Solid Sorption Patents (Class 95/90)
  • Publication number: 20120137880
    Abstract: A system and method remove undesirables from a gas produced by a combustion chamber. The system includes a first addition point, wherein treatment materials are added to the gas in a first addition temperature zone. The system also includes a second addition point, wherein treatment materials are added to the gas in a second addition temperature zone. The second addition point is downstream of the first addition point. The first addition temperature zone is at a higher temperature than the second addition temperature zone. The treatment materials remove undesirables from the gas.
    Type: Application
    Filed: January 26, 2010
    Publication date: June 7, 2012
    Applicant: CAPID INC. LLC
    Inventors: Elbert R. Butterworth, Henry N. Myrick
  • Patent number: 8192525
    Abstract: The invention relates to a method for producing carbon monoxide consisting, during an adsorption step, in using N adsorbers (4A, 4B), wherein N is equal to greater than two, each of which follows, at an offset; the same period T cycle during which adsorption and regeneration phases succeed each other, in exposing, at the beginning of the adsorption phase, each adsorber to an eluting phase during which only a part of a nominal flowrate of the mixture is transferred to the adsorber until said adsorber is substantially carbon monoxide saturated while at least the second adsorber is maintained in the adsorption phase and a purified gaseous mixture is partially liquefied for producing a liquefied gaseous mixture, in storing said mixture in a capacity (7) and in transferring the liquefied gaseous mixture from the capacity to at least one column (11) for the separation thereof into a carbon monoxide rich product and, during at least one part of the adsorber eluting phases, the liquid level in the container is decrea
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: June 5, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude Et l'Exploration des Procedes Georges Claude
    Inventors: Guillaume Teixeira, Jean-Marc Peyron, Jean-François Rauch, Natacha Haik-Beraud, Jean Billy
  • Patent number: 8192527
    Abstract: The present invention relates to a method of producing hydrogen of very high purity from a feed predominantly containing said hydrogen and a minor part of impurities mainly consisting of carbon dioxide, carbon monoxide, methane and heavier hydrocarbons. The purification method by hydrogen adsorption using a desorption stage at a lower pressure than the pressure of the feed, such as a PSA method for example, allows to produce the desorption stream and notably to recover the carbon dioxide under pressure and high-purity hydrogen, with a high yield. These performances are obtained by combining the successive stages of the method according to the invention with the use of a new family of adsorbent whose dynamic capacity at a high desorption pressure is greater than that of conventional adsorbents.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: June 5, 2012
    Assignee: IFP Energies Nouvelles
    Inventors: Gerhard Pirngruber, Elsa Jolimaitre, Luc Wolff, Damien Leinekugel le Cocq
  • Patent number: 8192709
    Abstract: The present invention relates to the selective separation of methane (“CH4”) from higher carbon number hydrocarbons (“HHC”s) in streams containing both methane and higher carbon number hydrocarbons (e.g. ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate methane from higher carbon number hydrocarbons in natural gas streams.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: June 5, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Publication number: 20120133939
    Abstract: Methods and compositions useful for gas storage and separation are provided. More particularly, compositions and methods for CO2 storage and separation are provided comprising an open metal organic framework.
    Type: Application
    Filed: June 18, 2010
    Publication date: May 31, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Omar M. Yaghi, David Kyle Britt, Bo Wang
  • Publication number: 20120135214
    Abstract: Active materials, for example, metal sulfide, or metal selenide which may be useful in the removal of a contaminant from a fluid.
