Abstract: Provided are a block copolymer having a narrow molecular weight distribution such that the copolymer can be used in a DSA technique, a block copolymer intermediate thereof, and methods for producing the same. A block copolymer intermediate represented by the general formula (1) or (2): wherein, in the formulae (1) and (2), each of R1 and R3 independently represents a polymerization initiator residue, each of R2 and R4 independently represents an aromatic group or an alkyl group, Y1 represents a polymer block of (a)an (meth)acrylic acid ester, Y2 represents a polymer block of styrene or a derivative thereof, L represents an alkylene group or a phenylene group, X represents a halogen group, and each of m and n independently represents an integer of 1 to 5.
Abstract: A method for preparing methyl acrylate comprises: a) heating in a reaction zone a mixture comprising acrylic acid, methanol, and an acid catalyst to react and form a reaction product comprising methyl acrylate which is vaporized with other light components and then fed to a distillation zone, wherein a feed stream entering the reaction zone comprises methanol to acrylic acid in a molar ratio of greater than 1 and less than 2, and a residence time in the reaction zone ranges from 0.25 to 2 hours; b) condensing and phase-separating a distillate from the distillation zone to form an organic phase comprising methyl acrylate and an aqueous phase; c) returning a portion of the organic phase to the distillation zone as organic reflux; and d) feeding the remainder of the organic phase and the aqueous phase of the distillation zone to an extraction column to form a methanol rich aqueous effluent and an organic effluent comprising methyl acrylate.
Type:
Grant
Filed:
April 2, 2020
Date of Patent:
September 24, 2024
Assignee:
Rohm and Haas Company
Inventors:
Reetam Chakrabarti, Minh N. Ngo, James Elder
Abstract: A method for producing a polymer containing metal atoms or halogen atoms at the terminals thereof with excellent efficiency while minimizing or eliminating side reactions or the like is provided. The method can also freely control molecular weight characteristics of the polymer.
Type:
Grant
Filed:
July 16, 2018
Date of Patent:
September 10, 2024
Assignee:
LG Chem, Ltd.
Inventors:
Yoon Hyung Hur, Je Gwon Lee, Sung Soo Yoon, No Jin Park, Eun Young Choi, Se Jin Ku, Mi Sook Lee, Hyung Ju Ryu, Na Na Kang, Eung Chang Lee
Abstract: A method for preparing methyl acrylate comprises heating in a reaction zone a mixture comprising acrylic acid, methanol, and an acid catalyst to react and form a reaction product comprising methyl acrylate which is vaporized with other light components and then fed to a distillation zone. A feed stream entering the reaction zone comprises methanol and acrylic acid in a molar ratio of greater than 1 and less than 2, and a residence time in the reaction zone ranges from 0.25 to 2 hours. A distillate from the distillation zone is condensed and phase-separated to form an organic phase comprising methyl acrylate and an aqueous phase. A portion of the organic phase is returned to the distillation zone as organic reflux. The remainder of the organic phase and the aqueous phase of the distillation zone is fed to an extraction column to form a methanol rich aqueous effluent and an organic effluent comprising methyl acrylate.
Type:
Grant
Filed:
April 2, 2020
Date of Patent:
August 20, 2024
Assignee:
Rohm and Haas Company
Inventors:
Reetam Chakrabarti, Minh N. Ngo, James Elder
Abstract: An object of the present invention is to provide a method for producing an unsaturated carboxylic ester, wherein the risk of polymerization blockage is reduced and the required equipment cost and workload involved are kept low while maintaining a high conversion rate in an esterification reaction of unsaturated carboxylic acid. This object can be achieved by a method for producing an unsaturated carboxylic ester, which includes performing an esterification reaction using a reactor packed with a solid catalyst, wherein unsaturated carboxylic acid and alcohol are continuously fed to the reactor from an inlet thereof to form a fluid of the reaction solution in the reactor, and the vaporized organic solvent is continuously fed to the reactor from the inlet or a part near the inlet of the reactor.
Abstract: A surfactant comprising the reaction product of: (a) an epoxidised carboxylic acid ester; and (b) a compound including at least one reactive alcohol and/or amino functional group.
