Sampler, Sample Handling, Etc. Patents (Class 73/863)
  • Patent number: 10401267
    Abstract: A test feature is disclosed that is formed during metal powder additive manufacturing of a production part. The test feature may include a metal powder sample capsule including a chamber for capturing unfused powder from the metal powder additive manufacturing, and a removable cap closing an end of the chamber. Alternatively, a test feature may include a quality control (QC) part, and at least one additional test element including a metal powder sample capsule integrally coupled to the QC part and including a chamber for capturing unfused powder from the metal powder additive manufacturing. The QC part is identical to the production part excepting the at least one test element. The QC part and the at least one test element are formed during the same metal powder additive manufacturing as the production part.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: September 3, 2019
    Assignee: General Electric Company
    Inventors: Jose Troitino Lopez, Tiffany Muller Craft, Donnell Eugene Crear, Kassy Moy Hart, Kamilla Koenig-Urban, Eric Eicher McConnell, Danijel Medved
  • Patent number: 10302408
    Abstract: This invention provides methods and devices for the high-throughput characterization of the mechanical properties of cells or particles. In certain embodiments the devices comprise a micro fluidic channel comprising: an oscillating element on a first side of said channel; and a detecting element on a second side of said channel opposite said oscillating element, wherein said detecting element is configured to detect a force transmitted through a cell or microparticle by said oscillating element. In certain embodiments the devices comprise a microfluidic channel comprising an integrated oscillator and sensor element on one first side of said channel, wherein said sensor is configured to detect a force transmitted through a cell or microparticle by said oscillator.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: May 28, 2019
    Assignee: The Regents of the University of California
    Inventors: Amy Rowat, David J. Hoelzle, Clara Chan
  • Patent number: 10191620
    Abstract: In a sample-analyzing system including an analyzer (10) for analyzing a sample, an auto-sampler (20) for sequentially introducing a plurality of samples into the analyzer (10), and a controller (40) for controlling operations of the analyzer (10) and the auto-sampler (20), the auto-sampler (20) is provided with a sample rack holder (24) for holding a sample rack (21) having a plurality of wells (22) in which sample containers (23) are to be set and a sample rack imager (27) for taking, directly from above or obliquely from above, an image of the sample rack (21) held in the sample rack holder (24), whereby an incorrect input of the position information of the sample container (e.g. the well number or rack number) into an analysis schedule table is prevented.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: January 29, 2019
    Assignee: SHIMADZU CORPORATION
    Inventor: Hiroyuki Minato
  • Patent number: 10149131
    Abstract: Techniques are provided for compressive sensing (CS) in a sensor network, for improved power efficiency. A methodology implementing the techniques according to an embodiment includes determining a state of a sensor network, based on a calculated statistic of sampled data values generated by one or more sensors in the network, and on anomaly indications generated by the one or more sensors. The method further includes calculating a CS sampling schedule based on the determined state and further based on a sparse signal recovery algorithm. The method further includes broadcasting the CS schedule to the one or more sensors. The CS schedule includes a sensor identification, sampling frequency, and sampling time offset for each sensor to be sampled. The method further includes updating the state of the sensor network and the CS schedule, based on updated data values generated by the one or more sensors in accordance with the sampling schedule.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: December 4, 2018
    Assignee: Intel Corporation
    Inventors: Venkat Natarajan, Apoorv Vyas, Kumar Ranganathan, Jose Joy, Harshpal Singh
  • Patent number: 9958468
    Abstract: The present invention provides an automatic analyzer capable of reducing the time necessary for analysis processing by making various operations pertaining to the analysis processing more efficient. More specifically, the present invention is characterized in that, from among a plurality of ending operation items set as analysis ending operations to perform at the end of analysis operations for analyzing a sample under analysis, one or more ending operation items to be performed are selected, and on the basis of monitoring results of monitoring the status of an automatic analyzer during the period from the end of the analysis ending operations to the start of analysis preparation operations for preparing for the analysis operations, one or more preparation operation items to be performed are selected from among a plurality of preparation operation items set as analysis preparation operations.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: May 1, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yoshihiro Yamashita, Toshiharu Suzuki, Takaaki Hagiwara, Kazunori Yamazawa
  • Patent number: 9739703
    Abstract: An object of the present invention is to provide a grain transilluminating device capable of detecting all of the cracks whose orientations are variously different depending on grains without causing a sample dish to be rotated.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: August 22, 2017
    Assignee: Satake Corporation
    Inventors: Hideaki Matsushima, Hiroki Ishizuki, Manabu Ikeda, Jun Zheng
  • Patent number: 9719906
    Abstract: A method for determining a condition in a blood sample includes: providing a sample of blood; providing a metering probe having a pump for aspirating and dispensing; inserting the metering probe a selected distance into the blood sample; measuring the pressure between the sample and pump during sample aspiration or sample dispense; comparing the measured pressure with a reference value; and signaling the presence or absence of the condition. A method for confirming or detecting the presence of a selected layer of blood component in a centrifuged blood sample includes: measuring a pressure of a suspected selected layer in a metering probe during aspiration or dispense; comparing the measured pressure with a reference value, wherein if the measured pressure and the reference value are substantially identical then the selected layer of the blood component is confirmed. In a preferred embodiment the reference value is a pre-selected pressure range.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: August 1, 2017
    Assignee: Ortho-Clinical Diagnostics, Inc.
