least one olefin polymerization catalyst containing multiple active catalyst sites capable of preparing polymers having differing chemical or physical properties.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: March 6, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Vincenzo Busico, Francesca Alfano, Harold W. Boone, Roberta Cipullo, James C. Stevens
  • Publication number: 20120053307
    Abstract: Disclosed is a process for making a linear low density polyethylene (LLDPE) having low gels. The process comprises copolymerizing ethylene with one or more C3-10 ?-olefins to produce an LLDPE resin which has a gel defect area less than 25 ppm. The copolymerization is performed in the presence of a Ziegler-Natta catalyst which comprises an MgCl2 support, a Ti(IV) complex, and a cyclic ether as an internal electron donor. The Ziegler-Natta catalyst has an Mg/Ti molar ratio greater than or equal to 7.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Applicant: Equistar Chemicals, LP
    Inventors: Harilaos Mavridis, Debra L. Beran, Jeffrey R. Golden, Joachim T.M. Pater, Giampiero Morini
  • Publication number: 20120053314
    Abstract: A multi-chamber reactor (1) comprises an outer chamber (2) and at least one inner chamber (3), wherein the at least one inner chamber (3) is formed by a reactor/liner (6), which is closed by a closure (7), in particular a septum or a disk that can be penetrated with a needle, and the outer chamber is an autoclave, wherein the autoclave is composed of an autoclave body (4) and an autoclave cover (5), wherein the autoclave cover (5) has at least one first opening (8) for a needle (9), and preferably a second opening (10), which opens into the outer chamber. Said multi-chamber reactor (1) is suited for carrying out reactions with positive or negative pressure and under complete exclusion of air and/or moisture.
    Type: Application
    Filed: February 20, 2009
    Publication date: March 1, 2012
    Applicant: PREMEX REACTOR AG
    Inventor: Klaus PREUSS
  • Patent number: 8124708
    Abstract: Uncompounded polyolefin powder which is multimodal and has a particle size distribution such that D95 is less than 355 ?m, D5 is at least 60 ?m, and (D90?D10)/D50 is less than 1.2, where D95, D90, D50 and D10 are defined such that 95 wt %, 90 wt %, 50 wt % and 10 wt % of the polymer particles have a diameter of less than D95, D90, D50 and D10 respectively.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: February 28, 2012
    Assignee: Ineos Manufacturing Belgium NV
    Inventors: Thomas F. Ameye, Andre Frederich, Dominique Jan
  • Patent number: 8124709
    Abstract: Embodiments of the invention provide a class of mesophase separated ethylene/?-olefin block interpolymers with controlled block sequences. The ethylene/?-olefin interpolymers are characterized by an average block index, ABI, which is greater than zero and up to about 1.0 and a molecular weight distribution, Mw/Mn, greater than about 1.4. Preferably, the block index is from about 0.2 to about 1. In addition or alternatively, the block ethylene/?-olefin interpolymer is characterized by having at least one fraction obtained by Temperature Rising Elution Fractionation (‘TREF’), wherein the fraction has a block index greater than about 0.3 and up to about 1.0 and the ethylene/?-olefin interpolymer has a molecular weight distribution, Mw/Mn, greater than about 1.4.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: February 28, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Gary R. Marchand, Yunwa W. Cheung, Benjamin C. Poon, Jeffrey D. Weinhold, Kim L. Walton, Pankaj Gupta, Colin Lipishan, Phillip D. Hustad, Roger L. Kuhlman, Edmund M. Carnahan, Eddy I. Garcia-Meitin, Patricia L. Roberts
  • Patent number: 8124696
    Abstract: A method according to one embodiment includes operating a reactor or providing a reactor after operation, wherein the reactor includes a bottom section, a bed section above the bottom section, a distributor plate between the bottom section and the bed section, an expanded section above the bed section, and an upper section above the bed section, wherein the bed section has a height H measured from the distributor plate to the expanded section; measuring a concentration of particulates in the upper section of the reactor to obtain a first determined level of particulates in the upper section; and discharging at least some of the particulates from the reactor at an upper discharge point located above 0.55H as measured vertically from the distributor plate based on the first determined level. Additional systems and methods are also provided.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: February 28, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, R. Eric Pequeno, Larry L. Hjelle