Abstract: An example method for forming a strengthened additive manufacturing material includes coating a surface of an additive manufacturing material with a solution including reinforcement particles, and causing a solvent of the solution to evaporate and the reinforcement particles adhere to the surface of the additive manufacturing material. An example strengthened filament includes a polymer filament having a surface, and reinforcement particles included on the surface of the polymer filament in a substantially uniform coating.
Abstract: A process for preparing methyl methacrylate by direct oxidative esterification of methacrolein has elevated yields compared to known processes. Methyl methacrylate (MMA) is used in large amounts for preparing polymers and copolymers with other polymerizable compounds. In addition, methyl methacrylate is an important synthesis unit for a variety of specialty esters based on methacrylic acid (MAA), which can be produced by transesterification with the appropriate alcohol. There is consequently a great interest in very simple, economic, and environmentally friendly processes for preparing methyl methacrylate. A superior workup of the reactor output from the oxidative esterification of methacrolein allows specific by-products to be isolated and then additionally converted to alkyl methacrylates, especially to MMA.
Type:
Grant
Filed:
June 7, 2019
Date of Patent:
April 12, 2022
Assignee:
Röhm GmbH
Inventors:
Steffen Krill, Florian Zschunke, Belaid Ait Aissa, Marcel Treskow
Abstract: The present invention relates to the production of light (meth)acrylic esters by direct esterification of acrylic acid by methanol or ethanol. The invention more particularly relates to a process for the recovery/purification of C1-C2 alkyl acrylate comprising the azeotropic distillation of the crude reaction mixture using a distillation column comprising a sidestream drawing off of a fraction rich in alkyl alkoxypropionate byproduct, the boiling point of which is close to that of acrylic acid, and therefore problematic in the purification process.
Abstract: A process for continuously preparing a butyl acrylate H2C?CH—C(?O)OR, with R=n-butyl or isobutyl, wherein aqueous 3-hydroxypropionic acid is converted under dehydrating and esterifying conditions in the presence of the corresponding butanol R—OH in a reactor with a rectification column and butyl acrylate formed, unconverted butanol and water used and formed are distilled off overhead as a ternary azeotrope, after separation into a liquid aqueous phase and liquid organic phase each of the aqueous and organic phases is at least partly discharged, and the organic phase comprising the butyl acrylate and the butanol is subjected to distillative separation.
Type:
Grant
Filed:
August 13, 2018
Date of Patent:
March 9, 2021
Assignee:
BASF SE
Inventors:
Ortmund Lang, Tim Blaschke, Christian Raith, Michael Schafranka, Claus Hechler
Abstract: Provided are an industrially advantageous method for separating and purifying isobutylene, the method enabling high-purity isobutylene to be efficiently obtained by a simple process, and a method for producing isobutylene. A method for separating and purifying isobutylene from a reaction gas containing the isobutylene and unreacted isobutanol, comprising: a step (1) of contacting the reaction gas containing the isobutylene and unreacted isobutanol with a first solvent to obtain a first gas containing the isobutylene and a recovered solution containing the unreacted isobutanol; a step (2) of contacting the first gas with a specific second solvent to allow the second solvent to absorb the isobutylene contained in the first gas to obtain an absorption solution containing the isobutylene; and a step (3) of distilling the absorption solution to obtain separated and purified isobutylene. A method for producing isobutylene using the separation and purification method.
Abstract: Provided is a production method whereby corresponding carboxylic acid esters can be obtained from a variety of carboxylic acids at a high yield, even under conditions using a simple reaction operation and little catalyst and even if the amount of substrate used is theoretical. A production method for carboxylic acid ester, whereby a prescribed diester dicarbonate, carboxylic acid, and alcohol are reacted in the presence of at least one type of magnesium compound and at least one type of alkali metal compound.
