Intravascular Patents (Class 600/467)
  • Patent number: 8206308
    Abstract: A catheter assembly for an intravascular ultrasound system includes a catheter, an imaging core, and a shield-coupling capacitor. The catheter defines a lumen extending along a longitudinal length of the catheter. The imaging core is configured and arranged for inserting into the lumen. The imaging core includes a rotatable driveshaft, one or more transducers, one or more conductors, and a conductive shield. The one or more transducers are mounted to the rotatable driveshaft. The one or more conductors are coupled to the one or more transducers and extend along the driveshaft. The conductive shield is disposed around the one or more conductors. The shield-coupling capacitor is electrically coupled to the conductive shield and includes one or more rotating capacitors. The one or more rotating capacitors include one or more rotating plates and one or more stationary plates. The shield-coupling capacitor is configured and arranged for coupling to a system ground.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: June 26, 2012
    Assignee: Boston Scientific SciMed, Inc.
    Inventors: John D. Marshall, Donald Masters
  • Publication number: 20120130250
    Abstract: The present invention provides for pleated bags used with interventional pullback systems, including imaging catheters such as IVUS catheters, as well as for use with other catheters. An exemplary pleated bag of the present invention may be an elongate, sterile bag, having a plurality of pleats near the distal end, and including an orifice proximal to the pleats designed to allow passage of a catheter into the bag. The present invention also provides for a system that includes a pullback device, catheter, and pleated bag. The present invention allows for improved imaging catheter procedures at reduced costs.
    Type: Application
    Filed: January 30, 2012
    Publication date: May 24, 2012
    Applicant: VOLCANO CORPORATION
    Inventors: Timothy K. Glynn, Ernest W. Heflin, Norman H. Hossack, Julie A. Riolo, Blair D. Walker
  • Patent number: 8167810
    Abstract: The invention relates to a catheter device for treating a blockage of a vessel, with the catheter device featuring a treatment catheter for treating the vessel blockage which is embodied as an integrated unit with front-mounted stent.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: May 1, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventor: Michael Maschke
  • Patent number: 8162836
    Abstract: A system and method are disclosed that facilitate characterizing vascular plaque tissue based upon spectral analysis of intravascular ultrasound echo signal segments. In particular, split spectrum analysis of an integrated backscatter parameter introduces a spectral resolution component to parameterization of received intravascular ultrasound echo signal segments. The resulting parameter values for each of multiple bands within a larger frequency band supported by an ultrasound system are applied to plaque tissue characterization criteria to render a plaque tissue characterization corresponding to the corresponding ultrasound echo signal segments.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: April 24, 2012
    Assignee: Volcano Corporation
    Inventor: Kendall Rand Waters
  • Patent number: 8157741
    Abstract: An image diagnostic system controls a probe to perform rotational and axially-moving scanning within a body cavity and to acquire reflected signals through the probe. Based on the acquired reflected signals, the system forms and outputs tomographic image of the body cavity and biotissue surrounding the body cavity. The system is provided with a detection unit which detects a direction of movement of the probe in the axially-moving scanning and a control unit which controls the rotational speed of the probe in the rotational scanning. The control unit includes a determination unit which determines whether or not the rotational speed of the probe is to be changed upon detection of movement of the probe toward the distal direction within the body cavity, and changes the rotational speed of the probe upon determination of a change at the determination unit.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: April 17, 2012
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Kazuhiro Hirota
  • Publication number: 20120065517
    Abstract: A system and method are provided for significantly reducing or substantially eliminating angular geometric distortions in devices designed for imaging and/or inspection of an interior portion or surface of a cavity. A series of processing steps or methods may be employed to eliminate Non-Uniform Rotational Distortion (NURD) in such devices, for example, unidirectional and bi-directional intravascular ultrasonic (IVUS) imaging systems. The system may include a processor and an electronic module which control operation of a transducer assembly provided at a distal end of a catheter assembly. The system invokes a first processing step or method to collect and store raw angle and line data, as well as one or more of second and third processing steps or methods which adjust for NURD experienced during backlash of a bi-directional imaging system and a fourth processing step or method which performs a line-to-line correlation function.
