Device Sensitive To Infrared, Visible, Or Ultraviolet Radiation (epo) Patents (Class 257/E31.054)

  • Publication number: 20110079832
    Abstract: A solid-state image pickup device includes: a semiconductor substrate; and a plurality of pixel circuits formed on the semiconductor substrate; each of the plurality of pixel circuits formed on the semiconductor substrate including a photoelectric conversion element, a first buried gate electrode formed adjacent to the photoelectric conversion element, a second buried gate electrode formed away from each of the photoelectric conversion element and the first buried gate electrode, a first diffusion layer formed between the first buried gate electrode and the second buried gate electrode, and a second diffusion layer formed between the first buried gate electrode and the second buried gate electrode away from the first diffusion layer so as to overlap the first diffusion layer; wherein electric charges accumulated in the photodiode conversion element are transferred to the second diffusion layer through the first diffusion layer.
    Type: Application
    Filed: September 28, 2010
    Publication date: April 7, 2011
    Applicant: SONY CORPORATION
    Inventors: Atsushi Masagaki, Ikuhiro Yamamura
  • Publication number: 20110079869
    Abstract: A detector array for an imaging system may exploit the different sensitivities of array pixels to an incident flux of low energy photons with a wavelength falling near the high end of the range of sensitivity of the semiconductor. The detector array may provide the de-multiplexable spatial information. The detector array may include a two-terminal multi-pixel array of Schottky photodiodes electrically connected in parallel.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 7, 2011
    Applicant: STMicroelectronics S.r.l.
    Inventor: Massimo Cataldo Mazzillo
  • Patent number: 7915652
    Abstract: An integrated infrared (IR) and full color complementary metal oxide semiconductor (CMOS) imager array is provided. The array is built upon a lightly doped p doped silicon (Si) substrate. Each pixel cell includes at least one visible light detection pixel and an IR pixel. Each visible light pixel includes a moderately p doped bowl with a bottom p doped layer and p doped sidewalls. An n doped layer is enclosed by the p doped bowl, and a moderately p doped surface region overlies the n doped layer. A transfer transistor has a gate electrode overlying the p doped sidewalls, a source formed from the n doped layer, and an n+ doped drain connected to a floating diffusion region. The IR pixel is the same, except that there is no bottom p doped layer. An optical wavelength filter overlies the visible light and IR pixels.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: March 29, 2011
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Douglas J. Tweet, Jon M. Speigle
  • Publication number: 20110068430
    Abstract: An image sensor with a plurality of photodiodes arranged in an array. A barrier region is disposed between adjacent photodiodes and inhibits depletion region merger between adjacent photodiodes, thereby inhibiting a capacitive coupling between the adjacent photodiodes.
    Type: Application
    Filed: November 23, 2010
    Publication date: March 24, 2011
    Inventor: Hiok Nam TAY
  • Patent number: 7911015
    Abstract: An infrared detector includes a first PN junction diode and a second PN junction diode which are formed in a silicon layer formed apart from a support substrate, the silicon layer having a P-type first region and an N-type second region, wherein the first PN junction diode is composed of the P-type first region and an N-type first region formed in the P-type first region at a position separated from the N-type second region, and the second PN junction diode is composed of the N-type second region and a P-type second region formed in the N-type second region at a position separated from the P-type first region, and wherein the first PN junction diode and the second PN junction diode are connected by a metal film formed on a surface of a concave portion spreading both of the P-type first region and the N-type second region.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: March 22, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takaki Sugino
  • Publication number: 20110062334