    Type: Application
    Filed: October 24, 2011
    Publication date: May 31, 2012
    Inventors: Steven Bruce Dawes, Benedict Yorke Johnson, Millicent Kaye Weldon Ruffin, Elizabeth Marie Vileno, Ezra Morgan Yarnell
  • Patent number: 8187364
    Abstract: A method and apparatus for simultaneously removing alkali chlorides from an industrial process and purifying vaporizable contaminants such as mercury from a particulate material. Gases containing alkali chlorides are cooled to a temperature above the boiling point of the contaminants and below the boiling point of the alkali chlorides. Particulates rich in alkali chlorides are removed from the gas stream with a first dust collector. The gas stream cleaned of alkali chlorides is directed to a reaction area where particulate material containing mercury contaminants is inserted into the gas stream to vaporize the contaminants from the material and entrain the cleaned material in the gases. The gases are directed to a second dust collector to remove the entrained particulate material, after which a sorbent or chemical reagent is injected in the gases to interact with the contaminants and form a contaminant containing product that is entrained in the gases and thereafter separated from the gases.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: May 29, 2012
    Assignee: FLSmidth A/S
    Inventors: Ove Lars Jepsen, Peter T. Paone, III, John S. Salmento
  • Patent number: 8182582
    Abstract: Provided are gas storage medium, a gas storage apparatus having the same and a method thereof. The gas storage medium includes a plurality of material layers each having a variable valence, wherein each of the material layers includes redundant electrons that are not participated in chemical bonding.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: May 22, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Han-Young Yu, Ansoon Kim, Jong-Heon Yang, In-Bok Baek, Chang-Geun Ahn, Chil-Seong Ah, Chan-Woo Park, Seongjae Lee, Taehyoung Zyung
  • Publication number: 20120091064
    Abstract: The present invention relates to a method for producing a porous metal-organic framework material comprising the step reacting a reaction mixture in the liquid phase of at least one copper compound having at least one at least bidentate, organic compound which can bind by coordination to the copper in the presence of a nonaqueous solvent, the at least one at least bidentate, organic compound being derived from a polycarboxylic acid having at least three carboxyl groups, and the reaction proceeding at atmospheric pressure above 80° C.
    Type: Application
    Filed: December 23, 2011
    Publication date: April 19, 2012
    Applicant: BASF SE
    Inventors: Markus SCHUBERT, Ulrich Müller, Michael Hesse, Uwe Diehlmann
  • Patent number: 8157903
    Abstract: The present invention provides a gas absorbing system which comprises: an inlet pipe, a gas accommodating section into which gas enters through the inlet pipe, and a negative pressure exhausting pipe which exhausts the gas in the gas accommodating section to external device by using negative pressure wherein the gas accommodating section comprises a first chamber which is provided with air holes in the side wall for discharging the gas in the gas accommodating section or allowing external air entering the gas accommodating section. The gas absorbing system according to the present invention not only can effectively prevent the system internal gas from discharging directly to environment to endanger the health of patients and medical care personnel, but also can reduce the variation of the pressure inside the system when an abnormal incident occurs, so as to prevent it from influencing the safety of the patient to the most extent.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: April 17, 2012
    Assignee: Beijing Aeonmed Co., Ltd.
    Inventor: Wu Manli
  • Patent number: 8152899
    Abstract: An air filter for purging unwanted substances from air, the air filter comprising: an acid-purging stage, wherein the acid-purging stage comprises an air-permeable skeleton which has an acid-neutralizing substance mounted thereto, wherein the air-permeable skeleton comprises fiberglass fibers and the acid-neutralizing substance comprises sodium bicarbonate, and further wherein the sodium bicarbonate is secured to the fiberglass fibers using an adhesive; and a solvent-purging stage, wherein the solvent-purging stage comprises solvent-purging granules captured between two air-permeable screens, and further wherein the solvent-purging granules comprise activated carbon granules.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: April 10, 2012
    Inventor: Francois Hauville
  • Patent number: 8152900
    Abstract: A differential absorption spectrum for a reactive gas in a gas mixture can be generated for sample absorption data by subtracting background absorption data set from the sample absorption data. The background absorption data can be characteristic of absorption characteristics of the background composition in a laser light scan range that includes a target wavelength. The differential absorption spectrum can be converted to a measured concentration of the reactive gas using calibration data. A determination can be made whether the background composition has substantially changed relative to the background absorption data, and new background absorption data can be used if the background composition has substantially changed. Related systems, apparatus, methods, and/or articles are also described.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: April 10, 2012
    Assignee: SpectraSensors, Inc.