    Inventors: David D. Hyde, Michael W. LaCourt, Tracy McDonald, Christopher M. Parobek
  • Patent number: 9677975
    Abstract: A sampling assembly configured to be coupled to a sample source and facilitate aseptic sampling at one or more instances in time is provided. Further, the sampling assembly includes a first conduit having first and second ports, where the first port is configured to be coupled to the sample source. The sampling assembly also includes a plurality of sub-conduits having corresponding sub-ports, where each of the plurality of sub-conduits is operatively coupled to the first conduit at respective connector junctions. Also, each of the sub-ports is in fluidic communication with the first conduit. The sampling assembly also includes a plurality of sampling kits and one or more pumping devices. Further, each sampling kit is operatively coupled to a respective sub-port of a corresponding sub-conduit. Moreover, the one or more pumping devices are operatively and aseptically coupled to the second port of the first conduit.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: June 13, 2017
    Assignee: General Electric Company
    Inventors: Chengkun Zhang, Kenneth Roger Conway, Donald Joseph Buckley, Eugene Pauling Boden, Weston Blaine Griffin, Anshika Bajaj, Reginald Donovan Smith
  • Patent number: 9588024
    Abstract: A system for sampling and/or conditioning a process gas such as natural gas or the like utilizing two or more modular components, each having unique conditioning or monitoring features or the like, which components are formed to be slidingly received in a receiver so as to be stacked one upon the other for sealed engagement, forming a serial flow-through passage to provide conditioning, monitoring, or other features as the gas flows therethrough. An embodiment of the present invention is designed to receive multiple conditioning components, each of which may have diverse functionality such as, for example, one or more stages of pressure reduction, monitoring, particulate and/or liquid droplet filtering, etc. The invention is designed for easy configuration customization so as to provide a readily customizable solution for each application, with an embodiment which may be incorporated into a probe or the like or at its tip, and thereby operate at the prevailing pressure and temperature of the process gas.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: March 7, 2017
    Assignee: A+ Manufacturing, LLC
    Inventors: Valmond Joseph St Amant, III, Steven Douglas Calverley
  • Patent number: 9574985
    Abstract: A method for determining a condition in a blood sample includes: providing a sample of blood; providing a metering probe having a pump for aspirating and dispensing; inserting the metering probe a selected distance into the blood sample; measuring the pressure between the sample and pump during sample aspiration or sample dispense; comparing the measured pressure with a reference value; and signaling the presence or absence of the condition. A method for confirming or detecting the presence of a selected layer of blood component in a centrifuged blood sample includes: measuring a pressure of a suspected selected layer in a metering probe during aspiration or dispense; comparing the measured pressure with a reference value, wherein if the measured pressure and the reference value are substantially identical then the selected layer of the blood component is confirmed. In a preferred embodiment the reference value is a pre-selected pressure range.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: February 21, 2017
    Assignee: Ortho-Clinical Diagnostics, Inc.