    Type: Application
    Filed: September 30, 2011
    Publication date: March 15, 2012
    Applicant: VOLCANO CORPORATION
    Inventors: John W. Goodnow, Paul A. Magnin
  • Patent number: 8135453
    Abstract: A method and apparatus for generating a three dimensional representation of an ear canal are disclosed whereby an ear canal of a patient is imaged using optical coherence tomography (OCT). In a first embodiment, cross-section images of an ear canal are taken by, for example, rotating an OCT imaging sensor about a predetermined axis at each of a plurality of positions. In accordance with another embodiment, a contour line is then identified in each of the cross section images and a flow algorithm is used to identify the boundary of the ear canal cross section. Once the boundaries of each cross section have been identified, all of the cross section images are combined to generate a three dimensional image of the ear canal.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: March 13, 2012
    Assignee: Siemens Corporation
    Inventors: Gregory G. Slabaugh, Jason Tyan
  • Publication number: 20120046553
    Abstract: An ultrasound catheter housing with electromagnetic shielding properties and methods of manufacturing is provided. The ultrasound catheter housing comprises a an inner thin wall polymer tube extruded using an ultrasonically transparent polymer, a thin metalized layer deposited on the outer surface of the inner tube, and an outer thin wall polymer tube, which may be the same or a different ultrasonically transparent material. In another embodiment an ultrasound catheter comprising the ultrasound catheter housing is provided.
    Type: Application
    Filed: March 25, 2009
    Publication date: February 23, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Donald Joseph Buckley, Douglas Glenn Wildes, Warren Lee, Weston Blaine Griffin
  • Patent number: 8108031
    Abstract: The present invention provides methods and systems for performing in-vivo flow cytometry to obtain desired information regarding one or more cell types of interest flowing through a subject's circulatory system. In one embodiment of the invention, a portion of the subject's circulating blood is illuminated with radiation having multiple wavelength components, and the backscattered radiation generated in response to the excitation radiation is detected at a plurality of scattering angles and analyzed to derive the desired information.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: January 31, 2012
    Assignee: The General Hospital Corporation
    Inventors: Irene Georgakoudi, Charles P. Lin
  • Patent number: 8104479
    Abstract: The present invention provides for pleated bags used with interventional pullback systems, including imaging catheters such as IVUS catheters, as well as for use with other catheters. An exemplary pleated bag of the present invention may be an elongate, sterile bag, having a plurality of pleats near the distal end, and including an orifice proximal to the pleats designed to allow passage of a catheter into the bag. The present invention also provides for a system that includes a pullback device, catheter, and pleated bag. The present invention allows for improved imaging catheter procedures at reduced costs.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: January 31, 2012
    Assignee: Volcano Corporation
    Inventors: Timothy K. Glynn, Ernest W. Heflin, Norman H. Hossack, Julie A. Riolo, Blair D. Walker
  • Patent number: 8100833
    Abstract: An image diagnostic system controls a probe to perform radial scanning within a body cavity and to acquire reflected signals through the probe. The system produces data based on the signals, constructs and outputs tomographic images of the body cavity and biotissue surrounding the body cavity. The system includes an extraction unit for extracting portions of the produced data on the basis of a frame rate upon successively outputting the tomographic images, and a first output control unit for forming, based on the extracted data, real time tomographic images of the body cavity and biotissue which are outputted in real time during radial scanning. A storage device stores the produced data, and a second output control unit forms, subsequent to the radial scanning, tomographic images of the body cavity and biotissue based on the stored data which are then outputted.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: January 24, 2012
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Kazuhiro Hirota
  • Patent number: 8062226
    Abstract: A catheter has a proximal end and a distal end and comprises an outer tube having a proximal end, an inner sheath slidingly received within the outer tube and extending distally from the outer tube, and a rotatable shaft extending from the proximal end of the outer tube to within the inner sheath. The rotatable shaft is axially fixed with respect to the outer tube and axially moveable within and with respect to the inner sheath. The rotatable shaft includes a proximal substantially rigid section and a distal flexible section. The catheter further includes a working element carried on the distal flexible section of the rotatable shaft.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: November 22, 2011
    Assignee: Silicon Valley Medical Instruments, Inc.