    Abstract: A novel pixel circuit and multi-dimensional array for receiving and detecting black body radiation in the SWIR, MWIR or LWIR frequency bands. An electromagnetic thermal sensor and imaging system is provided based on the treatment of thermal radiation as an electromagnetic wave. The thermal sensor and imager functions essentially as an electromagnetic power sensor/receiver, operating in the SWIR (200-375 THz), MWIR (60-100 THz), or LWIR (21-38 THz) frequency bands. The thermal pixel circuit of the invention is used to construct thermal imaging arrays, such as 1D, 2D and stereoscopic arrays. Various pixel circuit embodiments are provided including balanced and unbalanced, biased and unbiased and current and voltage sensing topologies. The pixel circuit and corresponding imaging arrays are constructed on a monolithic semiconductor substrate using in a stacked topology. A metal-insulator-metal (MIM) structure provides rectification of the received signal at high terahertz frequencies.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 17, 2011
    Inventor: David Ben-Bassat
  • Patent number: 7906825
    Abstract: A germanium (Ge) short wavelength infrared (SWIR) imager and associated fabrication process are provided. The imager comprises a silicon (Si) substrate with doped wells. An array of pin diodes is formed in a relaxed Ge-containing film overlying the Si substrate, each pin diode having a flip-chip interface. There is a Ge/Si interface, and a doped Ge-containing buffer interposed between the Ge-containing film and the Ge/Si interface. An array of Si CMOS readout circuits is bonded to the flip-chip interfaces. Each readout circuit has a zero volt diode bias interface.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: March 15, 2011
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Douglas J. Tweet, Jer-Shen Maa, Jong-Jan Lee, Sheng Teng Hsu
  • Publication number: 20110049588
    Abstract: An object of an embodiment of the disclosed invention is to provide a semiconductor device including a photoelectric conversion element with excellent characteristics. An object of an embodiment of the disclosed invention is to provide a semiconductor device including a photoelectric conversion device with excellent characteristic through a simple process. A semiconductor device is provided, which includes a light-transmitting substrate; an insulating layer over the light-transmitting substrate; and a photoelectric conversion element over the insulating layer.
    Type: Application
    Filed: August 17, 2010
    Publication date: March 3, 2011
    Inventors: Atsuo Isobe, Noriko Harima, Noriko Matsumoto, Akihisa Shimomura, Kosei Noda, Kazuko Yamawaki, Yoshiyuki Kurokawa, Takayuki Ikeda, Takashi Hamada
  • Publication number: 20110049333
    Abstract: According to one embodiment, a solid-state imaging device with a plurality of light-receiving layers for acquiring different color signals stacked one on top of another in the optical direction. Each of the light-receiving layers includes a photoelectric conversion part that receives light entering the back side of the layer and generates signal charges and a read transistor that is provided on the front side of the layer and reads the signal charges generated at the photoelectric conversion part. A semiconductor layer is stacked via an insulating film on the front side of the top layer of the plurality of light-receiving layers. At the semiconductor layer, there is provided a signal scanning circuit which processes a signal read by each of the read transistors and outputs a different color signal from each of the light-receiving layers to the outside.
    Type: Application
    Filed: August 23, 2010
    Publication date: March 3, 2011
    Inventor: Hirofumi YAMASHITA
  • Publication number: 20110049589
    Abstract: A backside illuminated image sensor includes a semiconductor substrate having a front side and backside, a sensor element formed overlying the frontside of the semiconductor substrate, and a capacitor formed overlying the sensor element.
    Type: Application
    Filed: June 22, 2010
    Publication date: March 3, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Chieh CHUANG, Dun-Nian YAUNG, Jen-Cheng LIU, Jeng-Shyan LIN, Wen-De WANG
  • Publication number: 20110036971
    Abstract: A photovoltaic device includes a heterojunction between different semiconductor materials which are present in charge transporting layers. The device can include laterally-arranged electrodes.