Type:
Grant
Filed:
December 11, 2015
Date of Patent:
September 24, 2019
Assignee:
Mitsubishi Chemical Corporation
Inventors:
Akihiro Goto, Yoshihiro Kamon, Hiroyuki Mori
Abstract: A process for continuously preparing the tert-butyl ester of an ethylenically unsaturated carboxylic acid, by a) reacting an ethylenically unsaturated carboxylic acid with isobutene in the presence of an acidic catalyst to give an esterification mixture; b) removing the acidic catalyst; c) removing low-boiling components; and d) supplying a tert-butyl ester-comprising liquid to a distillation apparatus and subjecting it to purifying distillation in the distillation apparatus, where d1) in the distillation apparatus the tert-butyl ester-comprising liquid is separated into a tert-butyl ester-comprising gaseous top product and a carboxylic acid-comprising liquid bottom product; d2) the tert-butyl ester-comprising gaseous top product is at least partly condensed and the condensate is recycled partly as reflux to the distillation apparatus; d3) the carboxylic acid-comprising liquid bottom product is recycled at least partly to step a); d4) carboxylic acid-comprising liquid bottom product is drawn off and passed to
Type:
Grant
Filed:
November 28, 2016
Date of Patent:
May 28, 2019
Assignee:
BASF SE
Inventors:
Catharina Horstmann, Claus Hechler, Gregor Grackiewicz, Bernd Schall
Abstract: The present invention relates to a method for producing a C4-C10 alkyl (meth)acrylate, by direct esterification of (meth)acrylic acid by the corresponding alcohol, the reaction water being removed in the form of an azeotrope with the esterification alcohol from a distillation column mounted over the esterification reactor comprising a cationic resin as a catalyst. Said method is characterized in that the molar ratio of alcohol to acid at the inlet of the reactor is between 1.4 and 3, and in that the crude reaction mixture circulates in a recirculation loop joining the reactor and the water removal column, at a recirculation rate of between 6 and 25, expressed by the mass ratio between the flow fed into the loop and the flow sent to a purification treatment.
Type:
Grant
Filed:
June 22, 2015
Date of Patent:
May 22, 2018
Assignee:
ARKEMA FRANCE
Inventors:
Anne Moreliere, Gilles Frimour, Jean-Michel Paul, Stephane Denis
Abstract: The present invention provides a resist or a compound for use as a resist, which is highly sensitive and well-balanced without losing the fundamental physical properties required as a chemically amplified resist (e.g., resolution, line edge roughness (LER)). The present invention is directed to a (meth)acrylate compound represented by general formula (1) and a process for preparation thereof, as well as a (meth)acrylic copolymer obtainable by polymerization of the (meth)acrylate compound of general formula (1) and a photosensitive resin composition thereof: (wherein R1 represents a hydrogen atom or a methyl group, R2 represents a linear or branched alkyl group containing 2 to 4 carbon atoms, and each R3 may be the same or different and represents a group represented by the following formula (2) or (3), etc.) (provided that formulae (2) and (3) are as defined in the specification of the present application).
Abstract: Hydroxycarboxylic acids, e.g., 3-hydroxypropionic acid, and/or their ammonium salts are dehydrated to their corresponding unsaturated carboxylic acids, e.g., acrylic acid, by a process that uses a catalyst comprising ammonium bisulfate. The use of ammonium bisulfate reduces or eliminates the problems associated with processes that use sulfuric acid as a dehydrating catalyst, e.g, excess sulfuric acid consumption and/or recovery.
Type:
Grant
Filed:
October 14, 2014
Date of Patent:
July 11, 2017
Assignees:
Dow Global Technologies LLC, Rohm and Haas Company
Inventors:
Leonard E. Bogan, Jr., Mark A. Silvano, Raymond P. Roach, Sarah M. Hoyt, Robert Tengler, David C. Decoster, Sanjib Biswas, Muhunthan Sathiosatham, Sarah L. Hruby, Andrew M. Lemonds
Abstract: Provided is a 1-(2-acyloxyethyl)cyclopropyl sulfonate compound of General Formula (2): wherein R1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms and optionally containing one or more unsaturated bonds and Z is a monovalent hydrocarbon group having 1 to 10 carbon atoms and optionally containing one or more unsaturated bonds.
Abstract: A method of making 2-octyl acrylate comprising reacting 2-octanol with acrylic acid in the presence of an acid catalyst and added water is described. The 2-octanol may be derived from renewable resources, such as castor oil. The method is efficient and provides selectivity for 2-octyl acrylate.
Type:
Grant
Filed:
March 4, 2014
Date of Patent:
March 28, 2017
Assignee:
3M Innovative Properties Company
Inventors:
Joshua L. Colby, Tabitha A. Clem, Terence D. Spawn, Aaron E. Hutt, Wade T. Teply
Abstract: A simple, commercially viable process for the preparation of phosphonic acid monomers containing essentially no diester or inorganic phosphorous acid compounds is disclosed.
