Making Field Effect Device Having Pair Of Active Regions Separated By Gate Structure By Formation Or Alteration Of Semiconductive Active Regions Patents (Class 438/142)
  • Patent number: 8089128
    Abstract: A transistor gate forming method includes forming a first and a second transistor gate. Each of the two gates includes a lower metal layer and an upper metal layer. The lower metal layer of the first gate originates from an as-deposited material exhibiting a work function the same as exhibited in an as-deposited material from which the lower metal layer of the second gate originates. However, the first gate's lower metal layer exhibits a modified work function different from a work function exhibited by the second gate's lower metal layer. The first gate's lower metal layer may contain less oxygen and/or carbon in comparison to the second gate's lower metal layer. The first gate's lower metal layer may contain more nitrogen in comparison to the second gate's lower metal layer. The first gate may be a n-channel gate and the second gate may be a p-channel gate.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: January 3, 2012
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Ravi Iyer
  • Patent number: 8080441
    Abstract: A method of growing polygonal carbon from photoresist and resulting structures are disclosed. Embodiments of the invention provide a way to produce polygonal carbon, such as graphene, by energizing semiconductor photoresist. The polygonal carbon can then be used for conductive paths in a finished semiconductor device, to replace the channel layers in MOSFET devices on a silicon carbide base, or any other purpose for which graphene or graphene-like carbon material formed on a substrate is suited. In some embodiments, the photoresist layer forms both the polygonal carbon layer and an amorphous carbon layer over the polygonal carbon layer, and the amorphous carbon layer is removed to leave the polygonal carbon on the substrate.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: December 20, 2011
    Assignee: Cree, Inc.
    Inventor: Alexander Suvorov
  • Patent number: 8076708
    Abstract: A memory device and peripheral circuitry on a substrate are described, made by a process that includes forming a charge trapping structure having a first thickness over a first area. A first gate dielectric layer having a second thickness is formed for low-voltage transistors. A second gate dielectric layer having a third thickness, greater than the second thickness, is formed for high-voltage transistors. Polysilicon is deposited and patterned to define word lines and transistor gates. The thickness of the second gate dielectric layer in regions adjacent the gates, and over a source and drain regions, is reduced to a thickness that is close to that of the second thickness.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: December 13, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Yi-Hung Li, Jen-Chuan Pan, Jongoh Kim
  • Patent number: 8058134
    Abstract: An annealing method includes performing an activation annealing on a wafer with a peak temperature of greater than about 1200° C., wherein the activation annealing has a first duration; and performing a defect-recovery annealing on the wafer at a defect-recovery temperature lower than the peak temperature for a second duration. The second duration is longer than the first duration. The annealing method includes no additional annealing steps at temperatures greater than about 1200° C., and no room-temperature cooling step exists between the activation annealing and the defect-recovery annealing.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: November 15, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Ting Wang, Keh-Chiang Ku, Yu-Chang Lin, Nai-Han Cheng, Li-Ping Huang
  • Patent number: 8058112
    Abstract: A semiconductor device having good switching characteristics even metallic CNTs are included and a manufacturing method thereof are provided. The semiconductor device includes a source electrode; a drain electrode; and a channel layer formed between the source electrode and the drain electrode and including a carbon nanotube group. The carbon nanotube group includes conductive carbon nanotubes having a characteristic of a conductive material and semiconductive carbon nanotubes having a characteristic of a semiconductive material. The density of the carbon nanotube group is the density where the source electrode and the drain electrode are connected to each other through all of the carbon nanotube group and not connected to each other only through the conductive carbon nanotubes.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: November 15, 2011
    Assignee: NEC Corporation
    Inventor: Masahiko Ishida
  • Patent number: 8053286
    Abstract: A method of forming a semiconductor device is provided, which may include, but is not limited to, the following processes. Grooves may be formed in an insulating region and in a semiconductor region, while forming burrs near the boundary between the insulating region and the semiconductor region. Protection films may be selectively formed on inside walls of the grooves except on bottom walls of the grooves. A selective thermal process may be carried out in the presence of the protection films, thereby removing the burrs.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: November 8, 2011
    Assignee: Elpida Memory, Inc.