    Type: Application
    Filed: January 9, 2009
    Publication date: February 17, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: John Ho, Vladimir Bulovic, Tim Osedach
  • Publication number: 20110037107
    Abstract: A silicon photon detector device and methodology are provided for detecting incident photons in a partially depleted floating body SOI field-effect transistor (310) which traps charges created by visible and mid infrared light in a floating body region (304) when the silicon photon detector is configured in a detect mode, and then measures or reads the resulting enhanced drain current with a current detector in a read mode.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 17, 2011
    Inventors: Ronald M. Potok, Rama R. Goruganthu, Michael R. Bruce
  • Patent number: 7884439
    Abstract: In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: February 8, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Eric Mazur, James E. Carey, III
  • Publication number: 20110024809
    Abstract: A CMOS pixel is disclosed. The CMOS pixel includes a semiconductor substrate; a sense node formed in the semiconductor substrate and positioned substantially in the center of the CMOS pixel; a transfer gate formed about the sense node; and at least one photodiode formed about the transfer gate. A reset transistor, a source follower transistor, and a row select transistor are located substantially to one side of the CMOS pixel substantially adjacent to the photodiode. The sense node is operable to be floating. An implant may be formed about the photodiode configured to step potential in a direction toward the sense node.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 3, 2011
    Inventor: James Robert Janesick
  • Patent number: 7880257
    Abstract: An image sensor includes a semiconductor layer, and first and second photoelectric converting units including first and second impurity regions in the semiconductor layer that are spaced apart from each other and that are at about an equal depth in the semiconductor layer, each of the impurity regions including an upper region and a lower region. A width of the lower region of the first impurity region may be larger than a width of the lower region of the second impurity region, and widths of upper regions of the first and second impurity regions are equal.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: February 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yun-ki Lee
  • Publication number: 20110019041
    Abstract: A solid-state imaging device includes: photodiodes formed for pixels arranged on a light sensing surface of a semiconductor substrate; a signal reading unit formed on the semiconductor substrate to read a signal charge or a voltage; an insulating film formed on the semiconductor substrate and including optical waveguides; color filters formed on the insulating film; and on-chip lenses formed on the color filters. The first and second pixel combinations are alternately arranged both in the horizontal and vertical directions, the first pixel combination having a layout in which two green pixels are arranged both in the horizontal and vertical directions and a total of four pixels are arranged, the second pixel combination having a layout in which two pixels are arranged both in the horizontal and vertical directions, a total of four pixels are arranged, and two red pixels and two blue pixels are arranged cater cornered.
    Type: Application
    Filed: July 12, 2010
    Publication date: January 27, 2011
    Applicant: SONY CORPORATION
    Inventors: Hiroaki ISHIWATA, Sanghoon HA
  • Patent number: 7868405
    Abstract: The present invention proposes an organic photovoltaic component, particularly an organic solar cell, whose electrode is implemented as unstructured and is provided with a passivation layer, so that the passivated electrode layer acts functionally as a structured electrode or electrode layer.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: January 11, 2011
    Assignee: Konarka Technologies, Inc.
    Inventors: Christoph Brabec, Pavel Schilinsky, Christoph Waldauf
  • Publication number: 20100327148
    Abstract: An integrated circuit structure includes an image sensor cell, which further includes a photo transistor configured to sense light and to generate a current from the light.
    Type: Application
    Filed: March 31, 2010
    Publication date: December 30, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shine Chung, Tao-Wen Chung, Fu-Lung Hsueh
  • Publication number: 20100330724
    Abstract: A solid-state imaging device including an imaging region having a plurality of pixels arranged in a two-dimensional matrix and a peripheral circuit detecting output signals from the pixels. An impurity concentration in a transistor of each pixel is lower than an impurity concentration in a transistor of the peripheral circuit. Further, the impurity concentration of a semiconductor well region under a floating diffusion portion in the pixel is set to be lower than the impurity concentration of a semiconductor well region under a transistor portion at the subsequent stage of the floating diffusion portion.
    Type: Application
    Filed: August 11, 2010
    Publication date: December 30, 2010
    Applicant: SONY CORPORATION
    Inventors: MAKI SATO, SUSUMU OOKI
  • Publication number: 20100327388
    Abstract: A back-illuminated image sensor includes a sensor layer of a first conductivity type having a frontside and a backside opposite the frontside. One or more frontside regions of a second conductivity type are formed in at least a portion of the frontside of the sensor layer. A backside region of the second conductivity type is formed in the backside of the sensor layer. A plurality of frontside photodetectors of the first conductivity type is disposed in the sensor layer. A distinct plurality of backside photodetectors of the first conductivity type separate from the plurality of frontside photodetectors are formed in the sensor layer contiguous to portions of the region of the second conductivity type. A voltage terminal is disposed on the frontside of the sensor layer. One or more connecting regions of the second conductivity type are disposed in respective portions of the sensor layer between the voltage terminal and the backside region for electrically connecting the voltage terminal to the backside region.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Inventors: John P. McCarten, Cristian A. Tivarus, Joseph R. Summa