Abstract: Disclosed is a method of making methacrylic acid, or a carboxylic derivative thereof, from itaconic acid, isomers, or precursors thereof. A starting material comprising an acid selected from the group consisting of itaconic acid, citraconic acid, mesaconic acid, citric acid, aconitic acid, isocitric acid and mixtures thereof, is subjected to contact with 0.1 eq. to 3.0 eq. of a base, at a temperature of 150° C. to 350° C., under the influence of a transition metal-containing heterogeneous catalyst. A better yield at lower temperatures is achieved.
Abstract: The invention relates to a process for continuously producing 2-octyl acrylate by reacting acrylic acid and 2-octanol in the presence of a sulfonic acid esterification catalyst and at least one polymerization inhibitor. The water formed by the esterification reaction is entrained by distillation in a column surmounting the reactor in the form of a heteroazeotropic mixture with the 2-octanol which is then subjected, after condensation, to separation in a decanter so as to give an upper organic phase and a lower aqueous phase. The reaction mixture containing the reaction product and residual by-products are purified by separation means in order to obtain: (1) pure 2-octyl acrylate and (2) unreacted 2-octanol and acrylic acid compounds that will be recycled along with the catalyst.
Type:
Grant
Filed:
October 30, 2012
Date of Patent:
August 2, 2016
Assignee:
Arkema France
Inventors:
Alain Riondel, Coralie Graire, Andre Levray, Reinhard Linemann
Abstract: In a method of stabilizing acrylic compounds, a liquid phase containing at least one acrylic compound is mixed with at least one metal and at least one ligand. The acrylic compound can be acrylic acid, methacrylic acid, and their respective esters. The metal can be copper, manganese, and cerium. The ligand can be a quinoline compound of formula (I), an N-oxide of a compound of formula (I), 2,2?-bis(2,3-dihydro-3-oxoindolylidene), or an aliphatic y-dentate ligand with y being 2-6 and comprising at least two nitrogen atoms joined by aliphatic or aromatic C1-C4 bridges comprising y-2 further coordinating nitrogen atoms or heteroatoms: where X is OH, NH2, O—(C1-C4)-alkyl, O—C(O)—(C1-C4)-alkyl, or O—C(O)-phenyl; R1 is H, or (C1-C4)-alkyl; R2 is H, (C1-C4)-alkyl, Cl, Br, or SO3H; and R3 is H, Cl or Br.
Type:
Grant
Filed:
December 12, 2013
Date of Patent:
December 8, 2015
Assignee:
BASF SE
Inventors:
Tobias Johannes Korn, Peter Zurowski, Thorsten Friese, Sylke Haremza, Ulrich Jaeger, Steffen Rissel, Volker Schliephake
Abstract: The present invention relates to a covalently organo-modified LDH (LDH/APTES) was found to be an efficient and reusable heterogeneous catalyst for C—C bond forming reactions (i.e. Aldol condensation, Knoevenagel condensation, Henry reaction, Michael addition). More particularly, this catalyst shows consistent activity for several cycles in C—C bond forming reaction. These catalysts were successfully characterized by XRD, FT-IR, 29Si CP MAS NMR.
Type:
Grant
Filed:
February 14, 2012
Date of Patent:
May 19, 2015
Assignee:
COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
Abstract: Provided is a simple and efficient method for producing (E)-2-isopropyl-5-methyl-2,4-hexadienyl acetate. More specifically, provided is a method for producing (E)-2-isopropyl-5-methyl-2,4-hexadienyl acetate including the steps of: isomerizing 2-isopropenyl-5-methyl-4-hexenoic acid (1) into (E)-2-isopropyl-5-methyl-2,4-hexadienoic acid (2), reducing thus formed (E)-2-isopropyl-5-methyl-2,4-hexadienoic acid (2) into (E)-2-isopropyl-5-methyl-2,4-hexadienol (3), and acetylating thus formed (E)-2-isopropyl-5-methyl-2,4-hexadienol (3) into (E)-2-isopropyl-5-methyl-2,4-hexadienyl acetate (4), wherein Ac represents an acetyl group.