    Inventors: Kyoko Miyata, Fumiki Aiso
  • Publication number: 20110266557
    Abstract: Wide bandgap semiconductor devices are fabricated by providing a wide bandgap semiconductor layer, providing a plurality of recesses in the wide bandgap semiconductor layer, and providing a metal gate contact in the plurality of recesses. A protective layer may be provided on the wide bandgap semiconductor layer, the protective layer having a first opening extending therethrough, a dielectric layer may be provided on the protective layer, the dielectric layer having a second opening extending therethrough that is narrower than the first opening, and a gate contact may be provided in the first and second openings. The metal gate contact may be provided to include a barrier metal layer in the plurality of recesses, and a current spreading layer on the barrier metal layer remote from the wide bandgap semiconductor layer. Related devices and fabrication methods are also discussed.
    Type: Application
    Filed: April 28, 2010
    Publication date: November 3, 2011
    Inventors: Van Mieczkowski, Helmut Hagleitner
  • Patent number: 8048727
    Abstract: An SRAM device includes a substrate having at least one cell active region in a cell array region and a plurality of peripheral active regions in a peripheral circuit region, a plurality of stacked cell gate patterns in the cell array region, and a plurality of peripheral gate patterns disposed on the peripheral active regions in the peripheral circuit region. Metal silicide layers are disposed on at least one portion of the peripheral gate patterns and on the semiconductor substrate near the peripheral gate patterns, and buried layer patterns are disposed on the peripheral gate patterns and on at least a portion of the metal silicide layers and the portions of the semiconductor substrate near the peripheral gate patterns. An etch stop layer and a protective interlayer-insulating layer are disposed around the peripheral gate patterns and on the cell array region. Methods of forming an SRAM device are also disclosed.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: November 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hoon Jang, Soon-Moon Jung, Young-Seop Rah, Han-Byung Park
  • Patent number: 8034670
    Abstract: A method of forming a semiconductor device is presented. A substrate prepared with a second gate is provided. The second gate is processed to form a second gate with a rounded corner and a first gate is formed on the substrate. The first gate is adjacent to and overlaps a portion of the second gate and the rounded corner.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: October 11, 2011
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Timothy Phua, Bangun Indajang, Dong Kyun Sohn
  • Patent number: 8035112
    Abstract: An intermediate product in the fabrication of a MOSFET, including a silicon carbide wafer having a substrate and a drift layer on said substrate, said drift layer having a plurality of source regions formed adjacent an upper surface thereof; a first oxide layer on said upper surface of said drift layer; a plurality of polysilicon gates above said first oxide layer, said plurality of polysilicon gates including a first gate adjacent a first of said source regions; an oxide layer over said first source region of greater thickness than said first oxide layer; and, an oxide layer over said first gate of substantially greater thickness than said oxide layer over said first source region.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: October 11, 2011
    Assignee: Purdue Research Foundation
    Inventors: James A. Cooper, Asmita Saha
  • Patent number: 8026507
    Abstract: A gated quantum well device formed as an MOS capacitor is disclosed. The quantum well is an inversion region less than 20 nanometers wide under the MOS gate. The device may be fabricated in either polarity, and integrated into a CMOS IC, configured as a quantum dot device or a quantum wire device. The device may be operated as a precision charge pump, with a minority carrier injection region added to speed well filling.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: September 27, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Tathagata Chatterjee, Henry Litzmann Edwards, Chris Bowen
  • Patent number: 8021934
    Abstract: A method including: making a structure on a substrate, said structure comprising at least a portion of a semiconductor material forming a channel of a field effect transistor, a gate located on the channel; forming at least one dielectric portion completely covering said structure and zones of the substrate corresponding to locations of a source and a drain of the field effect transistor; making two holes in the dielectric portion on each side of said structure, such that the locations of the source and the drain form bottom walls of the two holes and sides of the channel are exposed; depositing a first metallic layer on at least the bottom walls of the two holes, at least covering said sides of the channel; and depositing a second metallic layer on the first metallic layer-to form the source and the drain of the field effect transistor.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: September 20, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Maud Vinet, Thierry Poiroux, Bernard Previtali
  • Patent number: 8003507
    Abstract: The present disclosure provides a method of fabricating a semiconductor device.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: August 23, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ryan Chia-Jen Chen, Yih-Ann Lin, Jr Jung Lin, Yi-Shien Mor, Chien-Hao Chen, Kuo-Tai Huang, Yi-Hsing Chen
  • Patent number: 7998828
    Abstract: A method of forming a metal ion transistor comprises forming a first electrode in a first isolation layer; forming a second isolation layer over the first isolation layer; forming a first cell region of a low dielectric constant (low-k) dielectric over the first electrode in the second isolation layer, the first cell region isolated from the second isolation layer; forming a cap layer over the second isolation layer and the first cell region, at least thinning the cap layer over the first cell region; depositing a layer of the low-k dielectric over the second isolation layer and the first cell region; forming metal ions in the low-k dielectric layer; patterning the low-k dielectric layer to form a second cell region; sealing the second cell region using a liner; and forming a second electrode contacting the second cell region and a third electrode contacting the second cell region.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: August 16, 2011