  • Patent number: 7847362
    Abstract: A photo detector includes a photoelectric conversion layer having a periodic structure made of a semiconductor material on a surface of the photoelectric conversion layer. In the photo detector, at least a part of a resonance region formed by the periodic structure is included in the photoelectric conversion layer of the photo detector.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: December 7, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masaya Ogino, Tatsuya Iwasaki
  • Patent number: 7843027
    Abstract: A solid-state imaging device in which a first conductive type epitaxial layer is formed on its first surface with an interconnection layer and light is received at a second surface of said epitaxial layer, the solid-state imaging device including: (a) a second conductive type region formed in said epitaxial layer with a first impurity concentration and storing a charge generated by a photoelectrical conversion, and (b) a first conductive type impurity layer formed closer to said second surface side of said epitaxial layer than said second conductive type region and having a second impurity concentration higher than the first impurity concentration; wherein the second impurity concentration has a concentration gradient increasing toward the second surface side.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: November 30, 2010
    Assignee: Sony Corporation
    Inventor: Hideo Kanbe
  • Publication number: 20100291730
    Abstract: A backside illuminated imaging device performs imaging by illuminating light from a back side of a p substrate to generate electric charges in the substrate based on the light and reading out the electric charges from a front side of the substrate. The device includes n layers located in the substrate and on an identical plane near a front side surface of the substrate and accumulating the electric charges; n+ layers between the respective n layers and the front side of the substrate, the n+ layers having an exposed surface exposed on the front side surface of the substrate and functioning as overflow drains for discharging unnecessary electric charges accumulated in the n layers; p+ layers between the respective n+ layers and the n layers and functioning as overflow barriers of the overflow drains; and an electrode connected to the exposed surface of each of the n+ layers.
    Type: Application
    Filed: June 23, 2010
    Publication date: November 18, 2010
    Inventors: Shinji UYA, Masanori Nagase, Yosuke Nakahashi, Toru Hachiya
  • Publication number: 20100289105
    Abstract: This invention comprises plurality of edge illuminated photodiodes. More specifically, the photodiodes of the present invention comprise novel structures designed to minimize reductions in responsivity due to edge surface recombination and improve quantum efficiency. The novel structures include, but are not limited to, angled facets, textured surface regions, and appropriately doped edge regions.
    Type: Application
    Filed: April 14, 2010
    Publication date: November 18, 2010
    Inventors: Peter Steven Bui, Narayan Dass Taneja, Manoocher Mansouri
  • Publication number: 20100282947
    Abstract: A semiconductor device is manufactured through steps in which a photoelectric conversion element and an amplifier circuit are formed over a first substrate with a release layer interposed therebetween, and the photoelectric conversion element and the amplifier circuit are separated from the first substrate. Output characteristics of the amplifier circuit are improved and the semiconductor device with high reliability is obtained.
    Type: Application
    Filed: July 14, 2010
    Publication date: November 11, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Atsushi Hirose, Koji Ono, Hotaka Maruyama
  • Publication number: 20100276572
    Abstract: A CMOS type semiconductor image sensor module wherein a pixel aperture ratio is improved, chip use efficiency is improved and furthermore, simultaneous shutter operation by all the pixels is made possible, and a method for manufacturing such semiconductor image sensor module are provided. The semiconductor image sensor module is provided by stacking a first semiconductor chip, which has an image sensor wherein a plurality of pixels composed of a photoelectric conversion element and a transistor are arranged, and a second semiconductor chip, which has an A/D converter array. Preferably, the semiconductor image sensor module is provided by stacking a third semiconductor chip having a memory element array. Furthermore, the semiconductor image sensor module is provided by stacking the first semiconductor chip having the image sensor and a fourth semiconductor chip having an analog nonvolatile memory array.
    Type: Application
    Filed: June 1, 2006
    Publication date: November 4, 2010
    Applicant: SONY CORPORATION
    Inventors: Shin Iwabuchi, Makoto Motoyoshi
  • Publication number: 20100276778
    Abstract: A buried oxide is provided in a substrate of a photodiode so as to be opposed to a cathode and is in contact with a lower end of a depletion layer. The buried oxide is polarized owing to charges forming the depletion layer and thus works as a capacitor. A capacitor formed in the depletion layer and the additional capacitor made by the buried oxide are, therefore, connected in series, which reduces a total junction capacitance Cs. Increase in photo-detection voltage Vs results in according to an equation, Vs=Qp/Ct, since an amount of photocharge Qp is constant. The increase in the photo-detection voltage Vs allows an improvement in the SN ratio of the photodiode. Further, easy formation of the buried oxide, for example, by implanting oxygen ions, permits low-cost manufacturing of the photodiode.