Abstract: A negative pattern is formed by coating a resist composition comprising a polymer comprising recurring units having a tertiary ester type acid labile group having a plurality of methyl or ethyl groups on alicycle and an acid generator onto a substrate, prebaking, exposing to high-energy radiation, baking, and developing in an organic solvent developer so that the unexposed region of resist film is dissolved away and the exposed region of resist film is not dissolved. The resist composition exhibits a high dissolution contrast during organic solvent development and forms a fine hole or trench pattern of dimensional uniformity.
Type:
Grant
Filed:
August 16, 2013
Date of Patent:
April 28, 2015
Assignee:
Shin-Etsu Chemical Co., Ltd.
Inventors:
Koji Hasegawa, Jun Hatakeyama, Masayoshi Sagehashi, Teppei Adachi
Abstract: A radioisotope labeled reagent includes a compound having the general formula (I), L-(aCbH2)naCbH3??(I) where a in each occurrence independently is a carbon mass number between 11 and 14 inclusive, b in each occurrence independently is a hydrogen mass number between 1 and 3 inclusive, such that a in each occurrence is not 12 simultaneously with b in each occurrence being 1; L is a leaving group R1SO2—O—, R1—S—, 12C1H3(12C3H2)n—S—R1C(O)O—, NC—, (R1)3P—, XMg- and Li—, where n is an integer between 0 and 3 inclusive, where X is chloro, bromo or iodine, where R1 is H, aryl, a substituent containing aryl, C1-C20 alkyl, a substituent containing C1-C20 alkyl, C2-C20 alkenyl, a substitute containing C2-C20 alkenyl, C2-C20 alkynyl, and a substitute containing C2-C20 alkynyl with the proviso that when n is 0, a is 13 and b is 2 and R1 in R1—S is not aryl.
Abstract: A reactor and process for the production of bio-diesel. The reactor includes one or more coiled reaction lines. The lines are positioned within a tank containing a heat transfer media such as molten salt, maintained at about 750° F. A pump circulates the media within the tank. An emulsion of alcohol; refined feed stock, including glycerides and/or fatty acids; and preferably water is pumped through the reaction lines at temperatures and pressures sufficient to maintain the alcohol in a super-critical state. The curvature of the coils, pump pulsing, and the flow rate of the emulsion keep the emulsion in a turbulent state while in the reactor, ensuring thorough mixing of the alcohol and feed stock. The alcohol reacts with the glycerides and fatty acids to form bio-diesel. The reaction is fast, efficient with regard to energy input and waste generation, and requires minimal alcohol.
Type:
Application
Filed:
November 22, 2013
Publication date:
March 5, 2015
Applicant:
LOUISIANA ECO GREEN, L.L.C.
Inventors:
Kemper J. McSpadden, Gerard M. Thomassie
Abstract: Methods and systems for producing high purity 3-hydroxypropionic acid (3-HP) from an aqueous medium, such as a fermentation broth, are described. Aqueous 3-HP solution can be purified by flash evaporation wherein the 3-HP is vaporized at an elevated temperature without conversion to acrylic acid. This process can be integrated with downstream processes for producing other chemical and consumer products.
Type:
Application
Filed:
March 14, 2014
Publication date:
February 26, 2015
Inventors:
Cindy HOPPE, Sarah M. HOYT, Robert TENGLER, David DeCOSTER, Bradley HARKRADER, Patrick H. AU-YEUNG, Sanjib BISWAS, Pedro R. VARGAS, II, Raymond P. ROACH, Timothy Charles FRANK
Abstract: A method of producing a compound of formula (i): wherein R=H or CH3 the method comprising exposing a source of a compound of formula (ii) to reaction conditions of temperature and pressure: formula (ii) wherein R is defined as above wherein, when R=CH3, the source of a compound of formula (ii) is exposed to reaction conditions of temperature and pressure while being in a liquid phase.
Type:
Grant
Filed:
December 21, 2010
Date of Patent:
January 13, 2015
Assignee:
Lucite International UK Limited
Inventors:
David William Johnson, Graham Ronald Eastham, Martyn Poliakoff, Thomas Andrew Huddle
Abstract: An aqueous solution containing 0.1-20 wt % of a substituted choline or thiocholine hydroxide is a useful developer for photosensitive resist materials. A resist pattern is formed by applying a chemically amplified positive resist composition onto a substrate to form a resist film, exposing the resist film to high-energy radiation, and developing the exposed resist film in an ammonium hydroxide-containing aqueous solution.