    Assignees: International Business Machines Corporation, Infineon Technologies North America
    Inventors: Fen Chen, Armin Fischer
  • Patent number: 7993986
    Abstract: A device is provided that includes a structure having a sidewall surface, a layer of material provided on the sidewall surface, and a device structure provided in contact with the layer of material. Fabrication techniques includes a process that includes forming a structure having a sidewall surface, forming a layer of material on the sidewall surface, and forming a device structure in contact with the layer of material, where the device structure and the layer of material are components of a device.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: August 9, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: An Chen, Zoran Krivokapic
  • Patent number: 7993985
    Abstract: A method for forming a semiconductor device with a single-sided buried strap is provided.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: August 9, 2011
    Assignee: Nanya Technology Corp.
    Inventors: Neng-Tai Shih, Ming-Cheng Chang
  • Patent number: 7989366
    Abstract: Methods are disclosed for activating dopants in a doped semiconductor substrate. A carbon precursor is flowed into a substrate processing chamber within which the doped semiconductor substrate is disposed. A plasma is formed from the carbon precursor in the substrate processing chamber. A carbon film is deposited over the substrate with the plasma. A temperature of the substrate is maintained while depositing the carbon film less than 500° C. The deposited carbon film is exposed to electromagnetic radiation for a period less than 10 ms, and has an extinction coefficient greater than 0.3 at a wavelength comprised by the electromagnetic radiation.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: August 2, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey C. Munro, Srinivas D. Nemani, Young S. Lee, Marlon Menezes, Christopher Dennis Bencher, Vijay Parihar
  • Patent number: 7989291
    Abstract: A protruding structure having a linear edge is formed on a substrate. The protruding structure may be a gate line of a field effect transistor. A stress-generating liner is deposited on the substrate. A non-photosensitive self-assembling block copolymer layer containing at least two immiscible polymeric block components is deposited on the stress-generating liner, and is annealed to allow phase separation of immiscible components. The polymeric resist is developed to remove at least one of the at least two polymeric block components, which formed a pattern of nested lines due to the linear edge of the protruding structure. Linear nanoscale stripes are formed in the polymeric resist which is self-aligning and self-assembled. The stress-generating layer is patterned into linear stress-generating stripes having a sublithographic width.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: August 2, 2011
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Bruce B. Doris, Elbert E. Huang, Sampath Purushothaman, Carl J. Radens
  • Patent number: 7977166
    Abstract: A semiconductor device and a fabrication method for the semiconductor device which can remove the sacrifice layer deposited on the semiconductor device surface in a short time and whose manufacturing yield can be improved are provided. The semiconductor device and the fabrication method for the semiconductor device includes a field effect transistor 4 including a gate electrode 1, a drain electrode 2, and a source electrode 3 formed on a semiconductor substrate; and a hollow protective film 5 for covering the gate electrode 1, the drain electrode 2, and the source electrode 3, and being provided on the semiconductor substrate 4A.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: July 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takuji Yamamura
  • Patent number: 7968407
    Abstract: A method of manufacturing a semiconductor memory device, the method including forming a tunnel insulation layer on a substrate, forming a preliminary charge trapping layer on the tunnel insulation layer, forming an etch stop layer on the preliminary charge trapping layer, wherein a portion of the preliminary charge trapping layer is not covered by the etch stop layer, removing the exposed portion of the preliminary charge trapping layer to form a charge trapping layer having a uniform thickness, forming a dielectric layer on the charge trapping layer, and forming a gate electrode on the dielectric layer.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: June 28, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Albert Fayrushin
  • Patent number: 7968383
    Abstract: A method of manufacturing an electronic device comprising the subsequent steps of: providing a thermal conversion material or an area comprising the thermal conversion material and, in an adjoining area or in a vicinity of the thermal conversion material or the area comprising the thermal conversion material, a material having an electromagnetic wave absorbing function or an area comprising the material having the electromagnetic wave absorbing function, in at least a portion on a substrate; and irradiating the substrate with an electromagnetic wave to transform the thermal conversion material into a functional material using a heat generated by the material having the electromagnetic wave absorbing function.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: June 28, 2011
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Makoto Honda, Katsura Hirai
  • Patent number: 7964897
    Abstract: A process flow for fabricating shallow trench isolation (STI) devices with direct body tie contacts is provided. The process flow follows steps similar to standard STI fabrication methods except that in one of the etching steps, body tie contacts are etched through the nitride layer and STI oxide layer, directly to the body tie. This process flow provides a direct body tie contact to mitigate floating body effects but also eliminates hysteresis and transient upset effects common in non-direct body tie contact configurations, without the critical alignment requirements and critical dimension control of the layout.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: June 21, 2011
    Assignee: Honeywell International Inc.
