Measuring Pressure In Heart Or Blood Vessel Patents (Class 600/485)
  • Patent number: 10579824
    Abstract: A facility for accessing information relating to a person is described. In a reader device, the facility accesses first credentials stored in a first storage device, second credentials stored in a second storage device, and third credentials stored in the reader device. In the reader device, the facility uses a combination of the first credentials, second credentials, and third credentials to decrypt information relating to the person stored in the first storage device.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: March 3, 2020
    Assignee: VYRTY CORPORATION
    Inventors: Raif Khassonov, Eugene Luskin, Yakov P. Grinberg, Eugene Kolker
  • Patent number: 10575780
    Abstract: An apparatus comprises a sensor for measuring a physiological parameter of a subject, wherein the physiological parameter sensor is adapted to be worn by the subject; an actuator comprising an electro-active polymer material, EAP, portion for adjusting the position of the physiological parameter sensor relative to the subject; a feedback sensor for measuring movement of the physiological parameter sensor and/or the subject; a controller configured to process the measurements of the feedback sensor and to adjust the position of the actuator based on information from the feedback sensor.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: March 3, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Daan Anton van den Ende, Reinder Haakma, Mark Thomas Johnson, Frederick Maria Boekhorst, Milica Kovacevic Milivojevic, Franciscus Johannes Gerardus Hakkens, Achim Hilgers, Cornelis Petrus Hendriks, Rene Leonardus Jacobus Marie Ubachs, Eduard Gerard Marie Pelssers
  • Patent number: 10569006
    Abstract: The invention relates to a device A for monitoring a vessel opening for an extracorporeal blood treatment device B with an extracorporeal blood circulation (I), which has an arterial blood line (20) with an arterial cannula (19) and a venous blood line (21) with a venous cannula (22). Moreover, the invention relates to an arrangement with a device A for monitoring a vessel opening and an extracorporeal blood treatment device B, and a method for monitoring a vessel opening during an extracorporeal blood treatment. The monitoring device A comprises a sensor (1) for detecting at least one physical variable, which is characteristic for the state of the vessel opening, and an evaluation apparatus (7), connected to the sensor (1) by way of a connection cable (6), for producing signals characteristic for the state of the vessel opening. The evaluation apparatus (7) has a data transmission unit (38) for establishing a wireless connection between the evaluation apparatus (7) and the blood treatment device B.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: February 25, 2020
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventor: Thomas Stahl
  • Patent number: 10561363
    Abstract: The medication alert watch is a medical instrument that is adapted for use with a person. The medication alert watch is adapted to be worn on a wrist of the person. The medication alert watch comprises a control system, a cuff mechanism, a heart sensor, a power system, a housing, and a band. The control system monitors and operates the cuff mechanism. The control system monitors the heart sensor. The power system provides electrical power to the control system, the cuff mechanism, and the heart sensor. The control system, the cuff mechanism, the heart sensor, and the power system are located in the housing. The band attaches the wrist to the housing. The medication alert watch: 1) maintains and monitors a plurality of appointments and generates notifications regarding the appointment; 2) monitors the medical status of the person; and, 3) generates notifications regarding the medical status of the person.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: February 18, 2020
    Inventors: Islande Florissant, Edny Florissant
  • Patent number: 10555676
    Abstract: The invention provides a body-worn monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling). The body-worn monitor processes this information to minimize corruption of the vital signs by motion-related artifacts. A software framework generates alarms/alerts based on threshold values that are either preset or determined in real time. The framework additionally includes a series of ‘heuristic’ rules that take the patient's activity state and motion into account, and process the vital signs accordingly. These rules, for example, indicate that a walking patient is likely breathing and has a regular heart rate, even if their motion-corrupted vital signs suggest otherwise.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: February 11, 2020
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Devin McCombie, Marshal Dhillon, Matt Banet
  • Patent number: 10548531
    Abstract: The present invention relates to a foldable case-integrated multi-device and a health management system using the same, in which health management and life management functions are implemented by introducing various sensors into a foldable case for a communication device. According to the present invention, a sensor module configured to measure biometric information is contained in a foldable case, and power supply, data processing and analysis, and display are implemented using internal components of the communication device, thereby providing a cutting-edge health care function while maintaining a communication device in a light, thin, short and small form.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: February 4, 2020