Abstract: Ligand functionalized substrates, methods of making ligand functionalized substrates, and methods of using functionalized substrates are disclosed.
Type:
Application
Filed:
August 25, 2014
Publication date:
December 11, 2014
Inventors:
Catherine A. Bothof, Yi He, Jerald K. Rasmussen, Kannan Seshadri, Clinton P. Waller, JR., Douglas E. Weiss
Abstract: A method for efficiently producing t-butanol as a raw material of a methacrylic resin from isobutanol is described, including a step (1) of dehydrating isobutanol to obtain butenes, and a step (2) of hydrating the butenes to obtain t-butanol. A method for producing methacrolein and methacrylic acid is also described, which further includes a step (3) of dehydrating and oxidizing the obtained t-butanol to obtain methacrolein and methacrylic acid. An apparatus for performing the steps (1) to (3) is also described.
Type:
Application
Filed:
November 6, 2012
Publication date:
December 4, 2014
Applicant:
MITSUBISHI RAYON CO., LTD.
Inventors:
Ken Ooyachi, Toshiya Yasukawa, Shuji Akihara
Abstract: A polymeric composition that includes at least one polymer and an effective amount of a nanoparticulate component. The nanoparticulate component is at least one of inorganic functional nanoparticulate compounds and graphene in which the nanoparticulate component is associated with the polymer. The polymer disclosed herein can have electromagnetic activity. The resulting polymeric composition exhibit a measurable electrical conductivity (?) range of 10?14 to 4.7*106 (S/m) at 20° C. A polymeric precursor that includes at least one component selected from the group that includes isocyanates, polyisocyanates, MDI-terminated prepolymers and an effective amount of a nanoparticulate component. The nanoparticulate component is at least one of inorganic functional nanoparticulate component being at least one of inorganic functional nanoparticulate compounds and graphene that is associated with the prepolymer.
Type:
Application
Filed:
March 17, 2014
Publication date:
October 23, 2014
Applicant:
Mackinac Polymers LLC
Inventors:
Ralph Locke, Michael Kerman, Melissa Arredondo, William Cowell
Abstract: Disclosed is a method for producing a (meth)acrylate ester wherein a high purity (meth)acrylate ester is obtained with a high yield, with a reduced loss of (meth)acrylic acid anhydride. In the method, (meth)acrylic acid is recovered with a high yield, and the (meth)acrylate ester is purified easily. Specifically disclosed is a method for producing a (meth)acrylate ester which comprises: (1) a step of producing (meth)acrylic acid anhydride by reacting a specific fatty acid anhydride and (meth)acrylic acid, while removing a by-produced fatty acid; (2) a step of obtaining a (meth)acrylate ester by reacting an alcohol and unpurified (meth)acrylic acid anhydride obtained in step (1) preferably at a temperature not less than 90° C.; and (3) a step of recovering (meth)acrylic acid by distillation preferably at a temperature not less than 90° C. The method may also comprise a step of heating or distilling the reaction liquid obtained in step (2) at a temperature not less than 90° C.
Abstract: A process for producing acrolein, comprising: a glycerin dehydration step of conducting dehydration reaction of glycerin to obtain an acrolein-containing gas; a partial-condensation step of cooling the acrolein-containing gas to condense a part of acrolein, water and a high-boiling substance contained in the acrolein-containing gas, thereby obtaining a purified gas and a condensate; and a separation step of separating the purified gas from the condensate; wherein a polymerization inhibitor is added to the acrolein-containing gas or the condensate in the partial-condensation step.
Type:
Application
Filed:
September 25, 2012
Publication date:
October 9, 2014
Applicant:
Nippon Shokubai Co., Ltd.
Inventors:
Hideaki Tsuneki, Masanori Nonoguchi, Koji Nishi
Abstract: The present application provides a method for producing an beta-lactone product. The method includes the steps of: reacting an epoxide, a solvent with a carbonylation catalyst and carbon monoxide to produce a reaction stream comprising a beta-lactone then separating a portion of the beta-lactone in the reaction stream from the solvent and carbonylation catalyst to produce: i) a beta-lactone stream with the beta-lactone, and ii) a catalyst recycling stream including the carbonylation catalyst and the high boiling solvent; and adding the catalyst recycling stream to the feed stream.