    Type: Application
    Filed: July 8, 2010
    Publication date: November 4, 2010
    Inventor: Sumitaka Goto
  • Publication number: 20100270635
    Abstract: Methods, systems, and devices associated with surface modifying a semiconductor material are taught. One such method includes providing a semiconductor material having a target region and providing a dopant fluid layer that is adjacent to the target region of the semiconductor material, where the dopant fluid layer includes at least one dopant. The target region of the semiconductor material is lased so as to incorporate the dopant or to surface modify the semiconductor material. During the surface modification, the dopant in the dopant fluid layer is actively replenished.
    Type: Application
    Filed: April 28, 2009
    Publication date: October 28, 2010
    Inventors: Jason Sickler, Keith Donaldson
  • Patent number: 7821093
    Abstract: A solid-state imaging device with a structure such that an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area is formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area is formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: October 26, 2010
    Assignee: Sony Corporation
    Inventors: Yoshiaki Kitano, Hideshi Abe, Jun Kuroiwa, Kiyoshi Hirata, Hiroaki Ohki, Nobuhiro Karasawa, Ritsuo Takizawa, Mitsuru Yamashita, Mitsuru Sato, Katsunori Kokubun
  • Publication number: 20100252871
    Abstract: Embodiments of the present invention are directed to light sensors, that primarily respond to visible light while suppressing infrared light. Such sensors are especially useful as ambient light sensors because such sensors can be used to provide a spectral response similar to that of a human eye. Embodiments of the present invention are also directed to methods of providing such light sensors, and methods for using such light sensors.
    Type: Application
    Filed: June 16, 2010
    Publication date: October 7, 2010
    Applicant: INTERSIL AMERICAS INC.
    Inventors: Alexander Kalnitsky, Dong Zheng, Joy Jones, Xijian Lin, Gregory Cestra
  • Publication number: 20100244108
    Abstract: Methods and apparatus for producing a CMOS image sensor result in: a glass or glass ceramic substrate having first and second spaced-apart surfaces; a semiconductor layer disposed on the first surface of the glass or glass ceramic substrate; and a plurality of pixel structures formed in the semiconductor layer, each pixel structure including: at least first, second, and third semiconductor islands, each island operating as a color sensitive photo-detector and each being of a different thickness such that each is sensitive to a respective range of light wavelengths, and a fourth semiconductor island on which at least one transistor is disposed, the at least one transistor operating to at least one of buffer, select, and reset one or more of the photo-detectors.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Inventors: Glenn Eric Kohnke, Carlo Anthony Kosik Williams
  • Publication number: 20100244033
    Abstract: An optical sensor, method of making the same, and a display panel having an optical sensor. The optical sensor includes a first electrode, a second electrode, a photosensitive silicon-rich dielectric layer, and a first interfacial silicon-rich dielectric layer. The photosensitive silicon-rich dielectric layer is disposed between the first and second electrodes. The first interfacial silicon-rich dielectric layer is disposed between the first electrode and the photosensitive silicon-rich dielectric layer.
    Type: Application
    Filed: August 3, 2009
    Publication date: September 30, 2010
    Inventors: Shin-Shueh Chen, Wan-Yi Liu, Chia-Tien Peng
  • Publication number: 20100237250
    Abstract: A photosensor includes a photodiode including a semiconductor layer. The semiconductor layer is made up of an n-type semiconductor layer, an i-type semiconductor layer and a p-type semiconductor layer, for example. The photosensor further includes a transparent electrode made of a transparent conductive film, and a nitrogen-containing semiconductor layer formed between the semiconductor layer and the transparent electrode.
    Type: Application
    Filed: March 16, 2010
    Publication date: September 23, 2010
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Masami HAYASHI
  • Publication number: 20100219497
    Abstract: The present invention, in a photoelectric conversion device in which a pixel including a photoelectric conversion device for converting a light into a signal charge and a peripheral circuit including a circuit for processing the signal charge outside a pixel region in which the pixel are disposed on the same substrate, comprising: a first semiconductor region of a first conductivity type for forming the photoelectric region, the first semiconductor region being formed in a second semiconductor region of a second conductivity type; and a third semiconductor region of the first conductivity type and a fourth semiconductor region of the second conductivity type for forming the peripheral circuit, the third and fourth semiconductor regions being formed in the second semiconductor region; wherein in that the impurity concentration of the first semiconductor region is higher than the impurity concentration of the third semiconductor region.