    Assignee: INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY
    Inventors: Kyung Eun Park, Jong Jin Park
  • Patent number: 10542961
    Abstract: Cardiac Output (CO) has traditionally been difficult, dangerous, and expensive to obtain. Surrogate measures such as pulse rate and blood pressure have therefore been used to permit an estimate of CO. MEMS technology, evolutionary computation, and time-frequency signal analysis techniques provide a technology to non-invasively estimate CO, based on precordial (chest wall) motions. The technology detects a ventricular contraction time point, and stroke volume, from chest wall motion measurements. As CO is the product of heart rate and stroke volume, these algorithms permit continuous, beat to beat CO assessment. Nontraditional Wavelet analysis can be used to extract features from chest acceleration. A learning tool is preferable to define the packets which best correlate to contraction time and stroke volume.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: January 28, 2020
    Assignee: The Research Foundation for the State University of New York
    Inventors: Ohad Barsimantov, Kenneth McLeod, J. David Schaffer
  • Patent number: 10542893
    Abstract: A monitoring apparatus includes a housing that is configured to be attached to a body of a subject. The housing includes a sensor region that is configured to contact a selected area of the body of the subject when the housing is attached to the body of the subject. The sensor region is contoured to matingly engage the selected body area. The apparatus includes at least one physiological sensor that is associated with the sensor region and that detects and/or measures physiological information from the subject and/or at least one environmental sensor associated with the sensor region that is configured to detect and/or measure environmental information. The sensor region contour stabilizes the physiological and/or environmental sensor(s) relative to the selected body area such that subject motion does not impact detection and/or measurement efforts of the sensor(s).
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: January 28, 2020
    Assignee: Valencell, Inc.
    Inventors: Steven Francis LeBoeuf, Jesse Berkley Tucker, Michael Edward Aumer
  • Patent number: 10541436
    Abstract: A fuel cell purging method is provided to effectively prevent fuel cell deterioration and degradation of durability of the fuel cell by performing hydrogen purging at a point in time at which negative pressure of an anode peaks after a fuel cell vehicle is stopped. The fuel cell purging method includes stopping the driving of a fuel cell vehicle and continuously measuring pressure of an anode of a fuel cell after the fuel cell vehicle is stopped. Additionally, hydrogen is supplied to the anode when the measured pressure of the anode reaches a negative pressure peak time point.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: January 21, 2020
    Assignee: Hyundai Motor Company
    Inventors: Hyun Jae Lee, Jong Hyun Lee, Deuk Kuen Ahn, Yei Sik Jeon
  • Patent number: 10531797
    Abstract: An apparatus includes one or more memories storing computer readable code and processor(s). The processor(s), in response to loading and executing the computer readable code, cause the apparatus to perform operations including receiving electrocardiogram data from an electrocardiogram sensor. The electrocardiogram data includes data from an electrocardiogram from a person. The operations also include receiving pulse wave data from one or more pulse wave pressure sensors. The pulse wave data includes data from one or more pulse waves from the person. The operations further include determining blood pressure using the electrocardiogram data or the pulse wave data from the chest and the pulse wave data from the wrist or finger, and outputting an indication of the blood pressure. Another apparatus uses pulse wave data from two pulse wave sensors (e.g., pulse wave pressure sensor(s) and/or PPG sensor(s)) and blood pressure determinations are made using these pulse wave data.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: January 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: John U. Knickerbocker, Hyung-Min Lee, Kang-Wook Lee
  • Patent number: 10531802
    Abstract: A system for vital sign measuring of a patient, comprising: a first sensor removably attachable with a first body portion of the patient and configured to measure, when in operable position, a vital sign of the patient; at least one additional sensor removably attachable with a second body portion of the patient and configured to measure, when in operable position, a vital sign of the patient; and a processor configured to provide data descriptive of a level of correspondence between measurements of the vital signs provided by the first sensor and the at least one additional sensor.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: January 14, 2020
    Assignee: MOR RESEARCH APPLICATIONS LTD.