    Inventor: Thomas C. Moore
  • Patent number: 8057397
    Abstract: An imaging and navigation system is disclosed herein. The imaging and navigation system includes a computer and an ultrasonic imaging device disposed at least partially within an ultrasound catheter. The ultrasonic imaging device is connected to the computer and is adapted to obtain a generally real time three-dimensional image. The imaging and navigation system also includes a tracking system connected to the computer. The tracking system is adapted to estimate a position of a medical instrument. The imaging and navigation system also includes a display connected to the computer. The display is adapted to depict the generally real time three-dimensional image from the ultrasonic imaging device and to graphically convey the estimated position of the medical instrument.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: November 15, 2011
    Assignee: General Electric Company
    Inventors: Dun Alex Li, Christopher Allen Nafis, Douglas Glenn Wildes, Vernon Thomas Jensen, Weston Blaine Griffin
  • Patent number: 8057389
    Abstract: A method and system for ultrasound treatment utilizing a multi-directional transducer to facilitate treatment, such as therapy and/or imaging or other tissue parameter monitoring, in two or more directions. In accordance with an exemplary embodiment, a multi-directional transducer comprises at least two transduction elements configured to provide for ultrasound energy, such as radiation, acoustical energy, heat energy, imaging, positional information and/or tissue parameter monitoring signals in two or more directions. The transduction elements can comprise various materials for providing ultrasound energy or radiation, such as piezoelectric materials, with and without matching layers. In addition, the transduction elements can be configured for substantially uniform, focused and/or defocused radiation patterns, as well as for single, multiple-element and/or multiple-element array configurations.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: November 15, 2011
    Assignee: Guided Therapy Systems, LLC
    Inventors: Peter G Barthe, Michael H Slayton
  • Patent number: 8057396
    Abstract: Devices for assessing the size, shape, and topography of vessel lumens and hollow portions of organs are described. The devices are particularly adapted for determining the size, shape, topography, and compliance of the native heart valves to facilitate the later implantation of a prosthetic heart valve. The devices are typically catheter-based having an assessment mechanism fixed to a distal end of the catheter. The assessment mechanism generally includes an expandable member, such as a balloon. The assessment mechanism may also include an imaging member, a physical assessment member, an electronic mapping construction, an alignment mechanism, a valvuloplasty balloon, or any combination thereof.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: November 15, 2011
    Assignee: Phoenix Biomedical, Inc.
    Inventors: David C. Forster, Brian Beckey, Brandon Walsh, Scott Heneveld
  • Patent number: 8052605
    Abstract: Methods, apparatus, and systems for intravascular analysis combine at least three analytical modalities. In one implementation, intravascular ultrasound, optical coherence tomography, and near infrared spectroscopy are combined to enable detection of multiple, different abnormalities in the arterial morphology during a single intravascular procedure.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: November 8, 2011
    Assignee: InfraReDx
    Inventors: James E. Muller, Mark A. Wilder
  • Patent number: 8055471
    Abstract: A method for discriminating particle groups comprises generating, by a particle analyzer, a particle characteristic distribution histogram in which the abscissa indicates respective channels for representing the characteristics of the particles, and the ordinate indicates the particle count; setting a valid area selection height in the particle characteristics distribution histogram; and generating an equivalent negative histogram based on the set height and the particle characteristic distribution histogram.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: November 8, 2011
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventors: Huan Qi, Wenjun Tong
  • Publication number: 20110270091
    Abstract: A method and system is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, methods and devices for identifying information about the imaging element used to gather the backscattered data are provided in order to permit an operation console having a plurality of Virtual Histology classification trees to select the appropriate VH classification tree for analyzing data gathered using that imaging element. In order to select the appropriate VH database for analyzing data from a specific imaging catheter, it is advantageous to know information regarding the function and performance of the catheter, such as the operating frequency of the catheter and whether it is a rotational or phased-array catheter. The present invention provides a device and method for storing this information on the imaging catheter and communicating the information to the operation console.
    Type: Application
    Filed: July 13, 2011
    Publication date: November 3, 2011
    Applicant: VOLCANO CORPORATION
    Inventors: Norman Hugh Hossack, Stephen Charles Davies, Donald Mamayek, Richard Scott Huennekens, Stephen M. Fry, Eric Vaughn Mott, Peter Smith, Scott Tennant Brownlie, Jon David Klingensmith, Richard Chester Klosinski, JR., Edward Anthony Oliver, Masood Ahmed, Gerald Lea Litzza
  • Patent number: 8047996
    Abstract: A system and method are provided for significantly reducing or substantially eliminating angular geometric distortions in devices designed for imaging and/or inspection of an interior portion or surface of a cavity. A series of processing steps or methods may be employed to eliminate Non-Uniform Rotational Distortion (NURD) in such devices, for example, unidirectional and bi-directional intravascular ultrasonic (IVUS) imaging systems. The system may include a processor and an electronic module which control operation of a transducer assembly provided at a distal end of a catheter assembly. The system invokes a first processing step or method to collect and store raw angle and line data, as well as one or more of second and third processing steps or methods which adjust for NURD experienced during backlash of a bi-directional imaging system and a fourth processing step or method which performs a line-to-line correlation function.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: November 1, 2011
    Assignee: Volcano Corporation
    Inventors: John W. Goodnow, Paul A. Magnin
  • Patent number: 8043222
    Abstract: A single transducer element that is capable of oscillation at a plurality of natural resonant frequencies may be used in an ultrasonic imaging catheter assembly including a catheter body configured to be inserted and guided through the vascular system of a living being, a lumen and a rotatable imaging core adapted to pass through the lumen, the imaging core including a flexible drive-shaft. Because the transducer element is capable of oscillation at a plurality of natural resonant frequencies, a user can switch from one frequency to another in order to improve the depth of field or resolution without having to switch out the catheter or imaging core.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: October 25, 2011
    Assignee: Scimed Life Systems, Inc.