    Inventors: Xin Zhou, Xiang Liu, Alfred Feitisch, Gregory M. Sanger
  • Patent number: 8152898
    Abstract: Helium is recovered from gas streams containing high concentrations of hydrogen gas and low concentrations of helium gas, such as from the recycle stream from the production of ammonia. The inventive process provides for an integrated process for the recovery of both an enriched helium gas stream product and a high purity hydrogen gas stream product.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: April 10, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Ravi Prasad, Carl Joseph Heim, James Joseph Maloney
  • Patent number: 8147588
    Abstract: An improved adsorbent useful in removing contaminants from various hydrocarbon streams comprises a zeolite, an alumina and an added metal component provided in the adsorbent by initially contacting primarily the zeolite with the added metal. In a specific application, an adsorbent comprising sodium-impregnated zeolite Y and alumina is used to purify an ethylene stream in order to remove CO2, H2S, methanol, and other S- and O-containing compounds.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: April 3, 2012
    Assignee: BASF Corporation
    Inventors: William Dolan, Barry Speronello, Alfonse Maglio, Dennis Reinertsen, Dana Rehms Mooney
  • Patent number: 8147589
    Abstract: The invention relates to a method for producing spherical activated carbon, wherein polymer globules, which comprise thermally decomposing chemical groups, are carbonized. It is characterized by that during the carbonization, a supplier of free radicals is added to the polymer globules, the supplier of free radicals forming free radicals, which are different from the free radicals that are generated by the decomposition of the chemical groups.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: April 3, 2012
    Assignee: Blucher GmbH
    Inventors: Manfred Schonfeld, Raik Schonfeld
  • Publication number: 20120073437
    Abstract: One exemplary embodiment can be a vessel. The vessel can include a body, an inlet, and an impermeable impingement plate. The body may include a substantially cylindrical structure orientated substantially horizontally, and first and second heads coupled at opposing ends of the substantially cylindrical structure. Generally, the body forms an interior space, and a lower portion of the body forms a trough having a length and a width. The inlet can communicate with the interior space of the vessel. Typically, the impermeable impingement plate has an impingement surface. The impermeable impingement plate may have a first side and a second side extending substantially the length of the trough. The first and second sides may be substantially parallel and spaced apart across at least a portion of the width of the trough.
    Type: Application
    Filed: September 27, 2010
    Publication date: March 29, 2012
    Applicant: UOP, LLC
    Inventors: Shain-Jer Doong, Hadjira Iddir
  • Patent number: 8142549
    Abstract: A method of reducing moisture in a fluorine-containing gas is described. The method may include the steps of providing a purifier material that includes elemental carbon, and flowing the unpurified fluorine-containing gas having an unpurified moisture concentration over or through the carbon-based purifier material. At least a portion of the moisture is captured in the purifier material so that a purified fluorine-containing gas that emerges downstream of the purifier material has a reduced moisture concentration that is about 50% or less of the unpurified moisture concentration.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: March 27, 2012
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Andrew Millward, Joseph V. Vininski, Robert Torres, Jr., Tadaharu Wantanbe, Carrie L. Wyse, Mark Raynor, Dan Davia, Praveen Jha
  • Publication number: 20120067213
    Abstract: A method, apparatus and system for minimizing a quantity of particulate matter entrained within a gas stream is provided. A course filter removes at least a portion of particulate matter having a relatively-large particle size from the gas stream. An agglomerator agglomerates particulate matter having a relatively-small particle size remaining in the gas stream into particulate clusters after the portion of the particulate matter having the relatively-large particle size has been removed by the course filter. An injector introduces an agglomerating material into the gas stream before the gas stream enters the agglomerator. The agglomerating material promotes agglomeration of the particulate matter having the relatively-small particle size into the particulate clusters. And a second filter receives the gas stream and removes at least a portion of the particulate clusters entrained within the gas stream exiting the agglomerator.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 22, 2012
    Applicant: General Electric Company
    Inventors: Bradley Stephen Rogers, James Easel Roberts
  • Publication number: 20120067215
    Abstract: The present invention provides regenerable pleated media and filter elements and combinations thereof for use in a clean room environment for removal of airborne molecular contamination. Disclosed is a pleated filter media for a clean room environment wherein the pleated filter media comprises at least an adsorbent first layer of activated carbon or polymer wherein said activated carbon or polymer together with fibers and/or an adhesion agent is enclosed between two second layers of non woven with a grid positioned on at least one side of either of the second layers or incorporated in the first layer for preventing deformation of the pleated filter media when regenerated by a heated air flow above 100° C. at 1 atm.