    Type: Application
    Filed: May 13, 2010
    Publication date: September 2, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Seiichi Tamura, Hiroshi Yuzurihara, Takeshi Ichikawa, Ryuichi Mishima
  • Publication number: 20100213354
    Abstract: Disclosed herein is a solid-state imaging element including: (A) a light reception/charge storage region formed in a semiconductor layer, the light reception/charge storage region including M light reception/charge storage layers stacked one on top of the other, where M?2; (B) a charge output region formed in the semiconductor layer; (C) a conduction/non-conduction control region which includes a portion of the semiconductor layer located between the light reception/charge storage region and the charge output region; and (D) a conduction/non-conduction control electrode adapted to control the conduction or non-conduction state of the conduction/non-conduction control region, wherein mth potential control electrodes are provided between the mth and (m+1)th light reception/charge storage layers, where 1?m?(M?1), to control the potentials of the light reception/charge storage layers.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 26, 2010
    Applicant: SONY CORPORATION
    Inventors: Kaneyoshi Takeshita, Takashi Kubodera, Akihiro Nakamura
  • Patent number: 7768087
    Abstract: A photodiode formed over a silicon substrate is disclosed. The photodiode includes a light-receiving region formed of a diffusion region of a first conduction type at the surface of the silicon substrate and forming a pn junction; an intermediate region formed of a diffusion region of the first conduction type at the surface of the silicon substrate so as to be included in the light-receiving region; a contact region formed of a diffusion region of the first conduction type at the surface of the silicon substrate so as to be included in the intermediate region; a shield layer formed of a diffusion region of a second conduction type in a part of the surface of the silicon substrate outside the intermediate region; and an electrode in contact with the contact region. The shield layer faces the side end part of the diffusion region forming the intermediate region.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: August 3, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Masaya Katayama
  • Publication number: 20100181552
    Abstract: Embodiments of the subject invention relate to a method and apparatus for infrared (IR) detection. Organic layers can be utilized to produce a phototransistor for the detection of IR radiation. The wavelength range of the IR detector can be modified by incorporating materials sensitive to photons of different wavelengths. Quantum dots of materials sensitive to photons of different wavelengths than the host organic material of the absorbing layer of the phototransistor can be incorporated into the absorbing layer so as to enhance the absorption of photons having wavelengths associated with the material of the quantum dots. A photoconductor structure can be used instead of a phototransistor. The photoconductor can incorporate PbSe or PbS quantum dots. The photoconductor can incorporate organic materials and part of an OLED structure. A detected IR image can be displayed to a user. Organic materials can be used to create an organic light-emitting device.
    Type: Application
    Filed: October 1, 2007
    Publication date: July 22, 2010
    Inventor: Franky So
  • Patent number: 7750422
    Abstract: In a solid state image pickup apparatus with a photodetecting device and one or more thin film transistors connected to the photodetecting device formed in one pixel, a part of the photodetecting device is formed over at least a part of the thin film transistor, and the thin film transistor is constructed by a source electrode, a drain electrode, a first gate electrode, and a second gate electrode arranged on the side opposite to the first gate electrode with respect to the source electrode and the drain electrode, and the first gate electrode is connected to the second gate electrode every pixel, thereby, suppressing an adverse effect of the photodetecting device on the TFT, a leakage at turn-off TFT, variation in a threshold voltage of the TFT due to an external electric field, and accurately transferring photo carrier to a signal processing circuit.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: July 6, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Minoru Watanabe, Masakazu Morishita, Chiori Mochizuki, Takamasa Ishii, Keiichi Nomura
  • Publication number: 20100167456
    Abstract: An image sensor and a method of fabricating the same are provided. A pad region is disposed on a substrate. The pad region has a higher concentration of impurity ions than the substrate. The pad region is selectively removed using the substrate as an etch mask, thereby forming a hole. A conductive pad is formed in the hole of the substrate.