  • Patent number: 8124673
    Abstract: Low-viscosity drag reducers, systems for delivering low-viscosity drag reducers, and methods of making low-viscosity drag reducers are disclosed. The low-viscosity drag reducers have a viscosity less than 350 cP at a shear rate of 250 sec?1 and a temperature of 60° P. This low-viscosity allows the drag reducers to be delivered through a long and relatively small diameter conduit of a subsea umbilical line without an unacceptable level of pressure drop or plugging of the conduit. The low-viscosity drag reducers can be delivered to a subsea flowline carrying fluids produced from a subterranean formation to 10 thereby provide significant drag reduction in the flow line.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: February 28, 2012
    Assignee: ConocoPhillips Company
    Inventors: Timothy L. Burden, Kenneth W. Smith, William F. Harris, Allan Browne
  • Publication number: 20120043491
    Abstract: The invention relates to doping capsules which have a substance which displays a decreasing transparency with increasing temperature within a defined temperature range due to physicochemical interactions with the polymer matrix to be doped. Likewise, the invention relates to composite systems which have a polymer matrix doped with the doping capsules. The capsules according to the invention are used for sun protection or heat reflection.
    Type: Application
    Filed: December 15, 2008
    Publication date: February 23, 2012
    Applicant: Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V.
    Inventors: Arno Seeboth, Olaf Mühling, Ralf Ruhmann
  • Publication number: 20120045956
    Abstract: Fabricated articles are disclosed which comprise a polypropylene impact copolymer. The propylene impact copolymer composition comprises from 60 to 90 percent by weight of the impact copolymer composition of a matrix phase, which can be a homopolymer polypropylene or random polypropylene copolymer having from 0.1 to 7 mol percent of units derived from ethylene or C4-C10 alpha olefins. The propylene impact copolymer composition also comprises from 10 to 40 percent by weight of the impact copolymer composition of a dispersed phase, which comprises a propylene/alpha-olefin copolymer having from 6 to 40 mol percent of units derived from ethylene or C4-C10 alpha olefins, wherein the dispersed phase has a comonomer content which is greater than the comonomer content in the matrix phase. The propylene impact copolymer composition is further characterized by having the ratio of the matrix MFR to the dispersed phase MFR being 1.2 or less.
    Type: Application
    Filed: August 19, 2010
    Publication date: February 23, 2012
    Applicant: Dow Global Technologies Inc.
    Inventors: Li-Min Tau, Gert J. Claasen, Charles R. Crosby, III, Alechia Crown, John Kaarto
  • Patent number: 8119748
    Abstract: Group 4 metal complexes comprising a polyvalent, heteroaryl donor ligand and their use as components of olefin polymerization catalysts, especially suited for preparing propylene/ethylene copolymer products having high isotacticity and low molecular weight, are disclosed.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: February 21, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Harold W. Boone, Kevin A. Frazier, Daniel D. VanderLende, Paul C. Vosejpka
  • Patent number: 8119237
    Abstract: A fiber is obtainable from or comprises a blend of a propylene based polymer and an ethylene/?-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and 1 cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re>1481?1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven, knitted or non-woven fabrics can be made from such fibers.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: February 21, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Hong Peng, Hongyu Chen, Yuen-Yuen D. Chiu, Shih-Yaw Lai, Eddy I. Garcia-Meitin, Charles F. Diehl
  • Patent number: 8119747