Type:
Application
Filed:
May 12, 2014
Publication date:
September 18, 2014
Applicant:
Novomer, Inc.
Inventors:
Scott D. Allen, Ronald R. Valente, Han Lee, Anna E. Cherian, Donald L. Bunning, Nye A. Clinton, Olan Stanley Fruchey, Bernard Duane Dombek
Abstract: A high functionality macromer that is the reaction product of (1) a polyisocyanate having an NCO group content of about from about 10% to about 33% having a functionality greater than 2, (2) at least one alcohol with reactive unsaturation, and (3) a hydroxyl group-containing polyether having an OH number of from 9 to 60 and a functionality of from 1 to 6 is used to produce a pre-formed stabilizer that is used to produce a high solids content polymer polyol.
Abstract: Disclosed is an energetic reactive plasticizer for a plastic bonded explosive (PBX), and specifically an energetic reactive plasticizer for PBX which has high performance and insensitiveness without a plasticizer leak by being bonded with a polymer binder for a plastic bonded explosive.
Type:
Grant
Filed:
August 8, 2013
Date of Patent:
August 26, 2014
Assignee:
Agency for Defense Development
Inventors:
Young Hwan Kwon, Jin Seuk Kim, Bum Jae Lee, In Joo Bae
Abstract: A decarboxylation reaction of a (3-methyl-3-butenyl)malonic acid dialkyl ester, carried out by heating in the presence of water and a base, produces an alkyl 5-methyl-5-hexenoate. The decarboxylation reaction produces the alkyl 5-methyl-5-hexenoate inexpensively and effectively. The base can optionally be a tertiary amine compound or a heterocyclic amine compound. Producing the alkyl 5-methyl-5-hexenoate can optionally further include removing an alcohol.
Abstract: According to the present invention, a polymer is obtained by polycondensation of a fluorinated dicarboxylic acid derivative of the general formula (M-1) or an acid anhydride of the fluorinated dicarboxylic acid with a polyfunctional compound having two to four reactive groups corresponding in reactivity to carbonyl moieties of the fluorinated dicarboxylic acid derivative or acid anhydride. [Chem. 134] AOCF2C-Q-CF2COA???(M-1) In the above formula, Q represents a divalent organic group having a substituted or unsubstituted aromatic ring; and A and A? each independently represent an organic group. This polymer exhibits a sufficiently low dielectric constant for use as a semiconductor protection film and has the capability of forming a film at a relatively low temperature of 250° C. or lower.
Abstract: A compound represented by the formula (I): wherein R1 represents a hydrogen atom etc., R2 and R3 each independently represent a hydrogen atom etc., R4 represents a C1-C8 divalent hydrocarbon group, R5 represents a single bond etc., and R6 represents an unsubstituted or substituted C6-C20 aromatic hydrocarbon group, a polymer comprising a structural unit derived from the compound represented by the formula (I) and a chemically amplified positive resist composition comprising the polymer, at least one acid generator and at least one solvent.
Abstract: In a method of stabilizing acrylic compounds, a liquid phase containing at least one acrylic compound is mixed with at least one metal and at least one ligand. The acrylic compound can be acrylic acid, methacrylic acid, and their respective esters. The metal can be copper, manganese, and cerium. The ligand can be a quinoline compound of formula (I), an N-oxide of a compound of formula (I), 2,2?-bis(2,3-dihydro-3-oxoindolylidene), or an aliphatic y-dentate ligand with y being 2-6 and comprising at least two nitrogen atoms joined by aliphatic or aromatic C1-C4 bridges comprising y-2 further coordinating nitrogen atoms or heteroatoms: where X is OH, NH2, O—(C1-C4)-alkyl, O—C(O)—(C1-C4)-alkyl, or O—C(O)-phenyl; R1 is H, or (C1-C4)-alkyl; R2 is H, (C1-C4)-alkyl, Cl, Br, or SO3H; and R3 is H, Cl or Br.