    Type: Application
    Filed: November 6, 2009
    Publication date: July 1, 2010
    Inventor: Yun-Ki Lee
  • Publication number: 20100140728
    Abstract: A lateral overflow drain and a channel stop are fabricated using a double mask process. Each lateral overflow drain is formed within a respective channel stop. Due to the use of two mask layers, one edge of each lateral overflow drain is aligned, or substantially aligned, with an edge of a respective channel stop.
    Type: Application
    Filed: October 30, 2009
    Publication date: June 10, 2010
    Inventors: Edmund K. Banghart, Eric G. Stevens, Hung Q. Doan
  • Publication number: 20100141631
    Abstract: A pixel cell array architecture having a dual conversion gain. A dual conversion gain element is coupled between a floating diffusion region and a respective storage capacitor. The dual conversion gain element having a control gate switches in the capacitance of the capacitor to change the conversion gain of the floating diffusion region from a first conversion gain to a second conversion gain. In order to increase the efficient use of space, the dual conversion gain element gate also functions as the bottom plate of the capacitor. In one particular embodiment of the invention, a high dynamic range transistor is used in conjunction with a pixel cell having a capacitor-DCG gate combination; in another embodiment, adjacent pixels share pixel components, including the capacitor-DCG combination.
    Type: Application
    Filed: February 12, 2010
    Publication date: June 10, 2010
    Inventor: Jeffrey A. McKee
  • Publication number: 20100136733
    Abstract: A CMOS active pixel sensor (APS) cell structure having dual workfunction transfer gate device and method of fabrication. The transfer gate device comprises a dielectric layer formed on a substrate and a dual workfunction gate conductor layer formed on the dielectric layer comprising a first conductivity type doped region and an abutting second conductivity type doped region. The transfer gate device defines a channel region where charge accumulated by a photosensing device is transferred to a diffusion region. A silicide structure is formed atop the dual workfunction gate conductor layer for electrically coupling the first and second conductivity type doped regions. In one embodiment, the silicide contact is smaller in area dimension than an area dimension of said dual workfunction gate conductor layer. Presence of the silicide strap prevents the diodic behavior from allowing one or the other side of the gate to float to an indeterminate voltage.
    Type: Application
    Filed: February 3, 2010
    Publication date: June 3, 2010
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, EASTMAN KODAK COMPANY
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, R. Michael Guidash, Mark D. Jaffe, Edward T. Nelson, Richard J. Rassel, Charles V. Stancampiano
  • Publication number: 20100102206
    Abstract: A near infrared/color photodetector made in a monolithic form in a lightly-doped substrate of a first conductivity type covering a holder and comprising a face on the side opposed to the holder. The photodetector includes at least first and second photodiodes for the storage of electric charges photogenerated in the substrate, the second photodiode being adjacent to said face; and a first region extending at least between the second photodiode and the holder, preventing the passage of said charges between a first substrate portion being located between said region and the holder and a second substrate portion extending between said face and the first region, the first photodiode being adapted to store at least charges photogenerated in the first substrate portion and the second photodiode being adapted to store charges photogenerated in the second substrate portion.
    Type: Application
    Filed: October 26, 2009
    Publication date: April 29, 2010
    Applicant: STMicroelectronics S.A.
    Inventors: Yvon Cazaux, Jérôme Vaillant
  • Patent number: 7701044
    Abstract: A chip package for an image sensor includes a first semiconductor chip having a first surface where a photographing device and a first circuit pattern are formed and a second surface that is opposite to the first surface where a second circuit pattern is formed. The first and second circuit patterns are electrically connected. The chip package further includes a second semiconductor chip attached to a second circuit pattern on the second surface of the first semiconductor chip. A printed circuit board faces the second surface of the first semiconductor chip and transfers an electric signal between the first and second semiconductor chips and externally. A housing accommodates the first and second semiconductor chips. The housing allows light to pass through to the photographing device.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: April 20, 2010
    Assignee: Samsung Techwin Co., Ltd.