    Inventors: Nimrod Adi, Gil Zoizner, Jonathan Rubin
  • Patent number: 10528029
    Abstract: An electrocardiograph (ECG) simulator is provided to generate sequences of wave shapes having specified average rates for a sequence of varying rates.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: January 7, 2020
    Inventor: Harold T. Fogg
  • Patent number: 10524672
    Abstract: Various embodiments include methods and devices for measuring blood pressure. Various embodiments may include receiving, from one or more arterial measurement sensors, a pulse waveform representing arterial pressure as a function of time for each pulse of a series of blood pressure pulses. The series of blood pressure pulses may be correlated to arterial distension at a measurement location of the arterial measurement sensors on a subject's body. One or more elevations of the measurement location may be received from one or more elevation sensors. At least one pulse in the series of pulses may be identified that represents a transitional pulse based on one or more characteristics of the at least one pulse. A diastolic blood pressure may be determined based on the at least one identified transitional pulse and elevation measurements that correspond to the one identified pulse.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: January 7, 2020
    Assignee: CAPSULE TECHNOLOGIES, INC.
    Inventors: David Boettcher Baek, Lars Lading
  • Patent number: 10517369
    Abstract: A drawing apparatus and a control method of a drawing apparatus that can suppress the movement of a finger inserted in a finger insertion section more reliably and also hold the finger more softly are provided. The drawing apparatus includes: a finger holding case including a finger insertion section in which a finger is inserted and an opening through which the nail of the finger is exposed at the position facing a drawing head section; and a finger holding section located in the finger holding case and including an annular section, wherein a fluid is supplied to the annular section to circumferentially press the finger and suppress the movement of the finger, and the fluid is discharged from the annular section to release the press.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: December 31, 2019
    Assignee: CASIO COMPUTER CO., LTD.
    Inventor: Masahiro Hori
  • Patent number: 10517275
    Abstract: A device (5) attached to the neck (6) of an animal (2) comprises an accelerometer (17) which produces first and second signals indicative of the raised and lowered state of the head (7) of the animal (2) and movement of the animal (2). A microprocessor (20) in the device (5) processes the first and second signals to determine if the animal is ruminating, resting, feeding or in a highly active state during respective second predefined time periods of approximately 15 minutes duration. Data indicative of the ruminating, resting, feeding and the highly active state of the animal is stored by the microprocessor (20) in the device (5) and is periodically wirelessly communicated to a base station computer which further processes the data to determine various health states of the animal.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: December 31, 2019
    Assignee: DAIRYMASTER
    Inventors: Edmond Patrick Harty, Liam Eoghan Mullane, John Gerard Daly, Christopher Kinsella
  • Patent number: 10517276
    Abstract: A device (5) attached to the neck (6) of an animal (2) comprises an accelerometer (28) which produces first and second signals indicative of movement of the animal (2) and the raised and lowered states of the head of the animal. A microprocessor (30) in the device (5) processes the first and second signals to detect ruminating, resting, feeding and three activity states of the animal during respective second predefined time periods of approximately 15 minutes duration. Data indicative of the states of the animal is stored by the microprocessor (30) in the device (5) and periodically transmitted to a cloud computer server which further processes the data to determine various health states and other issues of the animal.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: December 31, 2019
    Assignee: DAIRYMASTER
    Inventors: Edmond Patrick Harty, Liam Eoghan Mullane, John Gerard Daly
  • Patent number: 10524154
    Abstract: A system for evaluating the performance of beam forming antennas based on correlations of signal to noise measurements of individual scattering elements in the antennas. A signal source provides a signal having a first frequency to an input of the antenna. Each of the antenna's scattering elements are individually selectable to radiate the signal. A control signal sequentially turns off and on each scattering element while radiating the signal. Also, a characteristic of the signal radiated by each scattering element is separately measured and each difference between the characteristics are identified and compared to one or more threshold values. A report regarding the differences that exceed the threshold value is provided to a user.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: December 31, 2019
    Assignee: Pivotal Commware, Inc.
