Patents Assigned to Freescale
  • Publication number: 20140117468
    Abstract: An integrated circuit package for sensing fluid properties includes: a substrate made of semiconductor material; a fluid property measurement circuit formed on the substrate; and a sensor circuit coupled to the fluid property measurement circuit within a same integrated circuit package. The sensor circuit is configured to generate a field that interacts with the fluid. The fluid property measurement circuit is configured to determine a change in a property of the sensor circuit as results from the field interacting with the fluid and is further configured to determine a property of the fluid based on the change in the property of the sensor circuit.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: PATRICE M. PARRIS, MD M. HOQUE
  • Publication number: 20140119131
    Abstract: A system for managing redundancy in a memory device includes memory arrays and associated periphery logic circuits, and redundant memory arrays and associated redundant periphery logic circuits. The memory arrays and a first set of logic circuits associated with the periphery logic circuits corresponding to the memory arrays are connected to the power supply by way of memory I/O switches. The redundant memory arrays and associated redundant periphery logic circuits are connected to the power supply by way of redundant I/O switches. The memory and redundant I/O switches are switched on/off based on an acknowledgement signal generated during a built-in-self-test (BIST) operation of the memory device.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Chetan Verma, Piyush Kumar Mishra, Ashish Sharma
  • Publication number: 20140119405
    Abstract: A die temperature measurement system (300) includes an external test environment setup (352) and an integrated circuit (302). The external test environment setup (352) includes means to force and accurately measure electrical variables. The integrated circuit (302) includes a bipolar transistor (325); a selectable switch (340) for selecting from plurality of integrated resistances (342, 344) to be coupled in series between a base (322) of the bipolar transistor and a first input (362); and a selectable-gain current mirror (310) with a gain, a programmable current-mirror output coupled to the collector (326) of the bipolar transistor. The bipolar transistor and optional diodes (335) are sequentially biased with a set of proportional collector current levels. For each bias condition, the temperature-dependent voltage produced by the structure is extracted and stored. Die temperature is obtained through algebraic manipulation (450) of this data. Parasitic resistance and I/O pad leakage effects are canceled.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventor: Freescale Semiconductor, Inc.
  • Publication number: 20140122010
    Abstract: A system and method for verifying the electrical behavior of a liquid crystal display (LCD) driver circuit connected to LCD segments of an electronic circuit includes generating test patterns for verifying the LCD driver circuit. The LCD driver circuit generates LCD stimuli in the form of electrical current based on the test patterns. The current is applied to front and back planes of each LCD segment. Root mean square (RMS) voltages of each LCD segment are determined and compared with predetermined threshold values to verify the state of each LCD segment.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Kushal Kamal, Kumar Abhishek, Sunny Gupta
  • Publication number: 20140122775
    Abstract: A memory controller that generates interface signals for a memory device determines an interface signal frequency based on a timing mode of the memory device and a corresponding clock division ratio. Based on the timing mode, a look up table (LUT) is selected and then a timing parameter corresponding to the clock division ratio and the interface signal frequency is fetched from the LUT. An interface signal is generated based on the interface signal frequency and fetched timing parameter.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Nitin Gera, Hemant Nautiyal, Amit Rao, Prabhjot Singh
  • Publication number: 20140118036
    Abstract: A voltage regulator bypass circuit to control bypass of a voltage regulator of an integrated circuit device, the voltage regulator bypass circuit including a first voltage detector, a second voltage detector, and circuit. The first voltage detector to detect that a core circuitry voltage level is above a first threshold and to assert a first detect signal at an output in response to the detection. The second voltage detector to detect that an unregulated supply voltage is above a second threshold and to assert a second detect signal at an output in response to the detection. The circuit having a first input coupled to the output of the first voltage detector and a second input coupled to the output of the second voltage detector, the circuit to bypass the voltage regulator in response the output of the latch being cleared.
    Type: Application
    Filed: December 13, 2013
    Publication date: May 1, 2014
    Applicants: FREESCALE SEMICONDUCTOR, INC., STMICROELECTRONICS PRIVATE LTD., STMICROELECTRONICS SRL
    Inventors: Stefano Pietri, Chris C. Dao, Juxiang Ren, Nicolas Grossier, V. Srinivasan
  • Patent number: 8709868
    Abstract: A method (90) entails placing (124) sensor elements (122) in an array (126) arranged to correspond with locations of controller dies (24) in a controller wafer (94) and encapsulating (128) the array (126) in a mold material (74) to form a panel (130) of the sensor elements (122). The sensor elements (122) include bond pads (42) that are concealed by a material section (116, 118) of the sensor elements (122). The controller wafer (94) is bonded (134) to the panel (130) to form a stacked wafer structure (136). After bonding, methodology (90) entails forming (140) conductive elements (60) on the controller wafer (95), removing material sections (100) from the controller wafer (94) and removing the material sections (116, 118) from the sensor elements (122) to expose the bond pads (42), forming (148) electrical interconnects (56), applying (152) packaging material (64), and singulating to produce sensor packages (20, 76).