    Inventors: Miriam H. Taimisto, Richard Lardner
  • Patent number: 8029446
    Abstract: An ultrasonic imaging system includes an imaging catheter and an imaging apparatus. The imaging catheter has an insert for being inserted into a blood vessel, a transducer disposed in the insert, and at least one temperature sensor disposed in the insert. The temperature sensor measures the intravascular temperature in a radial direction of the blood vessel and rotates to measure an intravascular temperature distribution in a transverse cross section of the blood vessel.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: October 4, 2011
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Toyokazu Horiike, Hiroyuki Yagami, Kazuhiro Hirota
  • Patent number: 8025668
    Abstract: A medical device removal system includes a vessel filter repositioning or removal device to remove and/or reposition a medical device, such as a vessel filter. The system includes a gripper to grip a medical device that is located within a body vessel, and a detector, linked to the gripper, to detect the proximity of the medical device to the gripper. The system may also include an output to indicate a signal from the detector.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: September 27, 2011
    Assignee: C. R. Bard, Inc.
    Inventor: Charles M. McCartney
  • Patent number: 8007438
    Abstract: An ultrasound diagnostic apparatus includes an ultrasound probe which transmits/receives an ultrasound wave with respect to a subject to be diagnosed, an ultrasound wave transmit section which transmits an ultrasound wave for driving the ultrasound probe, a pressing section which applies an external pressure to the subject, a displacement measuring section which obtains two tomographic image data different in time series from a reflected echo signal received from the ultrasound probe and measures a displacement of each part in the subject based on the two tomographic image data, an image generating section which generates an elastic image from elasticity information based on the displacement of each part measured by the displacement measuring section, and a display section which displays the generated elastic image. Further, a pressing decision section decides whether or not the pressing operation by the pressing section is proper.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: August 30, 2011
    Assignee: Hitachi Medical Corporation
    Inventors: Takashi Osaka, Takeshi Matsumura, Tetsuya Hayashi, Mitsuhiro Oshiki, Okinori Yuasa, Naoyuki Murayama, Tsuyoshi Shiina, Satoshi Tamano, Tsuyoshi Mitake
  • Patent number: 8007440
    Abstract: An intravascular ultrasound catheter system is provided and enables a simplified, economical technique for ultrasound visualization of a blood vessel. The catheter may include a spark ablation system for crossing chronic total occlusions and severe stenoses. The catheter is advanceable and is oriented entirely under manual control of the clinician and the application of radiofrequency energy for spark erosion of the stenosis also is controlled manually by the clinician. The system enables the clinician to observe an ultrasound image sufficiently to determine where to orient the ablation electrode so as to reduce the risk of dissection or perforation of the blood vessel. The ultrasound image is generated in response to manual rotation of the catheter and the ablation spark is generated only when the physician is satisfied as to the orientation of the electrode within the vessel.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: August 30, 2011
    Assignee: Volcano Corporation
    Inventors: Paul A. Magnin, Edward I. McNamara, Russell W. Bowden, Rodney J. Solomon
  • Patent number: 7993274
    Abstract: Systems, methods and computer products for automatically extracting automatically cardiac calcifications and obtaining a centerline in the tracking. Exemplary embodiments include a method of cardiac diagnostics, the method including obtaining coronary tree segmentation to obtain cardiac volume information, splitting the volume into portions to obtain an adjacency graph, computing a mean of a sub-volume of the volume, obtaining gray value segmentation of the sub-volume, defining a centerline of a blood vessel that avoids calcifications within the blood vessel and detecting an actual centerline of the blood vessel and enhancing lumen visualization of the blood vessel.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: August 9, 2011
    Assignee: General Electric Company
    Inventors: Celine Pruvot, Laurent Jean Lucien Stefani
  • Patent number: 7988633