    Inventors: Paul S. Fechner, Bradley Larsen, Gregor Dougal, Keith Golke
  • Patent number: 7955940
    Abstract: A method of forming a SOI substrate, diodes in the SOI substrate and electronic devices in the SOI substrate and an electronic device formed using the SOI substrate. The method of forming the SOI substrate includes forming an oxide layer on a silicon first substrate; ion-implanting hydrogen through the oxide layer into the first substrate, to form a fracture zone in the substrate; forming a doped dielectric bonding layer on a silicon second substrate; bonding a top surface of the bonding layer to a top surface of the oxide layer; thinning the first substrate by thermal cleaving of the first substrate along the fracture zone to form a silicon layer on the oxide layer to formed a bonded substrate; and heating the bonded substrate to drive dopant from the bonding layer into the second substrate to form a doped layer in the second substrate adjacent to the bonding layer.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Thomas Walter Dyer, Junedong Lee, Dominic J. Schepis
  • Patent number: 7955924
    Abstract: Example embodiments disclose an image sensor capable of preventing or reducing image lag and a method of manufacturing the same. Example methods may include forming a gate insulating film and a gate conductive film doped with a first-conductive-type dopant on a semiconductor substrate; forming a transfer gate pattern by patterning the gate insulating film and the gate conductive film; and fabricating a transfer gate electrode by forming a first-conductive-type photodiode in the semiconductor substrate adjacent to one region of the transfer gate pattern, by forming a second-conductive-type photodiode on the first-conductive-type photodiode, and by forming a first-conductive-type floating diffusion region in the semiconductor substrate adjacent to the other region of the transfer gate pattern.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: June 7, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-ho Song, Chan Park, Young-hoon Park, Sang-il Jung, Jong-wook Hong, Keo-sung Park, Eun-soo Kim, Won-je Park, Jin-Hyeong Park, Dae-cheol Seong, Won-jeong Lee, Pu-ra Kim
  • Patent number: 7956432
    Abstract: A photodiode includes a substrate having a first semiconductor type surface region on at least a portion thereof, and a second semiconductor type surface layer formed in a portion of the surface region. A multi-layer anti-reflective coating (ARC) is on the second semiconductor type surface layer, wherein the multi-layer ARC comprises at least two different dielectric layers. A layer resistant to oxide etch is above a peripheral portion the multi-layer ARC. Further layers are above the layer resistant to oxide etch, and thereby above the peripheral portion the multi-layer ARC. A window extends down to the multi-layer ARC. A photodiode region is formed by a pn-junction of the first semiconductor type surface region and the second semiconductor type surface layer.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: June 7, 2011
    Assignee: Intersil Americas Inc.