    Inventors: Byoung-young Kang, San-deok Hwang
  • Patent number: 7701029
    Abstract: In a rear surface incidence type CMOS image sensor having a wiring layer 720 on a first surface (front surface) of an epitaxial substrate 710 in which a photodiode, a reading circuit (an n-type region 750 and an n+ type region 760) and the like are disposed, and a light receiving plane in a second surface (rear surface), the photodiode and a P-type well region 740 on the periphery of the photodiode are disposed in a layer structure that does not reach the rear surface (light receiving surface) of the substrate, and an electric field is formed within the substrate 710 to properly lead electrons entering from the rear surface (light receiving surface) of the substrate to the photodiode. The electric field is realized by providing a concentration gradient in a direction of depth of the epitaxial substrate 710. Alternatively, the electric field can be realized by providing a rear-surface electrode 810 or 840 for sending a current.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: April 20, 2010
    Assignee: Sony Corporation
    Inventor: Keiji Mabuchi
  • Patent number: 7701030
    Abstract: In a photodiode formed by a region of a first type inside a region of a second type, of a semiconductor substrate, the region of the first type includes a first zone including a dopant of the first type having a first concentration and a first depth. The region of the first type also has a second zone adjacent to the first zone in the dopant of the first type has a second concentration higher than the first concentration and a second depth smaller than the first depth. A method for making such a diode is also disclosed.
    Type: Grant
    Filed: December 24, 2007
    Date of Patent: April 20, 2010
    Assignee: STMicroelectronics SA
    Inventor: Francois Roy
  • Publication number: 20100085339
    Abstract: The present invention provides a sensor element including two diode elements connected in series to each other, and a capacitive element having one end connected to a junction point between the two diode elements. Each of the diode elements includes a semiconductor layer having a p-type semiconductor region and an n-type semiconductor region facing each other in an in-plane direction, an anode electrode connected to the p-type semiconductor region, a cathode electrode connected to the n-type semiconductor region, a gate insulting film adjoining the semiconductor layer in a stacking direction, and a gate electrode facing the semiconductor layer with the gate insulating film in between.
    Type: Application
    Filed: September 18, 2009
    Publication date: April 8, 2010
    Applicant: Sony Corporation
    Inventors: Tsutomu TANAKA, Makoto Takatoku, Michiru Senda, Keiichiro Ishihara
  • Publication number: 20100078692
    Abstract: Disclosed are an image sensor and a method for manufacturing the same. The image sensor includes a first pixel having a first photodiode and a first readout circuit and a second pixel having a second photodiode and a second readout circuit. The second pixel is aligned at one side of the first pixel, and a light receiving area of the first photodiode is different from a light receiving area of the second photodiode.
    Type: Application
    Filed: September 21, 2009
    Publication date: April 1, 2010
    Inventor: Gun Hyuk Lim
  • Publication number: 20100078749
    Abstract: In a range image sensor 8, when a first reverse bias voltage applied between a semiconductor substrate 11 and first semiconductor regions 13 is an H bias, first depleted layers A1 and A1 expanding from the p-n junctions of the first semiconductor regions 13 adjacent to each other expand and link to each other so as to cover a second depleted layer B1 expanding from the p-n junction of a second semiconductor region 14. Accordingly, carriers C generated near the rear surface 11a of the semiconductor substrate 11 are reliably captured by the first depleted layers A1. Further, when a second reverse bias voltage applied between the semiconductor substrate 11 and the second semiconductor regions 14 is an H bias, the second depleted layers adjacent to each other expand and link to each other so as to cover the first depleted layer. Accordingly, carriers generated near the rear surface of the semiconductor substrate are reliably captured by the second depleted layers.
    Type: Application
    Filed: November 13, 2007
    Publication date: April 1, 2010
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Masanori Sahara, Mitsutaka Takemura, Koei Yamamoto
  • Patent number: 7679159
    Abstract: Each of three light receiving sections has a P-type well having a P+-type layer and an N-type layer formed therein. The P+-type layer is diffused from substrate surface to depth d1. A PN junction forming portion of the N-type layer is diffused from depth d1 to depth d2 which is greater than depth d1 so as to form, with the P-type well, a PN junction of a photodiode at depth d2. Depths d1 as well as depths d2 of the three light receiving sections are different from each other. The N-type layer has a charge output portion which is diffused from the PN junction to the substrate surface, and which is coupled by circuit coupling to a MOS transistor for reading out charge. This allows each light receiving section to have spectral characteristics, thereby providing a solid state imaging element and a solid state imaging device without using color filters.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: March 16, 2010
    Assignee: Funal Electric Co., Ltd.
    Inventors: Hiromichi Tanaka, Hideto Yoshimura, Sumio Terakawa, Masafumi Kimata