    Inventors: David D. Hyde, Michael W. LaCourt, Tracy McDonald, Christopher M. Parobek
  • Patent number: 9533300
    Abstract: A system for handling sample vials includes a vault for receiving a series of storage cartridges. Inside the cartridges are one or more discs providing vial recesses. In multidisc cartridges, through passages are provided to place and retrieve vials into and from the subjacent discs. A pick up device is moved until it aligns with a selected vial and the vial is pneumatically removed. A device is provided to reverse orientation of a vial moving through the system. A venturi operated system is provided including symmetrical bleed off ports to propel vials through the system without inducing excessive spinning of the vials. A piping system from a central bank to a multiplicity of analytical instruments includes a minimum number of through conduits and a diverter at each instrument location for sending the vial either to the instrument or downstream toward another diverter and instrument.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: January 3, 2017
    Inventor: Daniel T. Richter
  • Patent number: 9535049
    Abstract: An analyzing arrangement for analyzing a composition of a fluid, such as oil mist of an engine, e.g. a gas turbine is provided. The analyzing arrangement includes a breather pipe coupleable to the gas turbine such that at least a part of the fluid is flowing through the breather pipe, a first collecting device for collecting a first sample of the fluid, wherein the first collecting device is configured for providing a first composition analysis of the first sample and a second collecting device for collecting a second sample of the fluid, wherein the second collecting device is configured for providing a second composition analysis of the second sample. The first collecting device and the second collecting device are arranged inside the breather pipe such that the first collecting device and the second collecting device are exposed to a common flow characteristic of the fluid inside the breather pipe.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: January 3, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Roger Brown, Robert Pearce
  • Patent number: 9146223
    Abstract: A filtration system for a soil analysis device and methods of pressure filtration and automated cleaning are disclosed for generating filtrate used in measuring characteristics of a soil sample and preparing the filtration system for repeated measurements. A mixing chamber combines a soil sample and an extractant into a liquid mixture. The filtration system receives and pressure filters the liquid mixture to quickly generate filtrate used to measure characteristics of the sample. The filtrate is passed to a measurement cell for analysis. Once the analysis is complete, the filtration system performs a cleaning process in preparation to receive a subsequent liquid mixture from another soil sample.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: September 29, 2015
    Assignee: Monsanto Technology LLC
    Inventors: Bevan Gerber-Siff, Justin Stewart White, Stephen Prouty, Robert Tirrell, Michael John Preiner, Nicholas Carleton Koshnick
  • Patent number: 9110045
    Abstract: The present invention relates to a device for controlling the flow of a fluid in a compartment (4) with an inlet opening (5) and an outlet opening (6). The device comprises an inlet channel (8) connected to the inlet opening for transportation of fluid to the compartment, an outlet channel (9) connected to the outlet opening for transportation of fluid from the compartment and a pump (17) arranged to pump the fluid. The compartment is provided with a third opening (12). The device comprises a distribution chamber (15) connected to the inlet channel and a third channel (14) connected between the distribution chamber and the third opening for transportation of fluid between the distribution chamber and the compartment.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: August 18, 2015
    Assignee: ENVIC-SENSE AB
    Inventors: Peter Gårdhagen, Eva-Lena Gårdhagen
  • Patent number: 9027418
    Abstract: A magnetic flowmeter for sensing process fluid flow is provided. The flowmeter includes a tube configured to receive the process fluid flow therethrough. A plurality of electrodes is disposed to contact process fluid. At least one electromagnetic coil is disposed proximate the tube. Flowmeter electronics are configured to drive a current through at least one electromagnetic coil and to sense a signal developed across a plurality of electrodes disposed to contact process fluid. A flexible circuit module is disposed proximate the tube, and has at least one flexible circuit containing a plurality of electrical traces electrically coupled to the flowmeter electronics. The at least one electromagnetic coil includes a first coil in the flexible circuit module that is coupled to the electrical traces.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: May 12, 2015
    Assignee: Rosemount Inc.
    Inventors: Joseph Alan Smith, Steven Bruce Rogers, Michael John Mayer, Nelson Mauricio Morales, Brian Scott Junk
  • Patent number: 9000397
    Abstract: A specimen holder and method for controlling the same, which can mount and fasten a specimen to allow observation thereof by joining a body and a stand of the specimen holder together. The specimen holder includes: a body; a specimen mounting part formed at an end of the body for fixing a specimen; elasticity means located inside the body; and a stand detachably joined with the body. The stand includes: a base part; and a joining part protrudingly formed on the upper face of the base part and having a through hole to which at least a part of the specimen mounting part is inserted. The specimen mounting part includes: a first grip part located at an end portion of the specimen mounting part for fixing one side of the specimen; and a second grip part movably connected with the elasticity means for fixing the other side of the specimen.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: April 7, 2015
    Assignee: Hitachi High-Technologies Korea Co., Ltd.
    Inventor: Heyoung Cheol Heyoung
  • Patent number: 8991239
    Abstract: A system and method for preparing samples for analyte testing. The sample preparation system can include a freestanding receptacle. The method can include providing a liquid composition comprising a source and a diluent, and positioning the liquid composition in a reservoir defined by the freestanding receptacle. The method can further include filtering the liquid composition to form a filtrate comprising an analyte of interest, removing at least a portion of the filtrate from the sample preparation system to form a sample, and analyzing the sample for the analyte of interest.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: March 31, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Kurt J. Halverson, Stephen C. P. Joseph, Matthew T. Scholz
  • Patent number: 8974731
    Abstract: A sample processing apparatus includes a sample carrier receiving region configured to receive a sample carrier. The sample carrier includes at least one sample channel carrying at least one sample, at least one agent chamber carrying at least one agent to be moved to the at least one sample channel to facilitate processing of the at least one sample, and the at least one agent chamber includes at least one chamber cover covering at least one opening of the at least one agent chamber, inhibiting flow of the at least one agent from the at least one agent chamber to the at least one sample channel. The sample processing apparatus further includes a chamber opener configured to facilitate opening the at least one chamber cover. The sample processing apparatus further includes a fluid mover that moves the agent out of the at least one agent chamber after the at least one chamber cover is opened and into the at least one sample channel.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: March 10, 2015
    Assignee: Analogic Corporation
    Inventor: Ari Eiriksson
  • Publication number: 20150047440
    Abstract: The present invention relates to a device for controlling the flow of a fluid in a compartment (4) with an inlet opening (5) and an outlet opening (6). The device comprises an inlet channel (8) connected to the inlet opening for transportation of fluid to the compartment, an outlet channel (9) connected to the outlet opening for transportation of fluid from the compartment and a pump (17) arranged to pump the fluid. The compartment is provided with a third opening (12). The device comprises a distribution chamber (15) connected to the inlet channel and a third channel (14) connected between the distribution chamber and the third opening for transportation of fluid between the distribution chamber and the compartment.