    Inventors: Dong Zheng, Phillip J. Benzel, Joy Jones, Alexander Kalnitsky, Perumal Ratnam
  • Patent number: 7947537
    Abstract: A method of manufacturing a metal oxide semiconductor comprising the step of: conducting a transformation treatment on a semiconductor precursor layer containing a metal salt to form the metal oxide semiconductor, wherein the metal salt comprises one or more metal salts selected from the group consisting of a nitrate, a sulfate, a phosphate, a carbonate, an acetate and an oxalate of a metal; and the semiconductor precursor layer is formed by coating a solution of the metal salt.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 24, 2011
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Makoto Honda, Katsura Hirai
  • Patent number: 7943457
    Abstract: The present invention, in one embodiment, provides a method of forming a semiconductor device that includes providing a substrate including a first conductivity type region and a second conductivity type region; forming a gate stack including a gate dielectric atop the first conductivity type region and the second conductivity type region of the substrate and a first metal gate conductor overlying the high-k gate dielectric; removing a portion of the first metal gate conductor that is present in the first conductivity type region to expose the gate dielectric present in the first conductivity type region; applying a nitrogen based plasma to the substrate, wherein the nitrogen based plasma nitrides the gate dielectric that is present in the first conductivity type region and nitrides the first metal gate conductor that is present in the second conductivity type region; and forming a second metal gate conductor overlying at least the gate dielectric that is present in the first conductivity type region.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventors: Michael P. Chudzik, Wiliam K. Henson, Rashmi Jha, Yue Liang, Ravikumar Ramachandran, Richard S. Wise
  • Patent number: 7943468
    Abstract: A semiconductor device and method to form a semiconductor device is described. The semiconductor includes a gate stack disposed on a substrate. Tip regions are disposed in the substrate on either side of the gate stack. Halo regions are disposed in the substrate adjacent the tip regions. A threshold voltage implant region is disposed in the substrate directly below the gate stack. The concentration of dopant impurity atoms of a particular conductivity type is approximately the same in both the threshold voltage implant region as in the halo regions. The method includes a dopant impurity implant technique having sufficient strength to penetrate a gate stack.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: May 17, 2011
    Assignee: Intel Corporation
    Inventors: Giuseppe Curello, Ian R. Post, Nick Lindert, Walid M. Hafez, Chia-Hong Jan, Mark T. Bohr
  • Patent number: 7936044
    Abstract: A memory device may include a switching device and a storage node coupled with the switching device. The storage node may include a first electrode, a second electrode, a data storage layer and at least one contact layer. The data storage layer may be disposed between the first electrode and the second electrode and may include a transition metal oxide or aluminum oxide. The at least one contact layer may be disposed at least one of above or below the data storage layer and may include a conductive metal oxide.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: May 3, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong Chul Kim, In-kyeong Yoo, Myoung-jae Lee, Sun-ae Seo, In-gyu Baek, Seung-eon Ahn, Byoung-ho Park, Young-kwan Cha, Sang-jin Park
  • Patent number: 7935577
    Abstract: A trench is formed in a semiconductor region. A dielectric layer lining sidewalls and bottom surface of the trench is formed. The dielectric layer is thicker along lower sidewalls and the bottom surface than along upper sidewalls of the trench. After forming the dielectric layer, a lower portion of the trench is filled with a shield electrode. Dielectric spacers are formed along the upper trench sidewalls. After forming the dielectric spacers, an inter-electrode dielectric (IED) is formed in the trench over the shield electrode. After forming the IED, the dielectric spacers are removed.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: May 3, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Thomas E. Grebs, Nathan Lawrence Kraft, Rodney Ridley
  • Patent number: 7927928
    Abstract: Systems and methods of semiconductor device fabrication and layout generation are disclosed. An exemplary method includes processes of depositing a layer of a first material and patterning the layer to form an initial pattern, wherein the initial pattern defines critical features of the layout elements using a single exposure; depositing spacer material over the first pattern on the substrate and etching the spacer material such that the spacer material is removed from horizontal surfaces of the substrate and the first pattern but remains adjacent to vertical surfaces of the first pattern; removing the initial pattern from the substrate while leaving the spacer material in a spacer pattern; filling the spacer pattern with final material; and trimming the filled pattern to remove portions of the final material beyond dimensions of the layout elements.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: April 19, 2011
    Assignee: Cadence Design Systems, Inc.