    Type: Application
    Filed: March 2, 2010
    Publication date: March 22, 2012
    Applicant: Camfil AB
    Inventors: Christian Lindahl, Guillaume Gallet, Mikael Forslund
  • Publication number: 20120067216
    Abstract: The present invention describes the use of isostructural zeolites with rho zeolitic structure in processes of adsorption and separation of the various components of natural gas.
    Type: Application
    Filed: October 13, 2011
    Publication date: March 22, 2012
    Inventors: Avelino CORMA CANOS, Miguel Palomino Roca, Fernando Rey Garcia, Susana Valencia Valencia
  • Patent number: 8137437
    Abstract: A vapor generator system (1, 101) for an IMS (4, 104) or other apparatus has a chamber (9, 109) in which vapor is produced. A fan or other flow generator (6, 106) is connected to an inlet (8, 108) of the vapor chamber (9, 109) and its outlet (13, 113) is connected to an adsorbent passage (14, 114), such as formed by a bore through a block (15) of carbon. When the fan (6, 106) is on gas flows through the vapor chamber (9, 109) and the adsorbent passage (14, 114) to the IMS (4, 104) or other outlet, with little vapor being adsorbed in the passage. When the fan (6, 106) is off, any vapor molecules that escape to the adsorbent passage (14, 114) do so at a low rate such that substantially all is adsorbed and no vapor escapes.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: March 20, 2012
    Assignee: Smiths Group PLC
    Inventors: Jonathan Richard Atkinson, John Patrick Fitzgerald, Stephen John Taylor
  • Patent number: 8137438
    Abstract: Embodiments of the invention provide an electronic device which may include an interior compartment housing at least one electronic component that may be reactive to target impurities. The electronic component may include at least a cathode and an anode. A purifier material may be interspersed within a conducting polymer layer between the cathode and the anode. The purifier material may decrease target impurities within the interior compartment of the electronic device from a first level to a second level.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: March 20, 2012
    Assignee: Matheson Tri-Gas
    Inventors: Robert Torres, Jr., Tadaharu Watanabe, Joseph V. Vininski
  • Patent number: 8133308
    Abstract: The various embodiments of the present invention relate to compositions, apparatus, and methods comprising sorbent fibers. More particularly, various embodiments of the present invention are directed towards sorbent fiber compositions for temperature swing adsorption processes. Various embodiments of the present invention comprise sorbent fiber compositions, apparatus comprising a plurality of sorbent fibers, and methods of using the same for the capture of at least one component from a medium, for example CO2 from flue gas.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: March 13, 2012
    Assignees: Georgia Tech Research Corporation, ExxonMobile Research and Engineering Company
    Inventors: Ryan Lively, Ronald R. Chance, William J. Koros, Harry Deckman, Bruce T. Kelley
  • Patent number: 8133301
    Abstract: Disclosed herein is a nanoporous hybrids formed by covalent bonding between a crystalline organic-inorganic hybrid and a gigantic mesoporous metal oxide, containing organic groups on the surface thereof, having a size of 10 nm or more. Since the covalently-bonded hybrid nanoporous composite has a large surface area, a multiple microporous structure, a large pore volume and includes an organic-inorganic hybrid having backbone flexibility, the covalently-bonded hybrid nanoporous composite can be used as materials for storing liquids and gases, such as hydrogen, methane and the like, and can be used as adsorbents, separating materials, catalysts, and the like. Further, the covalently-bonded hybrid nanoporous hybrids can be used in the application fields of biomolecule supporting, drug delivery, harmful material removal, nanoparticle supporter, sensors, catalysis, adsorbents, fluorescent materials, solar cells, and the like.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: March 13, 2012
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Young Kyu Hwang, Jong San Jang, You Kyoung Seo, Ji Woong Yoon
  • Publication number: 20120055880
    Abstract: The present invention relates to a method for hydrothermal preparation of a solid made up of a metal-organic framework (MOF) of crystallised, porous aluminium carboxylates, in an aqueous medium. The invention also relates to solids made up of metal-organic frameworks (MOF) of porous, crystallised aluminium carboxylates capable of being obtained by the method of the invention as well as to the uses thereof for the storage of liquid or gaseous molecules, for selective separation of gas and for catalysis.