    Abstract: A method and system is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, methods and devices for identifying information about the imaging element used to gather the backscattered data are provided in order to permit an operation console having a plurality of Virtual Histology classification trees to select the appropriate VH classification tree for analyzing data gathered using that imaging element. In order to select the appropriate VH database for analyzing data from a specific imaging catheter, it is advantageous to know information regarding the function and performance of the catheter, such as the operating frequency of the catheter and whether it is a rotational or phased-array catheter. The present invention provides a device and method for storing this information on the imaging catheter and communicating the information to the operation console.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: August 2, 2011
    Assignee: Volcano Corporation
    Inventors: Norman Hugh Hossack, Stephen C. Davies, Donald Mamayek, Richard Scott Huennekens, Stephen Fry, Eric V. Mott, Peter Smith, Scott Brownlie, Jon D. Klingensmith, Richard Klosinski, Ed Oliver, Masood Ahmed, Gerald Lea Litzza
  • Patent number: 7978916
    Abstract: A system and method is provided for using a first vascular image, or more particularly a plurality of control points located thereon, to identify a border on a second vascular image. Embodiments of the present invention operate in accordance with an intra-vascular ultrasound (IVUS) device and a computing device electrically connected thereto. Specifically, in one embodiment of the present invention, an IVUS console is electrically connected to a computing device and adapted to acquire IVUS data. The IVUS data (or multiple sets thereof) is then provided to (or acquired by) the computing device. In one embodiment of the present invention, the computing device includes a plurality of applications operating thereon—i.e., a border-detection application, an extrapolation application, and an active-contour application. These applications are used to (i) identify a border and control points on a first IVUS image (i.e., any IVUS image), (ii) extrapolate the control points to a second IVUS image (i.e.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: July 12, 2011
    Assignee: The Cleveland Clinic Foundation
    Inventors: Jon D. Klingensmith, D. Geoffrey Vince, Anuja Nair, Barry D. Kuban
  • Patent number: 7976483
    Abstract: A catheter system is disclosed. The catheter system includes a catheter body having an external surface and an ultrasound transducer having a side between a first end and a second end. A first medium is positioned adjacent to the first end of the ultrasound transducer and a second medium is positioned adjacent to the external side of the ultrasound transducer. The second medium is harder than the first medium to encourage flexibility of the catheter body adjacent to the first end of the ultrasound transducer and efficient transmission of ultrasound energy from the external side of the ultrasound transducer.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: July 12, 2011
    Assignee: Ekos Corporation
    Inventors: Frederick J. Bennett, James E. Rodriguey
  • Patent number: 7967754
    Abstract: The systems and methods described herein allow for the application of a bias voltage to one or more transducers implemented within a medical ultrasound imaging system. Bias circuitry is placed within an imaging device and used to apply a DC bias to one or more transducers requiring a DC bias to operate. The one or more transducers can be fabricated in a semiconductor manufacturing process and integrated with the bias circuitry on a common semiconductor substrate. Also provided is a method for operating the one or more transducers and bias circuitry using a communication channel having two signal lines.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: June 28, 2011
    Assignee: Scimed Life Systems, Inc.
    Inventor: Jon M. Knight
  • Publication number: 20110125027
    Abstract: A catheter assembly for an intravascular ultrasound system includes a hub disposed at a proximal end of a catheter. The hub includes a rotatable connector shaft disposed at least partially in a lumen that extends from the hub to a distal end of the catheter. A pumping apparatus is coupled to the connector shaft such that rotation of the connector shaft causes a corresponding rotation of the pumping apparatus. A reservoir is in fluid communication with the pumping apparatus. The reservoir is configured and arranged for inputting an acoustically-favorable medium to the pumping apparatus. An imaging core is configured and arranged for inserting into the lumen. The imaging core includes an imaging device coupled to a rotatable drive member. The rotatable connector shaft is coupled to a proximal end of the drive member such that rotation of the connector shaft causes a corresponding rotation of the imaging core.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 26, 2011
    Applicant: Boston Scientific Scimed, Inc.