    Inventor: Christophe Pierrat
  • Patent number: 7927888
    Abstract: Improved method to fabricate a microelectronic device provided with at least one circuit to detect biological elements, comprising the steps of: a) forming transistors, depositing at least one layer in at least one insulating material (141) coating said transistors, forming one or more holes (143) in said layer of insulating material (141), so as to expose the upper face of the respective gate (135) of first-type transistors, filling the holes with a gate material, b) removing, at least in part, the respective gate (135) of the first-type transistors, whilst the gate of second-type transistors is protected, the method prior to or at the same time as said removal conducted at step b) further comprising the removal of said gate material.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: April 19, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Julien Buckley, Olivier Billoint, Guillaume Delapierre
  • Patent number: 7923314
    Abstract: A method for manufacturing a field effect transistor, includes: forming a mask of an insulating film on a semiconductor layer containing Si formed on a semiconductor substrate; forming the semiconductor layer into a mesa structure by performing etching with the use of the mask, the mesa structure extending in a direction parallel to an upper face of the semiconductor substrate; narrowing a distance between two sidewalls of the mesa structure and flattening the sidewalls by performing a heat treatment in a hydrogen atmosphere, the two sidewalls extending in the direction and facing each other; forming a gate insulating film covering the mesa structure having the sidewalls flattened; forming a gate electrode covering the gate insulating film; and forming source and drain regions at portions of the mesa structure, the portions being located on two sides of the gate electrode.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: April 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsutomu Tezuka, Eiji Toyoda
  • Patent number: 7919793
    Abstract: Disclosed herein is a semiconductor integrated circuit including: a plurality of standard cells including a transistor having a gate electrode and arranged in combination with each other; a metallic wiring layer interconnecting the standard cells to form a desired circuit; and a plurality of reserve cells having a gate electrode, unconnected with the metallic wiring layer and arranged on a periphery of the standard cells, wherein each of the gate electrodes of the standard cells and the reserve cells has a gate pad section and two gate finger sections extending from the gate pad section to sides opposite to each other in a predetermined direction, and length of the gate pad sections of the reserve cells in a direction orthogonal to the predetermined direction is equal to or more than a sum total value of three times a minimum line width in the metallic wiring layer and twice a minimum separation distance.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: April 5, 2011
    Assignee: Sony Corporation
    Inventor: Shusuke Iwata
  • Patent number: 7902004
    Abstract: A method is provided for fabricating an image sensor array in a manner that reduces the potential for defects resulting from electrostatic discharge events during fabrication of the image sensor array. The method includes: forming at least one pixel over a substrate, the pixel including a switching transistor and a photo-sensitive cell; and forming a dielectric interlayer over the pixel. A key step in the method of the present invention is depositing a first conductive layer over the dielectric interlayer. After the first conductive layer is formed, the image sensor array is well protected from ESD events because the first conductive layer spreads out any charge induced by tribo-electric charging events that may occur during subsequent fabrication processing steps, thereby reducing the potential for localized damage to the switching transistors upon the occurrence of ESD events.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: March 8, 2011
    Assignee: dpiX LLC
    Inventors: Richard Weisfield, Kungang Zhou, David Doan
  • Publication number: 20110049594
    Abstract: A method of forming a SOI substrate, diodes in the SOI substrate and electronic devices in the SOI substrate and an electronic device formed using the SOI substrate. The method of forming the SOI substrate includes forming an oxide layer on a silicon first substrate; ion-implanting hydrogen through the oxide layer into the first substrate, to form a fracture zone in the substrate; forming a doped dielectric bonding layer on a silicon second substrate; bonding a top surface of the bonding layer to a top surface of the oxide layer; thinning the first substrate by thermal cleaving of the first substrate along the fracture zone to form a silicon layer on the oxide layer to formed a bonded substrate; and heating the bonded substrate to drive dopant from the bonding layer into the second substrate to form a doped layer in the second substrate adjacent to the bonding layer.
    Type: Application
    Filed: September 1, 2009
    Publication date: March 3, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas Walter Dyer, Junedong Lee, Dominic J. Schepis
  • Patent number: 7897441
    Abstract: A method of fabricating a CMOS image sensor comprising forming an epitaxial layer on a semiconductor substrate, the epitaxial layer comprising a pixel and logic area, forming an STI layer in the epitaxial layer, forming a plurality of wells and a gate pattern having a spacer on the epitaxial layer, forming a plurality of source and drain regions in the epitaxial layer using ion implantation, forming a salicide blocking layer on the epitaxial layer and gate pattern in the pixel area, forming a plurality of silicide layers in the logic area by performing a silicidation process, sequentially forming a PMD liner nitride layer and a PSG layer on the salicide blocking layer in the pixel area and the epitaxial layer and the gate pattern in the logic area, and forming a plurality of contacts connecting the PSG layer to the source and drain regions.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: March 1, 2011
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Sang Gi Lee
  • Patent number: 7888712
    Abstract: A semiconductor device includes a first conductive type SiC semiconductor substrate; a second conductive type well formed on the SiC semiconductor substrate; a first impurity diffusion layer formed by introducing a first conductive type impurity so as to be partly overlapped with the well in a region surrounding the well; a second impurity diffusion layer formed by introducing the first conductive type impurity in a region spaced apart for a predetermined distance from the impurity diffusion layer in the well; and a gate electrode opposed to a channel region between the first and the second impurity diffusion layers with gate insulating film sandwiched therebetween.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: February 15, 2011
    Assignee: Rohm Co., Ltd.