    Inventor: Eric James Black
  • Patent number: 10517489
    Abstract: Wrist-worn devices and related methods measure a pulse transit time non-invasively and calculate a blood pressure value using the pulse transit time. A wrist-worn device includes an accelerometer, a photo-lethysmogram (PPG) or a pulse pressure sensor, and a controller. The PPG or the pulse pressure sensor coupled to the wrist-worn device for detecting an arrival of a blood pressure pulse at the user's wrist. The controller is configured to process output signals from the accelerometer to detect when the blood pressure pulse is propagated from the left ventricle of the user's heart, process a signal from the PPG or the pulse pressure sensor to detect when the blood pressure pulse arrives at the wrist, calculate a pulse transit time (PTT) for propagation of the blood pressure pulse from the left ventricle to the wrist, and generate one or more blood pressure values for the user based on the PTT.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: December 31, 2019
    Inventors: Ravi Narasimhan, Richard C. Kimoto, Thomas J. Sullivan, Todd K. Whitehurst, Derek Park-shing Young, Zijing Zeng, Erno Klaassen
  • Patent number: 10518018
    Abstract: A blood purification system that is capable of notifying any changes in the patient's condition on the basis of noninvasive vital sings of the patient that are observed during the blood purification treatment. An external information-processing apparatus includes an external input device into which a vital sign detected by a detecting device is inputtable in real time; a checking device capable of checking whether or not the vital sign inputted in real time into the external input device satisfies a predetermined condition; and an external output device capable of outputting, if it is determined by the checking device that the vital sign satisfies the predetermined condition, a result of the checking or checked information including the vital sign leading to the result of the checking to a blood purification apparatus. The checked information outputted from the external output device is displayable on a display included in the blood purification apparatus.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: December 31, 2019
    Assignee: Nikkiso Company Limited
    Inventors: Hitoshi Goto, Tomoya Murakami, Masahiro Toyoda
  • Patent number: 10512403
    Abstract: A physiological signal processing system for a physiological waveform that includes a cardiovascular signal component provides a variable high pass filter that is responsive to the physiological waveform, and that is configured to high pass filter the physiological waveform in response to a corner frequency that is applied. A heart rate metric extractor is responsive to the variable high pass filter and is configured to extract a heart rate metric from the physiological waveform that is high pass filtered. A corner frequency adjuster is responsive to the heart rate metric extractor and is configured to determine the corner frequency that is applied to the variable high pass filter, based on the heart rate metric that was extracted. Analogous methods may also be provided.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: December 24, 2019
    Assignee: Valencell, Inc.
    Inventor: Eric Douglas Romesburg
  • Patent number: 10506931
    Abstract: A computer-implemented method for quantifying arterial stiffness and assigning an AS factor uses executable program on a computing device. The arterial pulse of an individual is monitored and the data received from the monitoring member transmitted to the computing device. The data received is processed by the processor, performing a pulse wave analysis. The primary systolic pulse and iliac reflection pulse are extracted from the pulse wave analysis and the time delay between the primary systolic pulse and the iliac reflection pulse determined. The time delay is used to calculate a second derivative based least in part, on the time delay. The frequency above zero components are separated from the second derivative and the area of the second derivative determined between a first primary systolic pulse and a first iliac reflection pulse.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: December 17, 2019
    Assignee: Empirical Technologies Corporation
    Inventor: Martin Baruch
  • Patent number: 10506944
    Abstract: An apparatus for measuring electrodermal activity can include a first electrode in contact with a first portion and a second electrode in contact with a second portion of a stratum corneum, and in electronic communication with the second electrode through the stratum corneum. A processing module is electrically coupled to the first electrode and the second electrode and is operable to (a) bias the first electrode at a first voltage V+ and the second electrode at a second voltage V? (b) measure a current flowing between the first electrode and the second electrode, the current corresponding to the conductance of the stratum corneum, (c) subtract a compensation current from the measured current (d) measure a resulting current producing an amplified output voltage (e) measure a conductance of the stratum corneum, and (f) adjust at least one of the first voltage, the second voltage and the compensation current to desaturate the output voltage.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: December 17, 2019
    Assignee: Empatica Srl
    Inventors: Simone Tognetti, Ivan Cenci, Daniele Resnati, Maurizio Garbarino, Matteo Lai
  • Patent number: 10499835
    Abstract: Methods and systems are provided for determining fluid responsiveness in the presence of noise. The system may determine an instantaneous value indicative of fluid responsiveness. In some embodiments, the system may determine a difference between an instantaneous value indicative of fluid responsiveness and a previous value indicative of fluid responsiveness, and select an update characteristic based on whether the difference indicates that the fluid responsiveness is increasing or decreasing. In some embodiments, the system may determine a parameter indicative of fluid responsiveness based on the update characteristic and a previously reported value indicative of fluid responsiveness.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: December 10, 2019
    Assignee: Covidien LP
    Inventors: Paul S. Addison, Scott McGonigle, James N. Watson
  • Patent number: 10493281
    Abstract: A characteristic of a washout period following the delivery of therapy to a patient according to a therapy program may be determined based on a physiological parameter of the patient. A washout period includes the period of time during which a carryover effect from the therapy delivery dissipates. Monitoring a washout period may be useful for timing the delivery of therapy according to different therapy programs during a therapy evaluation period. For example, at least one physiological signal of the patient may be monitored to automatically determine when a washout period has ended, e.g., when stimulation and carryover effects of therapy delivery according to a first therapy program have substantially dissipated, in order to determine when therapy delivery according to a second therapy program can be initiated.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: December 3, 2019
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Mark T. Rise, Paul H. Stypulkowski, Timothy J. Denison
  • Patent number: 10492726
    Abstract: A wearable device that attaches to a body part of a user via an attachment member operates in at least a connected and a disconnected state. One or more sensors located in the wearable device and/or the attachment member detect the user's body part when present. Such detection may only be performed when the attachment member is in a connected configuration and may be used to switch the wearable device between the connected and disconnected states. In this way, the wearable device operates in the connected state when worn by a user and in the disconnected state when not worn by the user.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: December 3, 2019
    Assignee: Apple Inc.