    Type: Application
    Filed: November 17, 2009
    Publication date: March 8, 2012
    Inventors: Thierry Loiseau, Gérard Ferey, Christophe Volkringer, Francis Taulelle, Mohamed Haouas
  • Patent number: 8123835
    Abstract: High rate and high crush-strength adsorbent particles and collections of such particles, and particularly LiLSX particles, are provided. A binder is employed in the form of a colloidal solution during the method of manufacture. Suitable binders include various silica binders. The particles are made using the steps of mixing, agglomeration, calcination and in the case of certain adsorbents such as LiX and LiLSX, ion exchange and activation. When the adsorption rate is expressed in the form SCRR/?p (mmol mm2/g s), desirable collections of adsorbent particles can have values of at least 4.0 for the highly-exchanged Li (at least 90% Li exchanged) form of the collection of particles and can further be characterized by particles having average crush strengths of at least 0.9 lbf for particles having an average diameter of at least about 1.0 mm.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: February 28, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Jian Zheng, Steven John Pontonio, Neil Andrew Stephenson, Philip Alexander Barrett
  • Patent number: 8123834
    Abstract: Novel metal organic framework (MOF) molecules and methods of synthesizing them are described. MOFs are organometallic crystalline structures that have high sorption capacity due to high surface area, tailorable selectivity, an inert nature, and thermal stability at high temperatures. MOFs may be used as sorbents in preconcentrators for analytical devices to provide orders of magnitude of improved sensitivity in analyte detection. MOFs are also useful as sorbents in new compact and portable micropreconcentrator designs such as a modified purge and trap system and a multi-valve microelectromechanical system (MEMS) to achieve high gain in analyte detection. Further, MOFs may be used as coatings for novel microstructure arrays in micropreconcentrators where the microstructures are designed to increase the surface area to volume ratio inside the micropreconcentrator while minimizing the pressure drop across the micropreconcentrator.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: February 28, 2012
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Richard I. Masel, Zheng Ni, Mark A. Shannon
  • Publication number: 20120036999
    Abstract: A method of using a crystallographic framework of sterically bulky calixarene molecules to selectively separate and/or store volatile gas components. Sterically bulky calix[4]arenes or their derivatives form a crystalline lattice that has relatively large lattice voids, is nonporous, and is held together predominately by van der Waals forces. The calix[4]arene lattice can form a guest-host assembly by absorbing a desired volatile gas guest component into the crystalline lattice without any phase shift or other change to the lattice structure. The crystalline calixarene can also be desirably used to purify a gas mixture by removing one or more volatile gas contaminants or by removing and storing the desired volatile gas component. This method can preferably be used to purify a hydrogen gas stream by removing the carbon dioxide and carbon monoxide contaminants or to remove and store oxygen from the air or carbon dioxide and carbon monoxide from combustion gases.
    Type: Application
    Filed: April 18, 2005
    Publication date: February 16, 2012
    Inventors: Jerry L. Atwood, Leonard J. Barbour, Agoston Jerga
  • Patent number: 8114194
    Abstract: A gas separation vessel has a vessel shell and a partition therein. A first bed support is mounted between the partition and the shell, and a second bed support is mounted within the partition to define a second bed space. First and second ports on the vessel shell beneath the bed supports permit gas flow between the bed spaces and the exterior of the vessel shell. A separation medium is placed in the bed spaces. A feed gas is introduced into the vessel to flow through the first bed and then through the second bed to separate at least one component of the feed gas from the other intermixed gases. Output gas is then collected from the vessel. The vessel may have a L:D ratio of not more than 4:1.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: February 14, 2012
    Assignee: On Site Gas Systems, Inc.
