Abstract: A technique to provide a higher resolution DAC architecture for converting an N-bit digital word to a corresponding analog voltage signal without increasing chip area and switching capacitance. In one example embodiment, this is accomplished by using a triple string converter. In the triple string converter, a triple switching tree is coupled to a triple resistor string and to an analog output. Each switching tree includes a plurality of switches and each resistor string includes a plurality of corresponding resistors. A logic decoder coupled to the triple switching tree receives an N-bit digital word and generates a digital signal. The plurality of switches in each switching tree is substantially simultaneously controlled by the digital signal to output a range of corresponding analog voltage signals when the triple resistor string is connected across a voltage supply.
Type:
Grant
Filed:
May 4, 2004
Date of Patent:
July 5, 2005
Assignee:
Analog Devices, Inc.
Inventors:
Prem S Swaroop, Arindam Raychaudhuri, Kaushal Kumar Jha
Abstract: An electronic meter includes a sensing circuit for sensing voltage and current values of a waveform, an analog-to-digital converter for converting the sensed voltage and current values to digital voltage and current values, a digital filter for delaying one or both of the digital voltage and current values to compensate for a phase shift error in the sensing circuit, and a computation circuit for computing one or more parameters of the waveform in response to the phase compensated voltage and current values. The electronic meter may be calibrated by applying to the meter a test waveform having a known phase shift, measuring the phase shift using the electronic meter, determining a phase shift error based on the difference between the known phase shift and the measured phase shift and determining digital filter coefficients to produce a digital filter delay that corresponds to the phase shift error.
Abstract: A method, apparatus and product for use in generating a remainder based code generates a plurality of preliminary remainder based codes in response to specified data, and synthesizing a remainder based code for the specified data, in response to the plurality of preliminary remainder based codes. In one embodiment, the plurality of preliminary remainder based codes includes at least two preliminary remainder based codes each generated in response to a respective portion of the specified data. In another embodiment, at least two preliminary remainder based codes are generated at least partially concurrently with one another.
Abstract: A die has a part that is sealed with a cap. The seal can be hermetic or non-hermetic. If hermetic, a layer of glass or metal is formed in the surface of the die, and the cap has a layer of glass or metal at a peripheral area so that, when heated, the layers form a hermetic seal. A non-hermetic seal can be formed by bonding a cap with a patterned adhesive. The cap, which can be silicon or can be a metal paddle, is electrically coupled to a fixed voltage to shield the part of the die.
Abstract: Methods and apparatus for calibrating one or more signals of an electronic device are provided. Calibration coefficients are stored in a memory, such as a fuse bank, to be applied to correct the one or more signals. A selection multiplexer is provided, the selection multiplexer capable of assigning one of a number of bit weight configurations to the calibration coefficients to set a desired range and resolution for calibration information applied to the one or more signals of the electronic device.
Abstract: An integrated circuit fuse includes P-type and N-type regions in a substrate, the P-type and N-type regions abutting at a junction, a conductive layer on the P-type and N-type regions, and circuit connections to the conductive layer for applying sufficient electrical energy to open the conductive layer over the junction in response to a fuse program signal. A method for fabricating an integrated circuit fuse is also provided.
Abstract: One embodiment of the invention is directed to a method comprising an act of generating a timing signal, wherein at least some rising edges of the timing signal are based on edges of a first delay signal having a first period and a first phase, and at least some falling edges of the timing signal are based on edges of a second delay signal having a second period that is substantially the same as the first period, and a second phase that is different from the first phase. Another embodiment of the invention is directed to a programmable clock synthesizer comprising an edge-triggered circuit that receives a rising edge delay signal and a falling edge delay signal, wherein the edge-triggered circuit is adapted to generate a synthesized clock signal having rising edges triggered in response to edges of the rising edge delay signal and falling edges triggered in response to edges of the falling edge delay signal.
Abstract: A squaring cell combines first and second exponential currents to approximate square law behavior. The exponential currents can be generated by current stacks having pairs of series-connected junctions. The exponential currents can be altered to change the shape of the exponential currents to better approximation true square law behavior. A multiplier combines four exponential currents to approximate a multiplication function. The exponential currents in the multiplier can be generated by current stacks that are cross-connected so as to generate two output currents, the difference of which represents the multiplication of two input signals.
Abstract: Images are obtained for image compression. The images are compared using sum of absolute difference devices, which have arithmetic parts, and accumulators. The sign bits of the accumulators are determined at a time of minimum distortion between two images. These sign bits are associated with sets of probabilistically-similar parts. When other sets from that set are obtained later, an early exit is established.