    Inventors: Sorin V. Dusan, Daniel J. Culbert, Todd K. Whitehurst
  • Patent number: 10492738
    Abstract: A patient bed for a medical treatment system is equipped with a plurality of flexible photodetector pads arranged on top surface of the patient bed, where the flexible photodetector pads generate an electrical signal from ambient lighting. A monitoring circuit monitors the electrical signal generated by the plurality of flexible photodetector pads while a patient on the patient bed, where any change in the voltage level of the electrical signal from the plurality of flexible photodetector pads represents a movement of the patient.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: December 3, 2019
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Ahmadreza Ghahremani, James Mark Long
  • Patent number: 10492699
    Abstract: A method and a device for determining a cardiac function parameter, the device including a sonic sensor for determining timing data of a closure of a mitral valve and an aortic valve, a pressure cuff and a sensing unit coupled to the pressure cuff for sensing. The sensing unit is configured to sense, for each cardiac cycle, blood breakthrough pressure data and corresponding time data from a closing of the mitral valve and data relating to a velocity of propagation of a pressure wave as it travels along at least a portion of the pressure cuff. The device also includes a processing unit for determining a value of at least one cardiac function parameter based on the data.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: December 3, 2019
    Assignee: CORALERT LTD.
    Inventors: Alon Marmor, Amir Marmor
  • Patent number: 10485456
    Abstract: This application provides an identification method and device, and relates to the field of wearable devices. The method comprises: acquiring a first heartbeat propagation signal and a second heartbeat propagation signal separately from a target limb of a body; and identifying whether the target limb is a left limb or a right limb at least according to the first heartbeat propagation signal and the second heartbeat propagation signal. The method and device can implement automatic identification of left and right limbs, simplify configuration steps, and improve user experience.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: November 26, 2019
    Assignee: BEIJING ZHIGU RUI TUO TECH CO., LTD
    Inventor: Ran Xu
  • Patent number: 10448830
    Abstract: An apparatus includes one or more memories storing computer readable code and processor(s). The processor(s), in response to loading and executing the computer readable code, cause the apparatus to perform operations including receiving electrocardiogram data from an electrocardiogram sensor. The electrocardiogram data includes data from an electrocardiogram from a person. The operations also include receiving pulse wave data from one or more pulse wave pressure sensors. The pulse wave data includes data from one or more pulse waves from the person. The operations further include determining blood pressure using the electrocardiogram data or the pulse wave data from the chest and the pulse wave data from the wrist or finger, and outputting an indication of the blood pressure. Another apparatus uses pulse wave data from two pulse wave sensors (e.g., pulse wave pressure sensor(s) and/or PPG sensor(s)) and blood pressure determinations are made using these pulse wave data.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: October 22, 2019
    Assignee: International Business Machines Corporation
    Inventors: John U. Knickerbocker, Hyung-Min Lee, Kang-Wook Lee
  • Patent number: 10434255
    Abstract: A system and method for patient-adaptive hemodynamic management is described. One embodiment includes a system for hemodynamic management including transfusion, volume resuscitation with intravenous fluids, and medications, utilizing monitored hemodynamic parameters including the described dynamic predictors of fluid responsiveness, and including an intelligent algorithm capable of adaptation of the function of the device to specific patients.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: October 8, 2019
    Assignee: The Regents of the University of California
    Inventors: Joseph B. Rinehart, Maxime Cannesson
  • Patent number: 10413211
    Abstract: Devices, systems, and methods for the localization of body lumen junctions and other intraluminal structure are disclosed. Various embodiments permit clinicians to identify and locate lesions and/or anatomical structures within a lumen and accurately place leads and/or devices within a lumen, through determining the intralumen conductance and/or cross-sectional area at a plurality of locations within the body lumen.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: September 17, 2019