    Inventor: Sean Haggerty
  • Publication number: 20120021123
    Abstract: Biomass is devolatilized to produce both a combustible fuel (syngas) and activated carbon. The activated carbon is used as an adsorbent to capture a contaminant, such as mercury, and stored in a landfill, is impregnated with components with inherent fertilizer properties and tilled into arable land, is used along with coal in an electric power generation facility, or is used to remove mercury or other heavy metals from the flue gas of a coal fired power generation station prior to being stored so as to sequester both carbon and the heavy metal. Thus, both the carbon and the adsorbed mercury or other chemical are sequestered.
    Type: Application
    Filed: January 19, 2011
    Publication date: January 26, 2012
    Inventors: Philip D. Leveson, John P. Gaus
  • Patent number: 8101133
    Abstract: A radial flow reactor is disclosed for use in gas purification, separation or reaction processes and most suitably used in prepurification processes. The reactor has two concentric internal baskets which are rigidly supported at both the top and bottom ends of the reactor. The reactor has a removable section in the inner basket to accommodate rotating arms to dense load one or more layers of active materials between the concentric baskets.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: January 24, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Mark William Ackley, Cem E. Celik, Jeffert John Nowobilski, James Stanley Schneider
  • Patent number: 8101048
    Abstract: This invention relates to methods of removing impurities from compounds having similar volatilities to form ultra high purity compounds.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: January 24, 2012
    Assignee: Rohm and Haas Company
    Inventors: Francis Joseph Lipiecki, Stephen G Maroldo, Deodatta Vinayak Shenai-Khatkhate, Robert A. Ware
  • Publication number: 20120006195
    Abstract: A gas-adsorbing member is charged in low gas-permeable container (7) through its opening portion, wherein low gas-permeable container (7) is constituted by a hollow cylindrical metal member which is opened at its one end and is sealed at its other end and, also, has body portion (9) extending from the one end to the other end thereof such that the length of the body portion is equal to or larger than the maximum width of the end portions. Then, a sealing member is installed within the opening portion and near the opening portion. Then, the sealing member is molten by being heated. Thereafter, the sealing member within the opening portion is cooled to be solidified, thereby attaining sealing of the opening portion. Thus, it is possible to provide a gas-adsorbing-device fabricating method capable of suppressing degradations of the gas-adsorbing member and capable of reducing the fabrication costs.
    Type: Application
    Filed: March 23, 2010
    Publication date: January 12, 2012
    Applicant: PANASONIC CORPORATION
    Inventor: Masamichi Hashida
  • Patent number: 8088199
    Abstract: A method for obtaining particulate calcium carbonate having an average particle size less than about 12 microns is provided. The method includes the steps of (1) withdrawing from a pulp mill a mixture containing calcium carbonate; (2) treating the mixture to remove contaminants contained in the mixture to produce a treated mixture containing calcium carbonate and further having a chemical composition and/or purity which substantially inhibits the fusing together of calcium carbonate particulates; (3) recovering from the treated mixture particulate calcium carbonate having an average particle size less than about 12 microns. The calcium carbonate produced has a high surface area to volume ratio and is therefore highly reactive and suitable for numerous applications such as in the treatment of soil, filler paper production, paint production, and contaminant containment in coal stack emission assemblies.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: January 3, 2012
    Assignee: S&S Lime, Inc.