    Type: Application
    Filed: March 19, 2013
    Publication date: February 19, 2015
    Inventors: Peter Gårdhagen, Eva-Lena Gårdhagen
  • Patent number: 8957778
    Abstract: The present invention uses a wireless memory/communication device at least on the one or more sample storage devices, preferably on both the one or more sample storage devices and the sampling holder, optionally the port on the equipment as well. Data such as that relating to the vessel, the location of the port on the vessel, the device, its manufacture date or lot number, the date of the installation, sterilization and/or taking of a sample along with the person who installed the device and/or took the sample can be read and preferably added to the wireless device when a read/write type of device as these events occur through a scanner/reader/writer device (fixed or hand held). The sample storage device in the laboratory can also then be read and recorded to track the sample storage device's life.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: February 17, 2015
    Assignee: EMD Millipore Corporation
    Inventors: George Adams, John Dana Hubbard, Aaron Burke, Anthony DiLeo
  • Patent number: 8955399
    Abstract: A system for preparing samples for chemical analysis comprises at least one sample container, and a container receptacle apparatus for receiving the sample container. The sample container comprises an elongate tubular body having a crucible portion proximal to a closed end for receiving a sample therein, and an expansion portion proximal to an open end. The container receptacle apparatus comprising a housing having a heating compartment, a cooling compartment spaced apart from the heating compartment, and an insulating region located between the heating compartment and the cooling compartment. The heating compartment is shaped to receive the crucible portion of the sample container, and the cooling compartment is shaped to receive the expansion portion of the sample container. The apparatus also includes a heating mechanism for heating the sample within the crucible portion of the sample container, and a cooling mechanism for cooling the expansion portion of the sample container.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: February 17, 2015
    Assignee: 7685297 Canada Inc.
    Inventors: Ravi K. Kanipayor, Ron J. Emburgh
  • Publication number: 20150040688
    Abstract: The present technology relates generally to systems for processing dried blood spots (DBS) using laser cutting approaches to provide for rapid, contamination-free processing and methods of using same.
    Type: Application
    Filed: July 15, 2014
    Publication date: February 12, 2015
    Inventor: Sean C. Murphy
  • Publication number: 20150027240
    Abstract: A loading apparatus for loading a printed circuit board (PCB) stack including one or more PCB layers and transferring the PCB stack to an inspection probe includes a movable support unit, a guide unit and a cover. The guide unit is provided on the support unit and defines a depression portion in which the PCB stack is mounted. The cover is configured to cover the depression portion of the guide unit when closed, where the cover has multiple protrusions extending from a lower surface, which press the PCB stack into the depression portion when the cover is closed.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Jin Jeong, Chris Chung, Tae Eun Kim
  • Publication number: 20150029491
    Abstract: A apparatus for microfluid detection for detecting a sample fluid including a plurality of magnetic particles is provided. The apparatus for microfluid detection includes a microfluidic chip and a magnetic generating module. The microfluidic chip includes a substrate and microfluidic channels, wherein the sample fluid is carried by a carry surface of the substrate. The magnetic generating module is adapted for providing a positioning magnetic field and a surrounding magnetic field. The magnetic module controls to move the sample fluid and change a distribution of the magnetic particles in the sample fluid through the positioning magnetic field and the surrounding magnetic field.
    Type: Application
    Filed: March 21, 2014
    Publication date: January 29, 2015
    Applicant: Industrial Technology Research Institute
    Inventors: Liang-Ju Chien, Chi-Han Chiou, Shao-Hsing Yeh, Yu-Ying Lin
  • Patent number: 8932234
    Abstract: Devices, systems, and methods for the collection of biological samples. In at least one exemplary embodiment, a device comprises a collection medium having top and bottom surfaces and a predetermined size and shape, the top surface comprising a position marker and at least one binding site operable to bind a biological sample, a protective facing substantially impermeable to the biological sample, the protective facing coupled to the top surface of the collection medium and having a size and shape substantially similar to the predetermined size and shape of the collection medium. The protective facing being sized and shaped to define a first void positioned to allow for the transfer of the biological sample through the protective facing and onto the at least one binding site of the collection medium, and a second void positioned to expose the position marker for alignment of the collection medium.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: January 13, 2015
    Assignee: Bioanalytical Systems, Inc.