    Assignee: 3DT Holdings, LLC
    Inventor: Ghassan S. Kassab
  • Patent number: 10398323
    Abstract: A method is provided for determining pulse transit time of a subject as a function of blood pressure. The method includes: measuring a proximal waveform indicative of the arterial pulse at a proximal site of the subject; measuring a distal waveform indicative of the arterial pulse at a distal site of the subject; defining a relationship between the proximal waveform and the distal waveform in terms of unknown parameters of a nonlinear model; determining the unknown parameters of the nonlinear model from the measured proximal waveform and the measured distal waveform; and determining pulse transit time for the subject as a function of blood pressure from the parameters of the nonlinear model. The nonlinear model can account for arterial compliance and peripheral wave reflection, where the arterial compliance depends on blood pressure.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: September 3, 2019
    Assignee: Board of Trustees of Michigan State University
    Inventors: Ramakrishna Mukkamala, Mingwu Gao
  • Patent number: 10398381
    Abstract: In an embodiment, a data processing method comprises obtaining one or more photoplethysmography (PPG) signals from one or more PPG sensors of a monitoring apparatus, the PPG signals being generated based upon optically detecting pulsed variations in blood flow; obtaining a motion sensor signal from a motion sensor in the monitoring apparatus; identifying, based upon the motion sensor signal, one or more periods of motion (e.g., low motion) of the monitoring apparatus; and selectively obtaining and storing segments of the PPG signals based on a temporal relationship between the segments of the PPG signals and the identified periods of motion.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: September 3, 2019
    Assignee: Fitbit, Inc.
    Inventors: Conor Heneghan, Alexandros Pantelopoulos, Subramaniam Venkatraman
  • Patent number: 10398321
    Abstract: Disclosed herein is a framework for facilitating thermal patient signal analysis. In accordance with one aspect, the framework receives patient signal data including thermal signal data. The framework then segments a waveform of the thermal signal data into portions and extracts thermal parameters based on the segmented portions. The framework then determines one or more thermal indices based at least in part on the thermal parameters and generates a report that presents cardiac event detection results determined based at least in part on the one or more thermal indices.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: September 3, 2019
    Assignee: Siemens Healthcare GmbH
    Inventor: Hongxuan Zhang
  • Patent number: 10390713
    Abstract: The disclosure of the present application provides methods for the noninvasive determination of cardiac and pulmonary pressures based off of patient-specific medical images and one or more computations. In one exemplary embodiment, the method comprises noninvasively generating a patient-specific medical image of at least a portion of a heart, determining a free vibration measurement from the left ventricular free wall based on the patient-specific image, and performing at least one computation using the free vibration measurement to noninvasively determine a cardiac or pulmonary pressure.
    Type: Grant
    Filed: March 16, 2014
    Date of Patent: August 27, 2019
    Inventors: Ghassan S. Kassab, Yunlong Huo
  • Patent number: 10390710
    Abstract: An electronic sphygmomanometer includes a cuff including an air bladder, a pressure sensor, an artery volume sensor, and a computation device. The computation device includes an inner pressure control section, a volume sensor signal receive section for receiving a pulse wave signal detected by the artery volume sensor, a pressure sensor signal receive section for receiving a pressure pulse wave signal superimposed on the inner pressure of the air bladder and detected by the pressure sensor, a judgment section for choosing either the pulse wave signal or the pressure pulse wave signal as a signal for calculating pulse rate of the patient during a period when the inner pressure of the air bladder is increased and/or decreased by the inner pressure control section, and a pulse rate calculation section for calculating pulse rate of the patient based on the pulse wave signal and the signal chosen by the judgment section.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: August 27, 2019
    Assignee: OMRON HEALTHCARE Co., Ltd.