Type:
Application
Filed:
December 12, 2013
Publication date:
August 14, 2014
Applicant:
BASF SE
Inventors:
Tobias Johannes KORN, Peter Zurowski, Thorsten Friese, Sylke Haremza, Ulrich Jäger, Steffen Rissel, Volker Schliephake
Abstract: A process for production of allyl acetate includes steps of reacting acetic acid 3, oxygen 1 and propylene 2 in the presence of a catalyst in an oxidation reactor 5 to form allyl acetate and water; separating the unreacted acetic acid by a distillation column 9; and recovering an acetic acid-containing liquid which contains acetic acid and returning the acetic acid-containing liquid to the oxidation reactor 5 via an acetic acid-water evaporator 4, the process further including a heating step of heating a process liquid which contains the acetic acid-containing liquid to a temperature of 80 to 250° C. by a heater.
Abstract: The present application provides a method for producing an beta-lactone product. The method includes the steps of: reacting an epoxide, a solvent with a carbonylation catalyst and carbon monoxide to produce a reaction stream comprising a beta-lactone then separating a portion of the beta-lactone in the reaction stream from the solvent and carbonylation catalyst to produce: i) a beta-lactone stream with the beta-lactone, and ii) a catalyst recycling stream including the carbonylation catalyst and the high boiling solvent; and adding the catalyst recycling stream to the feed stream.
Type:
Grant
Filed:
April 10, 2013
Date of Patent:
August 5, 2014
Assignee:
Novomer, Inc.
Inventors:
Scott D. Allen, Ronald R. Valente, Han Lee, Anna E. Cherian, Donald L. Bunning, Nye A. Clinton, Olan Stanley Fruchey, Bernard Duane Dombek
Abstract: The present invention is directed to a novel compound, but-2-enoic acid 1,2-dimethyl-butyl ester, and a method of improving, enhancing or modifying a fragrance formulation through the addition of an olfactory acceptable amount of but-2-enoic acid 1,2-dimethyl-butyl ester.
Type:
Grant
Filed:
February 25, 2013
Date of Patent:
July 22, 2014
Assignee:
International Flavors & Fragrances Inc.
Inventors:
Anubhav P. S. Narula, Richard A. Weiss, James Anthony Lasome
Abstract: A polymer for resist use is obtainable from a monomer having formula (1) wherein R1 is H, CH3 or CF3 and R2 is H or an acid labile group. A resist composition comprising the polymer displays a high sensitivity and a high dissolution contrast during both alkaline development and organic solvent development.
Type:
Application
Filed:
December 17, 2013
Publication date:
July 17, 2014
Applicant:
SHIN-ETSU CHEMICAL CO., LTD.
Inventors:
Masayoshi Sagehashi, Koji Hasegawa, Kazuhiro Katayama
Abstract: Provided are processes for the production of (meth)acrylic esters of polyols, in which for 80 mol % or more of the esters, all of the OH groups of the polyols are esterified. Certain processes relate to reaction of polyols with acrylic acid and/or methacrylic acid in the presence of acidic esterification catalysts and in the presence of polymerization inhibitors, operating with reaction mixtures which are liquid at reaction temperature and are free from nonreacting solvents and/or azeotropic entrainers, the resultant water of condensation being stripped from the gas phase of the reaction space, and the (meth)acrylic acid is metered in three or more portions.
Abstract: The present invention is directed to a novel compound, but-2-enoic acid 1-ethyl-2-methyl-propyl ester, and a method of improving, enhancing or modifying a fragrance formulation through the addition of an olfactory acceptable amount of but-2-enoic acid 1-ethyl-2-methyl-propyl ester.
Type:
Grant
Filed:
February 25, 2013
Date of Patent:
July 8, 2014
Assignee:
International Flavors & Fragrances Inc.
Inventors:
Richard K. Payne, Feng Geng, Gary J. Mertz
Abstract: A method of isomerizing a substance includes combining a substance including a terminal alkenyl group and a substance including a fluorosulfonic acid group in a reaction mixture, and forming a substance including a 2-alkenyl group from the substance including a terminal alkenyl group in the reaction mixture. The method may be used to functionalize a substance, as the substance including a 2-alkenyl group can be reacted with a functionalizing agent to form a substance including a first functional group. The methods may be used to form a dicarboxylic acid, such as suberic acid, from a renewable feedstock.