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Philip H. Bowles
  • Patent number: 8713498
    Abstract: A data processing system determines current information corresponding to a node included at a device design. Physical layout information corresponding to the node is received, the physical layout information including one or more layout geometries, the one or more layout geometries providing a circuit network. The circuit network may be partitioned into two or more network segments. A current conducted at a network segment is identified based on the current information. Information representative of dimensions and metal layer of a layout geometry included at the network segment is received. The computer determines that the current exceeds a predetermined maximum threshold, the predetermined maximum threshold determined based on the dimensions and metal layer.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mehul D. Shroff, Ertugrul Demircan
  • Patent number: 8711981
    Abstract: An integrated circuit comprises a receiver and an oscillator circuit. The receiver has a first input port for receiving a first oscillatory input signal, a second input port for receiving a second oscillatory input signal, and an output port for delivering an oscillatory output signal which is a function of both the first input signal and the second input signal. The oscillator circuit has a first output port for delivering a first oscillatory signal, and a second output port for delivering a second oscillatory signal. The first output port of the oscillator circuit is coupled to the HF port, and the second output port of the oscillator circuit is coupled to the LO port. The integrated circuit may be designed such that the HF port may be disconnected from the first output port of the oscillator circuit without affecting the operability of the receiver. An apparatus for testing the proper functioning of an integrated circuit as described above and a method of producing a receiver are also disclosed.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bernhard Dehlink, Ralf Reuter
  • Patent number: 8710906
    Abstract: An integrated circuit including a substrate, multiple devices, and voltage control devices. The devices may include high threshold, low threshold, and standard threshold voltage devices. The devices and the voltage control devices are distributed across and coupled to the same substrate. Each voltage control device is configured to apply a back bias voltage at one of multiple discrete offset voltage levels. At least one voltage control device applies a first offset voltage level for back biasing high threshold voltage devices and at least one voltage control device applies a second offset voltage level for back biasing low threshold voltage devices. The selection of back biasing is based on relative population density of the different types of devices and varies across the substrate. Fine grain reverse back biasing reduces leakage current while reducing any performance decrease. Fine grain forward back biasing improves performance while reducing any leakage current increase.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Anis M. Jarrar, Stefano Pietri, Steven K. Watkins
  • Patent number: 8711154
    Abstract: Embodiments are disclosed for a system and method for parallel processing of video signals. A multi-core processor is used to establish a master-slave relationship between a first processing core and a plurality of individual processing cores. Shared memory is used to store data and control messages. A plurality of individual private memories are associated with each of the individual processing cores; and control logic is used to establish a master-slave protocol for using the plurality of individual cores to process video data. The master processing core is operable to balance the video data processing load among the individual slave processing cores.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erez Steinberg, Yaniv Klein, Yehuda Yitschak, Srirama Rao Garikipati, Rajeev Tiwari, Yong Yan
  • Patent number: 8713406
    Abstract: A method of erasing a non-volatile semiconductor memory device comprising determining a number of bit cells that failed to erase verify during an erase operation. The bit cells are included in a subset of bit cells in an array of bit cells. The method further comprises determining whether an Error Correction Code (ECC) correction has been previously performed for the subset of bit cells. The erase operation is considered successful if the number of bit cells that failed to erase verify after a predetermined number of erase pulses is below a threshold number and the ECC correction has not been performed for the subset of bit cells.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Fuchen Mu, Frank K. Baker, Jr., Chen He
  • Patent number: 8710916
    Abstract: An electronic circuit includes a plurality of circuit blocks, a plurality of bias circuits, a switching circuit, and plurality of transistors. The plurality of circuit blocks each includes a high power terminal and a low power terminal. The switching circuit includes a plurality of switches for selectively coupling a bias circuit of the plurality of bias circuits to the low power terminal of a circuit block of the plurality of circuit blocks. Each bias circuit of the plurality of bias circuits is selectively couplable to the low power terminal of each of the plurality of circuit blocks. Each transistor of the plurality of transistors has a first current terminal coupled to a circuit ground terminal, and each transistor of the plurality of transistors has a control terminal for controlling the conductivity of the plurality of the transistors by a bias circuit of the plurality of bias circuits.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ravindraraj Ramaraju, David R. Bearden, Andrew C. Russell, Shayan Zhang
  • Patent number: 8709875