    Inventors: Shota Umeda, Yukiya Sawanoi, Naomi Matsumura, Tsuyoshi Kitagawa
  • Patent number: 10390701
    Abstract: An apparatus configured to estimate biometric information includes a sensor configured to measure a light signal reflected from a subject and a temperature of the subject, and a processor configured to perform temperature correction on the light signal reflected from the subject based on the temperature of the subject using a light signal-temperature relationship between the light signal reflected from the subject and the temperature of the subject to thereby obtain a temperature-corrected light signal, and estimate the biometric information of the subject based on the temperature-corrected light signal.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: August 27, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung Yong Nam, Joon Hyung Lee, Ki Young Chang, Hyeong Seok Jang
  • Patent number: 10391223
    Abstract: A method of treating a blood pressure disorder comprises identifying a patient having a blood pressure disorder, and administering a treatment regime comprising two or more rounds of plasmapheresis to the patient, wherein the treatment regime lowers blood pressure in the patient.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: August 27, 2019
    Assignee: Grifols Worldwide Operations Limited
    Inventors: Marilyn Rosa-Bray, Shinji Wada
  • Patent number: 10376160
    Abstract: A blood pressure measurement method uses a pulse wave measurement unit (20) for measuring the pulse wave of a subject using an FBG sensor (10), and a blood pressure value calculation unit (30) for calculating a blood pressure value from waveform date of the measured pulse wave. The blood pressure calculation unit (30) uses a calibration model representing the correlation between measured waveform date of a previously measured pulse wave, and a measured blood pressure value measured by an automatic blood pressure gauge at each measurement point in time of the measured waveform date to estimate the blood pressure value of the subject from the measured waveform date of the pulse wave. It is possible to realize an easy-to-use blood pressure measurement method capable of estimating the blood pressure value with accuracy required for the automatic blood pressure gauge and continuously measuring the blood pressure.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: August 13, 2019
    Assignee: SHINSHU UNIVERSITY
    Inventors: Hiroaki Ishizawa, Shouhei Koyama
  • Patent number: 10368754
    Abstract: A system for monitoring blood pressure includes a blood pressure cuff, a blood pressure measurement device removably connected to the blood pressure cuff, and a cuff verification module. The cuff verification module is executable on a processor to receive medical record information from a patient, determine an expected cuff size for the patient based on the medical record information, receive a detected cuff size for the blood pressure cuff, and verify that the detected cuff size is consistent with the expected cuff size.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: August 6, 2019
    Assignee: General Electric Company
    Inventor: Otto Valtteri Pekander
  • Patent number: 10362999
    Abstract: Gated physiological monitoring systems and methods are described that utilize a photoplethysmogram (PPG) monitoring device and another (different) physiological monitoring device, where the PPG monitoring device is operated based on timing information obtained from the other physiological monitoring device. In some implementations, control circuitry can be configured to operate the PPG monitoring device based on timing information from a physiological waveform detected by the physiological monitoring device. For example, the control circuitry can operate the PPG monitoring device to capture one or more selected portions of a measured PPG waveform that can then be used to estimate the full PPG waveform or portions of interest.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: July 30, 2019
    Assignee: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Matthew Z. Straayer, Joohyun Seo
  • Patent number: 10349846
    Abstract: A photoelectric sensor can include: a lighting element configured to generate a first optical signal, where a second optical signal is generated by reflection of the first optical signal when emitting an object; a driving circuit configured to drive the lighting element; a photoelectric conversion circuit configured to generate a first optical current in accordance with the second optical signal; and a programmable current amplifier circuit configured to sample and hold the first optical current when the lighting element is in operation, and to generate a second optical current when the lighting element is out of operation in one detection period, where the second optical current lasts for at least one working period in the detection period, and where the second optical current represents the first optical current.