    Inventor: Alain Sadaka
  • Patent number: 7940969
    Abstract: A system and method is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, in one embodiment of the present invention, an ultrasonic device is used to acquire RF backscattered data (i.e., IVUS data) from a blood vessel. The IVUS data is then transmitted to a computing device and used to create an IVUS image. The blood vessel is then cross-sectioned and used to identify its tissue type and to create a corresponding image (i.e., histology image). A region of interest (ROI), preferably corresponding to the identified tissue type, is then identified on the histology image. The computing device, or more particularly, a characterization application operating thereon, is then adapted to identify a corresponding region on the IVUS image. To accurately match the ROI, however, it may be necessary to warp or morph the histology image to substantially fit the contour of the IVUS image.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: May 10, 2011
    Assignee: The Cleveland Clinic Foundation
    Inventors: Anuja Nair, D. Geoffrey Vince, Jon D. Klingensmith, Barry D. Kuban
  • Patent number: 7935060
    Abstract: In one aspect, the invention relates to a probe. The probe includes a sheath, a flexible, bi-directionally rotatable, optical subsystem positioned within the sheath, the optical subsystem comprising a transmission fiber, the optical subsystem capable of transmitting and collecting light of a predetermined range of wavelengths along a first beam having a predetermined beam size. The probe also includes an ultrasound subsystem, the ultrasound subsystem positioned within the sheath and adapted to propagate energy of a predetermined range of frequencies along a second beam having a second predetermined beam size, wherein a portion of the first and second beams overlap a region during a scan.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: May 3, 2011
    Assignee: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Christopher Peterson, Toru Ohashi, Tetsuya Nakamatsu
  • Patent number: 7937133
    Abstract: Methods for determining the size, pathology, and volume of embolic debris captured in an embolic protection filtering device. The methods may include providing an embolic protection filtering device and scanning the filtering device with a computed tomography scanner. The methods may also include analyzing digital images produced during the scanning step.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: May 3, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Ari Ryan, Robert C. Glines
  • Publication number: 20110098573
    Abstract: A catheter assembly for an intravascular ultrasound system includes an ultrasound transducer disposed in an image device housing within a lumen of a catheter. The ultrasound transducer transforms applied electrical signals to acoustic signals within a frequency bandwidth centered at an operational frequency and having variable electrical impedances over one or more frequencies within the bandwidth. A distal drive cable is coupled to the imaging device housing. A connector housing couples the distal drive cable to a proximal drive cable. A transducer conductor electrically couples the transducer to a proximal end of the catheter. At least one tuning element is electrically coupled to the transducer conductor. The at least one tuning element matches electrical impedances of the transducer conductor to the ultrasound transducer over at least a subset of frequencies within the frequency bandwidth of the ultrasound transducer.
    Type: Application
    Filed: October 25, 2010
    Publication date: April 28, 2011
    Applicant: Boston Scientific SciMed, Inc.
    Inventors: Peter Thornton, John D. Marshall
  • Patent number: 7930014
    Abstract: A system and method for providing a vascular image are disclosed wherein a single composite display simultaneously provides a first view of a patient including an angiogram image and a second view including an intravascular image rendered from information provided by an imaging probe mounted on a distal end of a flexible elongate member. A cursor, having a position derived from image information provided by a radiopaque marker proximate the imaging probe, is displayed within the angiogram image to correlate the position of the imaging probe to a presently displayed intravascular image and thus provide an easily discernable identification of a position within a patient corresponding to a currently displayed intravascular image. The resulting composite display simultaneously provides: an intravascular image that includes information about a vessel that is not available from an angiogram and a current location within a vessel of a source of intravascular image data from which the intravascular image is rendered.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: April 19, 2011
    Assignee: Volcano Corporation
    Inventors: R. Scott Huennekens, Stephen M. Fry, Blair D. Walker, Jon D. Klingensmith, Nancy Perry Pool, Vincent J. Burgess, William R. Kanz
  • Patent number: 7914456
    Abstract: An ultrasound probe includes an ultrasound wave transmit/receive surface coming into contact with a contact surface of a subject, an ultrasound wave transmit/receive section which transmits an ultrasound wave to the subject via the ultrasound wave transmit/receive surface and the contact surface and receives an ultrasound wave reflected in the subject, and a pressing mechanism for performing a pressing operation for applying a pressure to the contact surface perpendicularly to the ultrasound wave transmit/receive surface via the ultrasound wave transmit/receive surface.
    Type: Grant
    Filed: May 31, 2004
    Date of Patent: March 29, 2011
    Assignee: Hitachi Medical Corporation
    Inventors: Takashi Osaka, Takeshi Matsumura, Tetsuya Hayashi, Mitsuhiro Oshiki, Okinori Yuasa, Naoyuki Murayama, Tsuyoshi Shiina, Satoshi Tamano, Tsuyoshi Mitake
  • Patent number: 7914458
    Abstract: An ultrasound catheter is described herein for insertion into a cavity such as a blood vessel to facilitate imaging within a vasculature. The catheter comprises an elongate flexible shaft, a capacitive microfabricated ultrasonic transducer, and a sonic reflector. The elongate flexible shaft has a proximate end and a distal end. A capacitive microfabricated ultrasonic transducer (cMUT) is mounted to the shaft near the distal end. The reflector is positioned such that a reflective surface redirects ultrasonic waves to and from the transducer. In other embodiments, the catheter comprises a plurality of cMUT elements and operates without the use of reflectors. In further embodiments, integrated circuitry is incorporated into the design.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: March 29, 2011
    Assignee: Volcano Corporation
    Inventors: Norman Hugh Hossack, Blair Walker, Stephen Charles Davies, Donald Stanley Mamayek, John F. Sheridan
  • Publication number: 20110071401
    Abstract: A catheter assembly for an intravascular ultrasound system includes an imaging core disposed in a lumen of a catheter. The imaging core includes a stepper motor that rotates a mirror coupled to a driveshaft. The stepper motor provides step-wise rotation of the driveshaft using a rotatable magnet and at least two magnetic field windings disposed around at least a portion of the magnet. At least one fixed transducer is positioned between the stepper motor and the mirror. The stepper motor permits stepwise rotation of the driveshaft with steps of 3 degrees or less. At least one transducer conductor is electrically coupled to the at least one transducer and in electrical communication with a proximal end of the catheter. At least one motor conductor is electrically coupled to the magnetic field windings and in electrical communication with the proximal end of the catheter.