    Abstract: The present invention relates to an ethylene/?-olefin interpolymer product comprising at least one ?-olefin interpolymerized with ethylene and, characterized in at least one aspect, as having improved properties when utilized in a hot melt adhesive formulation. The invention also relates to a process for manufacturing the interpolymer product wherein the process comprises employing two or more single site catalyst systems in at least one reaction environment (or reactor) and wherein the at least two catalyst systems have (a) different comonomer incorporation capabilities or reactivities and/or (b) different termination kinetics, both when measured under the same polymerization conditions. The interpolymer products are useful, for example, in applications such as hot melt adhesives, and also for impact, bitumen and asphalt modification, adhesives, dispersions or latexes and fabricated articles such as, but not limited to, foams, films, sheet, moldings, thermoforms, profiles and fibers.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: February 21, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Teresa P. Karjala, Brian W. Kolthammer
  • Publication number: 20120041148
    Abstract: An interpolymer of ethylene and at least one alpha-olefin is claimed, wherein the ethylene interpolymer is characterized as having an average Mv and a valley temperature between the interpolymer and high crystalline fraction, Thc, such that the average Mv for a fraction above Thc from ATREF divided by average Mv of the whole polymer from ATREF (Mhc/Mp) is less then about 1.95 and wherein the interpolymer has a CDBI of less than 60%. The interpolymer of ethylene and at least one alpha-olefin can also be characterized as having a high density (HD) fraction and an overall density such that % HD fraction<?2733.3+2988.7x+144111.5 (x?0.92325)2 where x is the density in grams/cubic centimeter. Fabricated articles comprising the novel interpolymers are also disclosed.
    Type: Application
    Filed: March 30, 2010
    Publication date: February 16, 2012
    Applicant: Dow Global Technologies LLC
    Inventors: Ayush A. Bafna, Mehmet Demirors, Sylvie Desjardins, Douglas S. Ginger, Colleen M. Tice, Terry A. Pearce
  • Publication number: 20120040581
    Abstract: The invention relates to a method for producing two- and three-dimensionally structured, microporous and nanoporous webs made up of nanofibers in any form with a very high covering or depositing degree of the fibers by means of a predefined conductive mold (template) as a collector and to the use of the webs according to the invention. The three-dimensional structure formation can be influenced in a directed manner by the deposition density of the nanofibers generated by means of an electrospinning process, which deposition density is adjustable through the accumulation time of the fibers.
    Type: Application
    Filed: March 31, 2010
    Publication date: February 16, 2012
    Applicant: CENTRO DE ESTUDIOS INVESTIGACIONES TECNICAS DE GIPUZKOA
    Inventor: Gyeong-Man Kim
  • Patent number: 8114945
    Abstract: Process for controlling the (co)polymerization of olefins in a continuous polymerization reactor wherein the olefin (co)polymerization is performed in an industrial plant reactor in the presence of a polymerization catalyst characterized in that at least one operating parameter of the plant is controlled by means of a measurement of the chain branching level (CBL) of the produced polymer.
    Type: Grant
    Filed: October 14, 2002
    Date of Patent: February 14, 2012
    Assignee: Ineos Europe Limited
    Inventors: David Heslop, Eric Osmont
  • Patent number: 8114932
    Abstract: Polymer articles formed from a modified propylene based polymer and processes of forming the same are described herein. The modified propylene based polymers generally include a propylene based polymer, a nucleator including a hyper nucleator, and a neutralizer composition, wherein the neutralizer composition includes a first compound selected from stearoyl lactylates, lactates, hydrotalcites, hydroxides and combinations thereof and may optionally include a second compound selected from metal stearates, wherein the lactates are selected from modified calcium salts derived from stearic and lactic acids and calcium lactates.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: February 14, 2012
    Assignee: Fina Technology
    Inventor: Michael McLeod
  • Publication number: 20120035297
    Abstract: The present embodiment can teach a method of feeding to a materials processor a mixture containing an agglomerated drag reducer. The mixture is then homogenized to produce a remediated drag reducer. The maximum particle size diameter of the agglomerated drag reducing polymer is at least 5% larger than the maximum particle diameter of the remediated drag reducer.
    Type: Application
    Filed: July 29, 2011
    Publication date: February 9, 2012
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: William Franklin Harris, JR., Ray Lyle Johnston
  • Patent number: 8110640
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: February 7, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Matthew G. Thorn, Elizabeth A. Benham