    Inventors: Gary Allen Olsen, John Carl Stuever, Susan Candace Stuever
  • Patent number: 8083835
    Abstract: A system and related method for purifying indoor air comprising: a filter bed comprising a growing medium suitable for growing plants rooted therein and configured to be capable of sustaining an airflow therethrough between a top surface thereof and a bottom surface thereof; a micro-irrigation system comprising a plurality of irrigation source outlets for delivering water to the filter bed in a substantially-uniform fashion; an active region of the filter bed comprising that region of the filter bed configured so as to substantially have the airflow flowing therethrough; and micro-irrigation system configured such that water therefrom is capable of being projected so as to reach at least 50% of a top surface area of the active region.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: December 27, 2011
    Inventors: Martin Mittelmark, Billy C. Wolverton
  • Publication number: 20110308385
    Abstract: The present invention relates to selectively isolating gases using a natrolite-based zeolite, and more particularly, to a novel natrolite-based zeolite and to selectively isolating hydrogen and/or helium gas using a natrolite-based zeolite. The present invention is characterized in that gas containing hydrogen is brought into contact with a natrolite-based zeolite to selectively isolate the hydrogen. The present invention provides a sorbent which can selectively isolate hydrogen and/or helium, and provides a method for isolating the hydrogen and/or helium at room temperature or at a high temperature.
    Type: Application
    Filed: September 21, 2009
    Publication date: December 22, 2011
    Applicant: POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventor: Suk Bong Hong
  • Publication number: 20110296990
    Abstract: The invention relates to a method for producing spherical activated carbon, wherein polymer globules, which comprise thermally decomposing chemical groups, are carbonized. It is characterized by that during the carbonization, a supplier of free radicals is added to the polymer globules, the supplier of free radicals forming free radicals, which are different from the free radicals that are generated by the decomposition of the chemical groups.
    Type: Application
    Filed: August 16, 2011
    Publication date: December 8, 2011
    Applicant: BLUCHER GMBH
    Inventors: Manfred Schönfeld, Raik Schönfeld
  • Patent number: 8071063
    Abstract: The present invention relates to the selective separation of hydrogen (“H2”) hydrocarbons in streams containing both hydrogen and hydrocarbons (e.g. methane, ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in either a pressure swing adsorption process, a temperature swing adsorption process, or a membrane separations process to separate hydrogen from hydrocarbons present in hydrogen production streams or petrochemical/petroleum refining product streams and intermediate streams.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 6, 2011
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 8070854
    Abstract: In a method for removing moisture from an optical system at high altitude, the improvement comprises using the difference in flow resistance between the desiccant path and the optical cavity path to enable airflow through the desiccant unit and not through the optical path.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: December 6, 2011
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Kazimierz T. Grzeslak, Jason Stockwell
  • Publication number: 20110290114
    Abstract: This invention provides methods for separating gas components from a gas stream. The methods are particularly advantageous in that an environmentally friendly biomass absorbent is used to assist in the separation process. The invention is particularly suited to separate water soluble gas components from a gas stream. The water soluble gas components can be used to condition the biomass for additional use, such as a conditioned feed for a biofuel. In general, the conditioned biomass will have increased enzyme digestibility, making the conditioned biomass highly suitable as feedstock for biofuel production.
    Type: Application
    Filed: June 1, 2010
    Publication date: December 1, 2011
    Applicant: MBI International
    Inventors: Timothy J. Campbell, Farzaneh Teymouri, David K. Jones
  • Publication number: 20110277767
    Abstract: This disclosure relates to porous frameworks for gas separation and sensing.
    Type: Application
    Filed: December 18, 2009
    Publication date: November 17, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Omar M. Yaghi, David Kyle Britt, David J. Tranchemontagne
  • Patent number: 8057957
    Abstract: Fuel cells and methods of operating fuel cells are disclosed. In one aspect, the invention features a fuel source for a fuel cell including a housing having an outlet, a structure having a portion in the housing, the structure defining a cavity and having a surface defining an opening in fluid communication with the cavity, and a fuel in the housing. The fuel is in fluid communication with the outlet through the opening and the cavity of the structure.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: November 15, 2011
    Assignee: The Gillette Company
    Inventors: Andrew G. Gilicinski, Bryan L. Hesse
  • Publication number: 20110272358
    Abstract: The present invention discloses a method of forming a media support wall framework having a graduated through/pore space of the framework wall such that the graduation provides a greater through space in the lowest region of the framework; providing thus an entry plenum pressure differential compensation that compensates for media compaction problems associated with media contained in vertically standing remediation units; thus providing a more equalized passage of a contaminated air or water stream in a radial direction through out the full height of the media bed and assuring more efficient use of the contained media.