    Inventor: Mineo Miura
  • Patent number: 7883968
    Abstract: The present invention is an object to provide a high-performance vertical field effect transistor having a microminiaturized structure in which the distance between the gate and the channel is made short not through a microfabrication process, having a large gate capacitance, and so elaborated that the gate can control the channel current with a low voltage, and a method for simply and efficiently manufacturing such a field effect transistor not through a complex process such as a microfabrication process.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: February 8, 2011
    Assignee: Fujitsu Limited
    Inventor: Mizuhisa Nihei
  • Patent number: 7883933
    Abstract: In one embodiment of the invention, a method of fabricating a SAM device comprises the steps of: (a) providing a substrate having a top surface and a first metal electrode disposed on the top surface, (b) annealing the first metal electrode, (c) forming a SAM layer on a major surface of the first electrode, the SAM layer having a free surface such that the SAM is disposed between the free surface and the major surface of the first electrode, and (d) forming a second metal electrode on the free surface of the molecular layer. Forming step (d) includes the step of (d1) depositing the second metal electrode in at least two distinct depositions separated by an interruption period of time when essentially no deposition of the second metal takes place. SAM FETs fabricated using this method are also described.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: February 8, 2011
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Nikolai Borisovich Zhitenev
  • Patent number: 7879661
    Abstract: A semiconductor device of a dual-gate structure including a P-channel type field-effect transistor formed at a first region of a substrate and an N-channel type field-effect transistor formed at a second region of the substrate, includes a gate electrode including a polycrystalline silicon film continuously formed on the substrate to cover the first and second regions and a metal silicide film formed on the polycrystalline silicon film. The polycrystalline silicon film has a P-type part located on the first region and an N-type part coming into contact with the P-type part and located on the second region, and the P-type part is further doped with a heavier element than a P-type impurity that determines a conductivity type of the P-type part.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: February 1, 2011
    Assignee: Panasonic Corporation
    Inventor: Akihiko Tsuzumitani
  • Publication number: 20110012090
    Abstract: A silicon-germanium nanowire structure arranged on a support substrate is disclosed, The silicon-germanium nanowire structure includes at least one germanium-containing supporting portion arranged on the support substrate, at least one germanium-containing nanowire disposed above the support substrate and arranged adjacent the at least one germanium-containing supporting portion, wherein germanium concentration of the at least one germanium-containing nanowire is higher than the at least one germanium-containing supporting portion. A transistor comprising the silicon-germanium nanowire structure arranged on a support substrate is also provided. A method of forming a silicon-germanium nanowire structure arranged on a support substrate and a method of forming a transistor comprising forming the silicon-germanium nanowire structure arranged on a support substrate are also disclosed.
    Type: Application
    Filed: December 7, 2007
    Publication date: January 20, 2011
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Navab Singh, Jiang Yu, Guo Qiang Patrick Lo
  • Patent number: 7871943
    Abstract: Embodiments of the invention provide methods for making an integrated circuit comprising providing a substrate, forming a structured layer stack on the substrate comprising a dielectric layer located on the substrate and an oxide-free metallic layer located on the dielectric layer, wherein the metallic layer comprising a transition metal. The method further comprises oxidizing the metallic layer, thereby increasing a work function of the metallic layer. Moreover, a substrate for making an integrated circuit is described.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: January 18, 2011
    Assignee: Qimonda AG
    Inventors: Tim Boescke, Tobias Mono
  • Patent number: 7867815
    Abstract: A memory device comprising a first pan-shaped electrode having a side wall with a top side, a second pan-shaped electrode having a side wall with a top side and an insulating wall between the first side wall and the second side wall. The insulating wall has a thickness between the first and second side walls near the respective top sides. A bridge of memory material crosses the insulating wall, and defines an inter-electrode path between the first and second electrodes across the insulating wall. An array of such memory cells is provided. The bridges of memory material have sub-lithographic dimensions.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: January 11, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Hsiang Lan Lung, Shih-Hung Chen
  • Patent number: 7863112
    Abstract: Protecting a FET from plasma damage during FEOL processing by forming a FET-like structure in conjunction with and adjacent to an FET, in a same well as the FET, but having a body doped opposite to the well polarity. The FET-like structure is formed with thinner oxide than the gate oxide of the FET, has a gate structure (poly) connected with the gate of the FET, and may be shorted out by the first metal layer (M1).