    Inventors: Scott R. Peters, James M. Hampsch
  • Publication number: 20140373641
    Abstract: The invention relates to an apparatus for treating histological samples, in particular for detaching and/or isolating a histological sample that, in particular after an infiltration operation, is adhering to another sample and/or to the inside of a cassette (1), having a sample receiving chamber (2) which is embodied and intended to be filled at least partly with a liquid (3), in particular with liquid paraffin. The apparatus according to the present invention is characterized in that a displacement means (5) is provided that is introducible into the liquid (3), in particular under open- and/or closed-loop control, in order to elevate the fill level height (6) of the liquid (3), and/or that a displacement means (5) is provided whose volume is increasable, in particular under open- and/or closed-loop control, in order to elevate the fill level height.
    Type: Application
    Filed: September 4, 2014
    Publication date: December 25, 2014
    Applicant: LEICA BIOSYSTEMS NUSSLOCH GMBH
    Inventors: Arne BURISCH, Christian Löchte, Annika RAATZ, Hermann ULBRICH, Karl-Heinrich WESTERHOFF
  • Publication number: 20140352455
    Abstract: A tube for extracting, diluting and discharging a sample: able to control the amount of discharged diluted solution in the tube, after the sample has been diluted; that improves the hygienic conditions of discharging the sample; that enables introduction of a predetermined amount of a sample in any liquid or solid state; and that is able to transfer a specific amount of a diluted sample into another tube for further processing without any hygienic problems and with no risk of accidents.
    Type: Application
    Filed: January 18, 2013
    Publication date: December 4, 2014
    Inventors: Erik Pavels Peterson, Arne Roseth, Thomas Jermann, Jakob Weber
  • Publication number: 20140347663
    Abstract: A gas processing device such as an aerosol exposure monitor is configured for acquiring chronic data, acute data, or both simultaneously, and may include a pump and a noise dampening device. The noise dampening device may include an elastomeric membrane between an inlet chamber and an outlet chamber. In another aspect, an aerosol exposure monitor may include an impactor, a collection filter, and a nephelometer that includes a sample chamber integrated with an aerosol flow path associated with the impactor and collection filter.
    Type: Application
    Filed: October 26, 2012
    Publication date: November 27, 2014
    Applicant: Research Triangle Institute
    Inventors: Charles E. Rodes, J. Randall Newsome
  • Publication number: 20140345394
    Abstract: A portable soil testing apparatus and method including a device to mix a soil sample in a cup with water to create a slurry, immersing a sensor in the slurry to detect a soil property and recording the soil property along with location information. The soil testing apparatus includes a frame, a computer secured within the frame, the computer operatively connected to a touch screen display and a pump. The pump providing water from a tank and into a cup containing a soil sample. A stirring station including a stirring rod and a motor is controlled by the computer and mixes the soil sample and water to create a slurry. A sensor is then immersed in the slurry to detect a desired soil property. The soil property data is then recorded by the computer on a storage medium, transmitted to a user or displayed.