    Type: Application
    Filed: May 10, 2010
    Publication date: November 10, 2011
    Inventors: Martin Crawford, Jeff Jones
  • Patent number: 8052777
    Abstract: One exemplary embodiment can be a pressure swing adsorber vessel. The pressure swing adsorber vessel can include one or more walls. Generally, the one or more walls contain an adsorbent bed having a first side and a second side and at least one spacer forming a cusp. Usually, the one or more walls and the adsorbent bed define at least one void volume adjacent to the adsorbent bed, and the cusp of the at least one spacer may be positioned in the at least one void volume. The cusp can be positioned opposing an incoming feed stream or a desorbent stream.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: November 8, 2011
    Assignee: UOP LLC
    Inventor: Paul A. Sechrist
  • Publication number: 20110259191
    Abstract: An air filter for purging unwanted substances from air, the air filter comprising: an acid-purging stage, wherein the acid-purging stage comprises an air-permeable skeleton which has an acid-neutralizing substance mounted thereto, wherein the air-permeable skeleton comprises fiberglass fibers, open cell polyurethane foam, etc. and the acid-neutralizing substance comprises sodium bicarbonate, and further wherein the sodium bicarbonate is secured to the fiberglass fibers, open cell polyurethane foam, etc. using an adhesive; and a solvent-purging stage, wherein the solvent-purging stage comprises solvent-purging granules captured between two air-permeable screens, and further wherein the solvent-purging granules comprise activated carbon granules.
    Type: Application
    Filed: September 21, 2009
    Publication date: October 27, 2011
    Inventor: Francois Hauville
  • Publication number: 20110259828
    Abstract: The present invention relates to an agglomerated zeolite adsorbent containing at least one polymer matrix that is greatly laden with at least one zeolite adsorbent. The invention also relates to the method for preparing such an adsorbent and to the uses thereof, particularly as an adsorbent of moisture, odors, volatile organic components, and the like.
    Type: Application
    Filed: December 3, 2009
    Publication date: October 27, 2011
    Inventors: Ludivine Bouvier, Serge Nicolas, Alice Medevielle, Patrick Alex
  • Publication number: 20110247495
    Abstract: The present invention relates to a structure having a core-shell configuration. The core comprises a predetermined adsorber solid material, and the shell at least partially surrounding the core comprises a predetermined humidity controlling material, thereby enabling using said adsorber solid material for interacting with and thus storing therein a predetermined adsorbable gas under desired environmental conditions. The invention also discloses a pressure vessel for use in storing at least one gas.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 13, 2011
    Inventors: Doron Marco, Shany Peled
  • Publication number: 20110247493
    Abstract: The invention relates to adsorbents for removing impurities from water-comprising gas streams, in particular for use in fuel cell systems, wherein the adsorbents comprise oxides of elements selected from the group consisting of Cu, Fe, Zn, Ni, Co, Mn, Mg, Ba, Zr, Ce, La or combinations of these elements, have a copper oxide content of at least 30% by weight and have pore volumes of less than 0.175 ml·g?1 for pores having a radius of less than 20 nm.
    Type: Application
    Filed: December 10, 2009
    Publication date: October 13, 2011
    Applicant: BASF SE
    Inventor: Stephan Hatscher
  • Patent number: 8029602
    Abstract: A fuel cell and a method for chemically storing hydrogen. Embodiments of the fuel cell include a mixture having at least one boron-nitrogen-hydrogen compound and a reactive hydride where the mixture has more than about 10 wt % hydrogen density and a hydrogen storage density of about 0.1 kg H21?1.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: October 4, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Thomas J. Groshens
  • Publication number: 20110236295
    Abstract: Polymeric ionic liquids, methods of making and methods of using the same are disclosed.
    Type: Application
    Filed: August 10, 2009
    Publication date: September 29, 2011
    Applicant: UNIVERSITY OF TOLEDO
    Inventors: Jared L. Anderson, Fei Zhao, Yunjing Meng, Qichao Zhao