    Abstract: A method of packaging a power semiconductor die includes providing a first lead frame of a dual gauge lead frame. The first lead frame includes a thick die pad. A tape is attached to a first side of the thick die pad and the power die is attached to a second side of the thick die pad. A second lead frame of the dual gauge lead frame is provided. The second lead frame has thin lead fingers. One end of the lead fingers is attached to an active surface of the power die such that the lead fingers are electrically connected to bonding pads of the power die. A molding compound is then dispensed onto a top surface of the dual gauge lead frame such that the molding compound covers the power die and the lead fingers.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jinzhong Yao, Zhigang Bai, Xuesong Xu
  • Patent number: 8710896
    Abstract: A sampling switch circuit uses correlated level shifting. The sampling switch circuit includes: a sampling switch having a first terminal, a control terminal, and an output terminal, wherein the first terminal is connected to an input voltage node; a boosting circuit connected to first and second supply voltage nodes and coupled to the control terminal of the sampling switch; and a correlated level shifting buffer circuit. The correlated level shifting buffer circuit includes: an amplifier having first and second inputs and an output, wherein the first input is connected to the input voltage node, and the output and second input are coupled to the boosting circuit; and a level shifting capacitor coupled to the second input and output of the amplifier, to the boosting circuit, and to a level shifting voltage node.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Steven P. Allen, Mohammad Nizam U. Kabir
  • Patent number: 8709848
    Abstract: MEMS devices (40) using etched cavities (42) are desirably formed using multiple etching steps. Preliminary cavities (20) formed by locally anisotropic etching to nearly the final depth have irregular (46) sidewalls (44) and steep and/or inconsistent sidewall (44) to bottom (54) intersection angles (48). This leads to less than desired cavity diaphragm (26) burst strengths. Final cavities (42) with smooth sidewalls (50), smaller and consistent sidewall (50) to bottom (54) intersection angles (58), and having more than doubled cavity diaphragm (26) burst strengths are obtained by treating the preliminary cavities (20) with TMAH etchant, preferably relatively dilute TMAH etchant. In a preferred embodiment, a cleaning step is performed between the etching step and the TMAH treatment step to remove any anisotropic etching by-products present on the preliminary cavities' (20) initial sidewalls (44).
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Srivatsa G. Kundalgurki, Scott Dye
  • Patent number: 8710636
    Abstract: A small form factor near chip scale package is provided that includes input/output contacts not only along the periphery of the package, but also along the package bottom area. Embodiments provide these additional contacts through use of an array lead frame coupled to under die signal contacts through the use of flip chip bonding techniques. The array lead frame contacts are electrically isolated through the use of a partial sawing process performed during package singulation.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Caleb C. Han
  • Patent number: 8709883
    Abstract: A first implant is performed into a substrate to form a well in which a plurality of transistors will be formed. Each transistor of a first subset of the plurality of transistors to be formed has a width that satisfies a predetermined width constraint and each transistor of a second subset has a width that does not satisfy the constraint. A second implant is performed at locations in the well in which transistors of the first subset will be formed and not at locations in the well in which transistors of the second subset will be formed. The transistors are formed, wherein a channel region of each transistor of the first subset is formed in a portion of the substrate which received the second implant and a channel region of each transistor of the second subset is formed in a portion of the substrate which did not receive the second implant.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mehul D. Shroff, William F. Johnstone, Chad E. Weintraub
  • Publication number: 20140115549
    Abstract: A method for producing a verified design of a digital to analog converter (DAC) starts with providing an HDL representation of the DAC. Numerical values of the analog output signal as a function of the representation of the DAC for a range of numerical values of the digital input signal are simulated with a simulator. A model is used for converting the simulated numerical values of the analog output signal to numerical values of an equivalent model signal in the same digital format as the input signal. A comparator compares the numerical values of the input signal and the model signal and determines differences greater than a defined tolerance.
    Type: Application
    Filed: August 13, 2013
    Publication date: April 24, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Cheng Wang, Chao Liang, Geng Zhong
  • Publication number: 20140111278
    Abstract: A transconductance amplification stage (301) includes a differential pair (306) wherein a bias current flows through each transistor (302, 304) of the pair when input voltages are equal. Tail current boosting circuitry (320), which includes a tail transistor, provides a translinear expansion of tail current of the differential pair. A feedback loop (307) dynamically biases the differential pair to maintain current through one transistor (302) of the pair at the bias current value in spite of a difference between input voltages. Another transistor (304) of the pair provides an output current responsive to a difference between input voltages. The output current is not affected by a region of operation of the tail transistor. An output structure (300, 500) includes the transconductance amplification stage and a circuit (303) for mirroring the output current. An amplifier (800) includes the output structure as a buffer between other structures (801) and an output terminal.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Ricardo Pureza COIMBRA, Edevaldo PEREIRA da SILVA, JR.