    Type: Application
    Filed: September 24, 2009
    Publication date: March 24, 2011
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: ROGER N. HASTINGS, KEVIN D. EDMUNDS, TAT-JIN TEO
  • Publication number: 20110071400
    Abstract: A catheter assembly for an intravascular ultrasound system includes a catheter insertable into patient vasculature via a guidewire. A watertight imaging core is disposed in the distal end of the catheter. The imaging core includes a motor, at least one fixed transducer, and a signal redirection unit. The motor includes a magnet configured and arranged to rotate upon generation of a magnetic field by magnetic field windings. The signal redirection unit is coupled to the magnet such that rotation of the magnet causes a corresponding rotation of at least a portion of the signal redirection unit. The signal redirection unit includes a tilted mirror that redirects acoustic signals transmitted from the fixed transducer to patient tissue. At least one transducer conductor and at least one stator conductor are electrically coupled to the imaging core and in electrical communication with the proximal end of the catheter.
    Type: Application
    Filed: September 23, 2009
    Publication date: March 24, 2011
    Applicant: Boston Scientific SciMed, Inc.
    Inventors: Roger N. Hastings, Tat-Jin Teo, Kevin D. Edmunds, Michael J. Pikus, Leonard B. Richardson
  • Patent number: 7909767
    Abstract: A method for minimizing tracking system interference caused by a motor driven ultrasonic imaging device is disclosed herein. The method includes providing an ultrasonic imaging device adapted to obtain a generally real time three-dimensional image. The ultrasonic imaging device includes a motor configured to rotate a transducer array within a catheter housing. The method for minimizing tracking system interference also includes estimating a noise signal produced by the motor, selecting a tracking system signal strength and/or frequency adapted to minimize a tracking system interference, and implementing a field generator to produce a tracking system signal at the selected tracking system signal strength and/or frequency.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: March 22, 2011
    Assignee: General Electric Company
    Inventors: Dun Alex Li, Nora T. Tgavalekos, Jonathan David Schiff
  • Patent number: 7899224
    Abstract: A system and method is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, in one embodiment of the present invention, an ultrasonic device is used to acquire RF backscattered data (i.e., IVUS data) from a blood vessel. The IVUS data is then transmitted to a computing device and used to create an IVUS image. The blood vessel is then cross-sectioned and used to identify its tissue type and to create a corresponding image (i.e., histology image). A region of interest (ROI), preferably corresponding to the identified tissue type, is then identified on the histology image. The computing device, or more particularly, a characterization application operating thereon, is then adapted to identify a corresponding region on the IVUS image. To accurately match the ROI, however, it may be necessary to warp or morph the histology image to substantially fit the contour of the IVUS image.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: March 1, 2011
    Assignee: The Cleveland Clinic Corporation
    Inventors: Anuja Nair, D. Geoffrey Vince, Jon D. Klingensmith, Barry D. Kuban
  • Patent number: 7892191
    Abstract: An apparatus and method is provided for preventing biofilm formation associated with an indwelling medical device. The method involves applying nanovibrational acoustic waves to surfaces of a medical device utilizing a piezo resonator to generate the waves.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: February 22, 2011
    Inventors: Jona Zumeris, Zadick Hazan, Yanina Zumeris
  • Publication number: 20110034809
    Abstract: An ultrasound transducer assembly of the present invention includes a flexible circuit to which an ultrasound transducer array and integrated circuitry are attached during fabrication of the ultrasound transducer assembly. The flexible circuit comprises a flexible substrate to which the integrated circuitry and transducer elements are attached while the flexible substrate is in a substantially flat shape. The flexible circuit further comprises electrically conductive lines that are deposited upon the flexible substrate. The electrically conductive lines transport electrical signals between the integrated circuitry and the transducer elements. After assembly, the flexible circuit is re-shapable into a final form such as, for example, a substantially cylindrical shape.