Type:
Grant
Filed:
June 7, 2000
Date of Patent:
June 14, 2005
Assignees:
Intel Corporation, Analog Devices, Inc.
Abstract: A method and circuit for measuring the optical modulation amplitude in the operating region of a laser diode is described. The method utilises two measurements of OMA, each measurement being related to the slope in a specific portion of the operating region of the power/current characteristic curve of the laser diode. By combining the two measurement values, the invention provides a 1 measurement for OMA in the operating region of the laser diode that allows for the presence of a non-linear response in the region.
Abstract: Described is a system and method for centralized synchronization for the transportation of data between devices in different clock domains. In a preferred embodiment, synchronization logic synchronizes read data from an asynchronous peripheral to a bus clock. Rather than being located on each peripheral, the synchronization logic is located in the bus interface logic. When there is an indication that synchronization is needed for a peripheral, the synchronization logic samples the data bus twice or more and compares the values of consecutive data samples. If the data samples are equal, this data is returned to the bus master. If they are different, the data in the next cycle is returned to the bus master.
Abstract: A fast lock phase lock loop (PLL) with minimal phase disturbance when switching from wide bandwidth mode to narrow bandwidth mode including a phase frequency detector, a charge pump, a loop filter and a voltage controlled oscillator, and a sequencer circuit for, at a first time, initiating an increase in the charge pump current to increase the loop gain to widen the loop bandwidth and initiating a decrease in the resistance in the loop filter to increase the phase margin of the PLL in the wide bandwidth mode; at a second time, initiating a reduction in the charge pump current to reduce the loop gain and bandwidth, and; at a third time, initiating an increase in the resistance in the loop filter to increase the phase margin of the PLL in the narrow bandwidth mode.
Abstract: A property of a magnetic sensor, deployed on a micro machined optical element and exposed to a magnetic field, changes as the position of the micro machined optical element changes with respect to a magnetic field or, alternatively, when the magnetic field changes with respect to the micro machined optical element. The electrical, optical and/or mechanical change in sensor property varies according to the position, and a measurement of the property change tracks the change in orientation of a moveable portion of the optical element.
Abstract: A bandgap voltage reference is described which has reduced sensitivity to noise and amplifier offset. By configuring the circuitry such that the base width of the component transistors is not varied on application of a bias, it is possible to obviate the Early effect.
Abstract: A pulse width modulated common mode feedback technique for a differential charge pump includes averaging the output of a differential charge pump to determine the common mode voltage; generating from the pump up and pump down pulses a set of up source pulses and down source pulses and a set of up sink pulses and down sink pulses and adjusting, in response to a difference between a reference voltage and the common mode voltage, the width of at least one of the sets of source and sink pulses to match the reference common mode voltages.
Abstract: A signal processing component is provided where a swapper 702 is provided upstream of real and imaginary processing elements 704 and 706 within a system for processing complex signals. A further swapper 710 is provided downstream of the elements 704 and 706. The swappers 702 and 710 operate in unison.
Abstract: A logic isolation circuit has a transmitter circuit for receiving a logic input signal and providing a periodic signal to an isolation barrier, and a receiving circuit for receiving the periodic signal from the isolation barrier and for providing an output signal that indicates the transitions in the logical input signal.
Abstract: A signal conditioning system includes first and second converters coupled to a random clock which provides a random sampling rate. Corresponding offset sensor coupled with the first and second converters sense and adjust an offset signal difference. A gain sensor is coupled with the first and second converters to sense a gain difference between the first and second converters and a gain corrector is coupled with the gain sensor to adjust the gain difference.
Abstract: In one embodiment, a programmable processor is adapted to include loop hardware to increase processing speed without significantly increasing power consumption. During a first pass through a loop, a first subset of a sequence of instructions may be loaded into the loop hardware. Then, during subsequent passes through the loop the first subset may be issued from the loop hardware while a second subset is retrieved from a memory device. In this manner, the second subset may be issued with no additional penalty after the first subset has been issued.
Type:
Grant
Filed:
November 2, 2000
Date of Patent:
May 24, 2005
Assignees:
Intel Corporation, Analog Devices, Inc.
Inventors:
Ravi P. Singh, Charles P. Roth, Gregory A. Overkamp
Abstract: An apparatus having a core processor and a plurality of cache memory banks is disclosed. The cache memory banks are connected to the core processor in such a way as to provide substantially simultaneous data accesses for said core processor.
Type:
Grant
Filed:
August 11, 2003
Date of Patent:
May 24, 2005
Assignees:
Intel Corporation, Analog Devices, Inc.
Inventors:
Hebbalalu S. Ramagopal, Michael Allen, Jose Fridman, Marc Hoffman