    Type: Application
    Filed: April 16, 2014
    Publication date: November 27, 2014
    Inventor: Rhett Warren Schildroth
  • Patent number: 8881574
    Abstract: A shipping container interrogation apparatus and method that utilizes the tubular frame members of the container to deliver input air to the interior of the container, and to receive sample air from the interior of the container. A detection apparatus may be used to detect an unauthorized material in the sample air that is received from the interior of the container. Sample air from the detection apparatus may be recycled back into the container by use of a tubular frame member of the container. Input air may be delivered to the interior of the container with turbulence and in any desired direction or pattern for better interrogation of the interior of the container.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: November 11, 2014
    Assignee: Research International, Inc
    Inventor: Elric W. Saaski
  • Publication number: 20140318274
    Abstract: An injection needle cartridge for a sample injector for injecting a sample fluid into a mobile phase in a fluidic path of a fluid separation system between a mobile phase drive and a separation unit, the injection needle cartridge comprising an injection needle configured for aspirating the sample fluid from a fluid container when the injection needle has been moved to the fluid container, and for injecting aspirated sample fluid into the fluidic path when the injection needle is sealingly accommodated in a needle seat, and a sealing force generator configured for applying a sealing force to the injection needle for sealingly accommodating the injection needle in the needle seat, wherein the injection needle cartridge is configured for being substitutably mountable on a handling robot of the sample injector for handling the injection needle cartridge between the fluid container and the needle seat.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 30, 2014
    Inventors: Hans-Peter Zimmerman, David Jenaro
  • Patent number: 8869634
    Abstract: Apparatuses and methods are provided for transporting fluid to a sample such as a sheet of material. The apparatuses and methods may employ a variety of interfaces that facilitate controlled fluid transportation from a lumen for absorption by the sample.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: October 28, 2014
    Inventor: Andrew Kallmes
  • Patent number: 8857281
    Abstract: A probe for use in determining the amount of a first gas component in a combustion gas containing the first gas component and a second gas component which is obtainable from the first gas component by reduction or oxidation, the probe comprising: a first component probe for taking a first sample of the gas and converting the first gas component present in the first sample to the second gas component, the first component probe including a first passage for conveying the first sample, the wall of the first passage in contact with the first sample being made of a material that converts the first gas component to the second gas component; and a second component probe for taking a second sample of the gas, the second component probe including a second passage for conveying the second sample.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: October 14, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Robert Edmund Pearce
  • Patent number: 8850903
    Abstract: A liquid aspirating and dispensing apparatus and method of using the apparatus. Among other elements, the apparatus includes a liquid handling device having one or more channel members, each of which has a removable liquid holding tip attached, and a signal transmitting device. A signal transmitted from the signal transmitting device may be used in a variety of ways to yield information regarding the performance of the apparatus. This information may be provided via direct detection of the signal by an operator of the apparatus. Alternatively, the signal may be detected by a programmable signal detecting device, interpreted by the apparatus, and then displayed in a form that is understandable to the operator. Furthermore, the liquid holding tip may be modified to enable different forms of signal transmission.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: October 7, 2014
    Assignees: Artel, Inc., Seyonic S.A.
    Inventors: Richard H. Curtis, Kirby Pilcher, David L. Bohnsack, Charles Ewing, George Rodrigues, John T. Bradshaw, Marc Boillat
  • Patent number: 8851749
    Abstract: An apparatus for measuring a temperature of a material includes a body unit disposed on an exit side of a heating furnace; a temperature measuring unit installed on the body unit and constructed to measure a temperature of a material which is extracted from the heating furnace; a foreign substance removing unit installed on the body unit and constructed to inject a fluid toward the material so as to remove foreign substances adhered to the material; and a moving unit installed on the body unit and constructed to move the temperature measuring unit.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: October 7, 2014
    Assignee: Hyundai Steel Company
    Inventors: Yong Kook Park, Hyuk Jin Song, Sung Hyuk Lim, Gap Soo Lim, Seung Han Cho
  • Patent number: 8850902
    Abstract: The invention relates to an apparatus for treating histological samples, in particular for detaching and/or isolating a histological sample that, in particular after an infiltration operation, is adhering to another sample and/or to the inside of a cassette (1), having a sample receiving chamber (2) which is embodied and intended to be filled at least partly with a liquid (3), in particular with liquid paraffin. The apparatus according to the present invention is characterized in that an apparatus is provided that is introducible into the liquid (3), in particular under open- and/or closed-loop control, in order to elevate the fill level height (6) of the liquid (3), and/or that an apparatus is provided whose volume is increasable, in particular under open- and/or closed-loop control, in order to elevate the fill level height.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: October 7, 2014
    Assignee: Leica Biosystems Nussloch GmbH
    Inventors: Arne Burisch, Christian Löchte, Annika Raatz, Hermann Ulbrich, Karl-Heinrich Westerhoff
  • Publication number: 20140256055
    Abstract: A method for detecting hydrocarbons is described. The method includes performing a remote sensing survey of a survey location to identify a target location. Then, an underwater vehicle (UV) is deployed into a body of water and directed to the target location. The UV collects measurement data within the body of water at the target location, which is then analyzed to determine whether hydrocarbons are present at the target location.