    Type: Application
    Filed: October 13, 2010
    Publication date: February 10, 2011
    Applicant: VOLCANO CORPORATION
    Inventors: Michael J. Eberle, Douglas N. Stephens, Gary Rizzuti, Horst F. Kiepen, Andreas Hodjicostis
  • Patent number: 7878977
    Abstract: A transducer array includes two or more sub-arrays that move relative to each other. Position sensors on each of the sub-arrays provide spatial coordination for beamforming and/or image forming to yield extended field of view and high image resolution. The adaptable transducer array, such as mounted on a flexible transducer housing, allows the array to better conform to the patient during internal or external use.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: February 1, 2011
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Jian-Hua Mo, Xuan-Ming Lu
  • Publication number: 20100317973
    Abstract: In a method for re-entry from extraluminal space into the central lumen of a vessel, a guidewire is advanced into the extraluminal space of the vessel, and then a directional catheter is advanced over the guidewire through the extraluminal space. Thereafter, the guidewire is removed from the directional catheter, an ultrasound device is placed through the directional catheter, and the ultrasound device is advanced through the extraluminal space into the central lumen and then activated.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Inventor: Henry Nita
  • Patent number: 7850614
    Abstract: A guiding catheter includes a Doppler sensor disposed at a distal end of a flexible shaft. The Doppler sensor can sense a blood flow turbulence level within a chamber of the heart or a blood vessel of the heart. Detecting changes in a blood flow turbulence level is used to assist guiding of the distal end of the flexible shaft. The Doppler sensor may include a piezoelectric sensor or an optical sensor. The sensor readings may be processed to show turbulence through a time domain or frequency domain presentation of velocity. The sensor readings can be used to modulate an audible waveform to indicate turbulence. The guiding catheter may further include steering apparatus enabling deflection of the distal tip.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: December 14, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Paul Craig Haldeman
  • Patent number: 7846101
    Abstract: An ultrasound transducer assembly of the present invention includes a flexible circuit to which an ultrasound transducer array and integrated circuitry are attached during fabrication of the ultrasound transducer assembly. The flexible circuit comprises a flexible substrate to which the integrated circuitry and transducer elements are attached while the flexible substrate is in a substantially flat shape. The flexible circuit further comprises electrically conductive lines that are deposited upon the flexible substrate. The electrically conductive lines transport electrical signals between the integrated circuitry and the transducer elements. After assembly, the flexible circuit is re-shapable into a final form such as, for example, a substantially cylindrical shape.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: December 7, 2010
    Assignee: Volcano Corporation
    Inventors: Michael J. Eberle, Douglas N. Stephens, Gary Rizzuti, Horst Kiepen, Andreas Hodjicostis
  • Publication number: 20100280390
    Abstract: A catheter apparatus (100, 2000, 3000, 4000, 540) includes an elongated body (110) having proximal (112) and distal (114) ends, an acoustic transducer (130, 2300, 5 3300, 4300, 544), disposed proximate the distal end (114) of the elongated body (110), and a variably-refracting acoustic lens (140, 2200, 3200, 4200, 542) adapted to dynamically adjust a direction associated with an acoustic wave coupled to the acoustic transducer in response to one or more control signals provided thereto.
    Type: Application
    Filed: January 10, 2008
    Publication date: November 4, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Stein Kuiper, Jan Frederik Suijver, Ronald Tabaksblat, Nijs Cornelis Van Der Vaart, Christopher Stephen Hall, Anna Teresa Fernandez
  • Publication number: 20100268089
    Abstract: Multiple electrode element capacitive micromachined ultrasonic transducer (“cMUT”) devices and fabrication methods are provided. Some embodiments can include a forward or side looking catheter device having a plurality of cMUT arrays for transmitting and receiving ultrasonic energy. The forward or side looking intravascular device can generally comprise a plurality of cMUT arrays being disposed on a substrate in a spaced apart arrangement. The cMUT arrays can be disposed at differing locations on the substrate. The plurality of cMUT arrays can each comprise a plurality of cMUT elements. At least a portion of the plurality of cMUT elements can comprise a flexible membrane disposed above the substrate and a multiple element electrode. The multiple element electrode can comprise a plurality of electrode elements.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Applicant: Georgia Tech Research Corporation
    Inventor: F. Levent Degertekin
  • Patent number: 7818040
    Abstract: A method of locating a target site for delivering a therapy to a patient that includes advancing a delivery device having a steerable portion and a deflectable tip having a tapered portion to an area along a first site. A contrast media is delivered through a thru lumen and outward from a distal end of the delivery device in fluid communication with the thru lumen to position the contrast media along the first site and the delivery device is further advanced toward the first site and within the first site, or the delivery device is further advanced toward the first site and within the first site without the contrast. The contrast media is then delivered from the distal end of the delivery device within the first site to locate the target site.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: October 19, 2010
    Assignee: Medtronic, Inc.
    Inventors: Stanten C. Spear, James F. Kelley, Johnson E. Goode