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Deleep R. Nair, Terence B. Hook
  • Patent number: 7863111
    Abstract: Provided are a thin film transistor for display devices and a manufacturing method of the thin film transistor. The thin film transistor for display devices includes: a flexible substrate; a gate electrode layer formed on the flexible substrate; a first insulating layer formed on the flexible substrate and the gate electrode; a source and a drain formed on the first insulating layer; an active layer formed on the first insulating layer between the source and the drain; a second insulating layer formed on the first insulating layer, the source, the drain, and the active layer; and a drain electrode that opens the second insulating layer to be connected to the drain and is formed of a CNT dispersed conductive polymer.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: January 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-seong Kim, Euk-che Hwang, Ki-deok Bae, Chang-seung Lee, Hyeon-Jin Shin
  • Publication number: 20100321044
    Abstract: The invention disclosed a sensing element integrating silicon nanowire gated-diodes with microfluidic channel, a manufacturing method and a detecting system thereof. The sensing element integrating silicon nanowire gated-diodes with a microfluidic channel comprises a silicon nanowire gated-diode, a plurality of reference electrodes, a passivation layer and a microfluidic channel. The reference electrodes are formed on the silicon nanowire gated-diodes, and the passivation layer having a surface decorated with chemical materials is used for covering the silicon nanowire gated-diodes, and the microfluidic channel is connected with the passivation layer. When a detecting sample is connected or absorbed on the surface of the passivation layer, the sensing element integrating silicon nanowire gated-diodes with the microfluidic channel can detect an electrical signal change.
    Type: Application
    Filed: December 23, 2009
    Publication date: December 23, 2010
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Jeng-Tzong Sheu, Chen-Chia Chen
  • Patent number: 7855105
    Abstract: A semiconductor structure is provided that includes a first device region including a first threshold voltage adjusting layer located atop a semiconductor substrate, a gate dielectric located atop the first threshold voltage adjusting layer, and a gate conductor located atop the gate dielectric. The structure further includes a second device region including a gate dielectric located atop the semiconductor substrate, and a gate conductor located atop the gate dielectric; and a third device region including a gate dielectric located atop the semiconductor substrate, a second threshold voltage adjusting layer located atop the gate dielectric, and a gate conductor located atop the second threshold voltage adjusting layer.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: December 21, 2010
    Assignee: International Business Machines Corporation
    Inventors: Hemanth Jagannathan, Vijay Narayanan, Vamsi K. Paruchuri
  • Patent number: 7855133
    Abstract: The invention is directed to a method of forming carbon nanomaterials or semiconductor nanomaterials. The method comprises providing a substrate and attaching a molecular precursor to the substrate. The molecular precursor includes a surface binding group for attachment to the substrate and a binding group for attachment of metal-containing species. The metal-containing species is selected from a metal cation, metal compound, or metal or metal-oxide nanoparticle to form a metallized molecular precursor. The metallized molecular precursor is then subjected to a heat treatment to provide a catalytic site from which the carbon nanomaterials or semiconductor nanomaterials form. The heating of the metallized molecular precursor is conducted under conditions suitable for chemical vapor deposition of the carbon nanomaterials or semiconductor nanomaterials.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: December 21, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Cherie R. Kagan, Laura L. Kosbar
  • Patent number: 7851790
    Abstract: The present invention describes a method of and an apparatus for providing a wafer, the wafer including Silicon; etching trenches in the wafer to form Silicon fins; filling Silicon Oxide in the trenches; planarizing the Silicon Oxide; recessing the Silicon Oxide to a first thickness to form exposed Silicon pedestals from the Silicon fins; depositing SiGe over the exposed Silicon pedestal; recessing the Silicon Oxide to a second thickness; undercutting the exposed Silicon pedestals to form necked-in Silicon pedestals; oxidizing thermally and annealing the SiGe; and forming Germanium nanowires.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: December 14, 2010
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Been-Yih Jin, Ravi Pillarisetty, Robert Chau