    Type: Grant
    Filed: April 1, 2017
    Date of Patent: July 16, 2019
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Baoyu Zhang, Huisen He, Lili Shao, Yanni Zhang
  • Patent number: 10349901
    Abstract: A shock probability determination system and method provides an output of probabilities for different types of shock based on input of selected patient demographic parameters and current clinical parameter values as well as normal ranges for each clinical parameter based on patient demographic data. The probability of different types of shock is determined based on comparison of current clinical parameter values of selected patient hemodynamic parameters to a normal range for each hemodynamic parameter. In one aspect, probabilities of cardiogenic shock, hypovolemic shock, septic shock, and anaphylactic shock are determined. In another aspect, a fluid status indicator is determined based on real-time probability of hypovolemic shock.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: July 16, 2019
    Assignee: OSYPKA MEDICAL GMBH
    Inventors: Markus J. Osypka, Clemens Feige, Marcel D. Gestewitz, Florin-Viorel Petrov, Yasser A. Nassef
  • Patent number: 10349838
    Abstract: Methods are presented for determining pulse transit time (PTT) and/or pulse wave velocity (PWV) of a subject by application of parametric system identification to proximal and distal arterial waveforms. The two waveforms are measured from the subject. A system is defined that relates the proximal arterial waveform to the distal arterial waveform (or vice versa) in terms of the unknown parameters of a parametric mathematical model. The model parameters are determined from the measured waveforms using system identification. PTT between the proximal and distal arterial sites is then determined from the system model. PWV may also be determined by dividing the distance between measurement sites (D) by PTT.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: July 16, 2019
    Assignee: Board of Trustees of Michigan State University
    Inventors: Ramakrishna Mukkamala, Da Xu, Guanqun Zhang, Mingwu Gao, Mohsen Moslehpour
  • Patent number: 10349840
    Abstract: The present document describes a system for equalizing the pressure of a pressure guidewire against the pressure of an aortic pressure device: the system comprising two methods of equalizing the pressure against each other, one method that involves a gain adjustment and another method that involves the addition of an offset; the method further comprising a method for detecting which method should be applied to the situation, the detecting methods including: the contribution of the operator; an algorithm detecting the first equalization from subsequent post procedure equalizations, the algorithm including various factors such as incrementing the equalization requests, measuring the elapsed time and others.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: July 16, 2019
    Assignee: Opsens Inc.
    Inventors: Claude Belleville, André Lachance, Étienne Côté
  • Patent number: 10354674
    Abstract: A white noise generating apparatus for stress relaxation and concentration improvement includes: a headset including a microphone for outputting the voice to a communication line, a sound outputting unit for outputting the voice inputted from the communication line, and a sensing unit which is capable of sensing at least one of a pulse wave, a skin current, a skin temperature, and a white noise generator including a stress calculating unit for calculating a stress index from the voice outputted from the microphone, a white noise generating unit for generating white noise and outputting same to the sound output unit, and a control unit for controlling the white noise generating unit to output white noise sound in accordance with the stress index calculated from the stress calculating unit so that the stress level may be normal.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: July 16, 2019
    Assignees: GAONDIRECTOR CO., LTD.
    Inventors: Woo Sung Jeon, Min Cheol Whang, Jung Nylin Lee
  • Patent number: 10342438
    Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: July 9, 2019
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Jim Moon, Henk Visser, II, Robert Kenneth Hunt, Devin McCombie, Marshal Singh Dhillon, Matthew J. Banet
  • Patent number: 10342493
    Abstract: The present invention provides a personal hand-held monitor comprising a signal acquisition device for acquiring signals which can be used to derive a measurement of a parameter related to the health of the user, the signal acquisition device being integrated with a personal hand-held computing device. The present invention also provides a signal acquisition device adapted to be integrated with a personal hand-held computing device to produce a personal hand-held monitor as defined above.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: July 9, 2019
    Assignee: Leman Micro Devices SA
    Inventors: Christopher Elliott, Mark-Eric Jones, Mark Bennett, Mikhail Nagoga
  • Patent number: 10335093
    Abstract: A method and apparatus for processing a biosignal is disclosed. The apparatus may extract reference points from a waveform of a biosignal, determine a pulse direction of the biosignal based on the extracted reference points, and determine a feature point of the biosignal based on a feature point determining method corresponding to the determined pulse direction of the biosignal.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: July 2, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Changmok Choi, Seungkeun Yoon, Ui Kun Kwon, Sang-joon Kim
  • Patent number: 10314545
    Abstract: Provided is an apparatus and method of measuring a pulse wave. The method includes: causing receivers to respectively receive pulse wave signals that are detected at two points of an object, determining an effective pulse wave signal period by using the received pulse wave signals, and obtaining a pulse transit time (PTT) between the two points by using a result obtained after comparing a magnitude of an output signal of each of the receivers with a value that is less by a predetermined percentage than a peak value of an output signal of each of the receivers during the determined effective pulse wave signal period.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: June 11, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yongjoo Kwon, Jaemin Kang, Sunkwon Kim, Younho Kim, Sangyun Park, Seongho Cho