    Type: Application
    Filed: November 9, 2012
    Publication date: September 11, 2014
    Inventors: Robert J. Pottorf, Leonard J. Srnka, William Bond, Sebastien L. Dreyfus, Michael Lawson, William P. Meurer, Daniel P. Cherney, Steven R. May, William G. Powell, Christoper J. Vandewater, Mehmet D. Ertas, Sumathy Raman, Aaron B. Regberg, A. Lucie N'Guessan, Amelia C. Robinson, Kurt W. Rudolph
  • Publication number: 20140245842
    Abstract: The invention provides a method for detaching and/or isolating a histological sample that is adhering to another sample and/or to the inside of a cassette, for example as a result of solidification of an embedding medium within a cassette. The sample is immobilized in a sample receiving chamber above a first fill level of a liquid that is suitable for counteracting the adhesion; and that the fill level of the liquid is then elevated at least until said level reaches the sample. An apparatus according to the present invention that can be used for carrying out the method comprises a sample receiving chamber and an adjusting chamber, the adjusting chamber being connected to the sample receiving chamber in such a way that a change in the fill level height of the liquid in the sample receiving chamber is producible by changing the pressure existing in the adjusting chamber.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Applicant: Leica Biosystems Nussloch GmbH
    Inventors: Arne BURISCH, Christian Löchte, Annika RAATZ, Hermann ULBRICH, Karl-Heinrich WESTERHOFF
  • Patent number: 8820181
    Abstract: A sampler improves sampling and moisture measurements by reducing the introduction of fines, providing a more representative grain sample, and improving the ability to make consistent moisture measurements. The sampler has a body positioned to receive grain from a grain flow path. A primary auger positioned within the body has a shaft and a fin configured to lift and propel a portion of the grain up to and through a sampling opening. A sensor assembly operatively connected to the body and in communication with the sampling opening is configured to receive the portion of grain indicate the moisture content of the portion of grain.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: September 2, 2014
    Assignee: The GSI Group, LLC
    Inventor: Neil Bowsher
  • Patent number: 8806967
    Abstract: An improved immersible oxygen probe for molten metals has a gas permeable body including an immersion end and a support end adapted for being supported by a lance. An oxygen cell and a thermocouple are supported in the immersion end of the body. An unobstructed gas flow passageway is provided through the gas permeable bodies and through the probe body from the immersion end to the support/connector end whereby gases released from the molten metal and sensor body during immersion readily pass through the probe and can escape from within the probe. Thus rapid analysis of the molten metal with improved accuracy within a few seconds after immersion is achieved.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: August 19, 2014
    Assignee: Keystone Sensors, LLC
    Inventors: Ascencion Z. Villarreal, V, Paul A. Turner, Richard A Falk
  • Publication number: 20140223994
    Abstract: A device and method for contamination-free transfer of samples is described. The device comprises an elongated member having an internal cavity and pressure-sensitive region. The internal cavity is in communication with at least a first open end of the elongated member. The pressure-sensitive region is disposed at a first distance from the first open end thereby forming a sampling portion of the device. The portion between the pressure-sensitive region and the second end forms a handling portion of the device. The pressure-sensitive region provides a stress concentration that increases the sensitivity to pressure. The device is used by contacting a sample with the first open end thereby causing sample to be received into the internal cavity of the sampling portion. The device is then inserted into a receiving container for use in the desired chemical analysis instrument.
    Type: Application
    Filed: September 19, 2012
    Publication date: August 14, 2014
    Inventors: Steven B. Shaull, Aaron K. Thompson, Amanda K. Aker
  • Publication number: 20140217277
    Abstract: A method for detecting hepcidin. Having a sample liquid in contact with a nanochip having a specific surface coating structure of silicon oxide, so that hepcidin is enriched with specificity; eluting the nanochip with an eluent; by performing mass spectrometric detection on the elution product, determining the hepcidin content in the elution product. The enrichment method substantially enhances the sensitivity and accuracy of mass spectrometric detection. A kit for detecting hepcidin comprising a sample diluent and a nanochip, the sample diluent comprising water, trifluoroacetic acid, and acetonitrile.
    Type: Application
    Filed: June 1, 2012
    Publication date: August 7, 2014
    Applicant: National Center for Nanoscience and Technology
    Inventors: Guangjun Nie, Tony Hu, Jia Fan, Yuliang Zhao, Mauro Ferrari
  • Publication number: 20140202265
    Abstract: The invention is directed to method for positioning and aligning a preferably biological sample in the detection area of the objective of a microscope arrangement. According to the invention, the method mentioned above has the following method steps: a sample is introduced into a transparent medium, preferably agarose gel, which is initially liquid; the medium is changed from the liquid state to the solid state, wherein the sample is fixated within the medium, but the transparency of the medium is retained; the solidified medium is positioned in the microscope arrangement in such a way that the sample enclosed therein is situated in the detection area of the objective. Further, a device is proposed for positioning and aligning a preferably biological sample in the detection area of the objective of a microscope arrangement.
    Type: Application
    Filed: December 18, 2013
    Publication date: July 24, 2014
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Wibke HELLMICH, Benno RADT, Helmut LIPPERT, Olaf SELCHOW, Uwe WOLF, Juergen HAESE
  • Publication number: 20140190245
    Abstract: Processing a liquid sample (204) having an analyte (206) by reducing a pressure in a container (200) including the liquid sample to less than atmospheric pressure and maintaining a reduced pressure in the container. Reducing the pressure in the container (200) and optionally agitating the liquid sample increases an amount of vapor-phase analyte (206) above the liquid sample. In some cases, a concentration of the vapor-phase analyte is further increased, for example, with a chemical trap (502). The vapor-phase analyte can be provided to a chemical analyzer (302).
    Type: Application
    Filed: June 21, 2012
    Publication date: July 10, 2014
    Inventors: David Rafferty, Abrar Riaz, Michael Spencer, William R. Stott, James Wylde
  • Patent number: 8764888
    Abstract: There is provided herein a dryer polymer substance including a hetero-phase polymer composition including two or more polymers wherein at least one of the two or more polymers include sulfonic groups, wherein the substance is adapted to pervaporate a fluid. The fluid may include water, water vapor or both. There is also provided herein a process for the preparation of a dryer polymer substance adapted to pervaporate a fluid (such as water, water vapor or both) the process includes mixing two or more polymers, wherein at least one of the two or more polymers may include groups which are adapted to be sulfonated, to produce a hetero-phase polymer composition and processing the polymer blend into a desired form.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: July 1, 2014
    Assignee: Oridion Medical 1987 Ltd.
    Inventors: Amos Ophir, Eyal Cohen, David Dishon, Joshua Lewis Colman
  • Publication number: 20140174206
    Abstract: There is provided a microchip including a flow channel, an ejection portion, and a cutout portion. The flow channel is configured to convey a fluid therein. The ejection portion includes an opening directed toward an end face of a substrate layer, and the ejection portion is configured to eject the fluid flowing through the flow channel to outside. The substrate layer is laminated to each other. The cutout portion is formed between the opening of the ejection portion and the end face of the substrate layer. The cutout portion has a larger diameter than that of the opening.
    Type: Application
    Filed: June 29, 2012
    Publication date: June 26, 2014
    Applicant: Sony Corporation
    Inventors: Yuji Akiyama, Shoji Akiyama, Takeshi Yamasaki
  • Patent number: 8756913
    Abstract: According to one embodiment, a sensor module includes a sensor probe that has at least two arms coupled together at a central location with each of the at least two arms extending radially outwardly away from the central location. Each of the at least two arms includes one of a plurality of openings and an elongate opening extending radially along the arm. The at least two arms define fluid flow channels therein. The sensor module also includes at least one extractor coupled to the probe. The at least one extractor includes a fluid flow channel that is communicable in fluid receiving communication with fluid flowing through the fluid flow channel of at least one of the at least two arms. Further, the sensor module includes at least one sensor that is communicable in fluid sensing communication with fluid flowing through the at least one extractor.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: June 24, 2014
    Assignee: Cummins Filtration IP, Inc.
    Inventors: Z. Gerald Liu, Achuth Munnannur, Andrew Osburn, Shashidhar Srinivas, Jason Drost, Michael Welp, Robert Nowicki
  • Publication number: 20140157912
    Abstract: An inlet apparatus is disclosed. The apparatus may include a first conduit for sampling, and a second and third conduit for directing flow throughout the inlet apparatus. Flow may be induced in two opposite directions through the second conduit, which affect the flow of gas through the first conduit for sampling. The various conduits of the apparatus may be connected to a device for inducing flow in different directions. The duration of the flow in a particular direction affects the amount of sample gas that enters a detection device.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: Chemring Detection Systems, Inc.
    Inventors: Eric Charles Wallis, Paul J. Rauch, Matthew Todd Griffin, John Michael Alfred Petinarides
  • Publication number: 20140157913
    Abstract: An inlet apparatus is disclosed. The apparatus may include a first conduit for sampling, and a second and third conduit for directing flow throughout the inlet apparatus. Flow may be induced in two opposite directions through the second conduit, which affect the flow of gas through the first conduit for sampling. The various conduits of the apparatus may be connected to a device for inducing flow in different directions. The duration of the flow in a particular direction affects the amount of sample gas that enters a detection device.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: Chemring Detection Systems, Inc.
    Inventors: Eric Charles Wallis, Paul J. Rauch, Matthew Todd Griffin, John Michael Alfred Petinarides
  • Patent number: 8714034
    Abstract: A passive sampling apparatus and method for measuring the cumulative mass of a selected gas being transported through a known cross-sectional area, for example, a soil surface, during a chosen period of time, using absorbent material, are described. Two quantities of absorbent material are disposed in a hollow container, such as a pipe section, and spaced apart such that they may be readily separated for analysis. The absorbent material closest to the soil captures the gas leaving the soil. Under reversed flow conditions, for example when the ambient air enters the ground because of fluctuations in atmospheric pressure, the upper absorbent material captures the component of interest entering the apparatus, thereby preventing this gas from entering the lower material and disturbing the measurement. The apparatus can therefore sequester the component of interest without being affected by the direction of gas transport.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: May 6, 2014
    Assignees: Colorado State University Research Foundation, Chevron U.S.A. Inc.
    Inventors: Julio A. Zimbron, Thomas C. Sale, Mark Lyverse