Patents Assigned to IMEC
  • Patent number: 9825654
    Abstract: The present disclosure relates to a digital frontend system for a radio device comprising a digital filter arranged for receiving digital quadrature signals and for filtering the digital quadrature signals and for outputting filtered quadrature signals; a conversion circuit arranged for receiving the filtered quadrature signals and for performing a rectangular to polar conversion of the filtered quadrature signals and for outputting a plurality of polar signals, characterized in that, the plurality of polar signals comprising an amplitude signal and quadrature phase signals.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: November 21, 2017
    Assignees: IMEC VZW, KATHOLIEKE UNIVERSITEIT LEUVEN, KU LEUVEN R&D
    Inventors: Chunshu Li, Yanxiang Huang, André Bourdoux
  • Patent number: 9826016
    Abstract: A method and system for enabling a plurality of adaptive streaming client devices to share network resources includes a network node monitoring chunk request messages of client devices configured to select a quality level of a chunk from a plurality of quality levels and to request a media server for transmission of a chunk of the selected quality level. The quality level in a monitored chunk request message of a client device is used to estimate local quality information associated with the quality performance of the client device. Global quality information, determined based on the estimated local quality information associated with the client devices, and being indicative of the global quality performance of the client devices, is sent to the client devices.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: November 21, 2017
    Assignees: KONINKLIJKE KPN N.V., IMEC VZW, GHENT UNIVERSITY
    Inventors: Stefano Petrangeli, Jeroen Famaey, Steven Latré
  • Publication number: 20170328965
    Abstract: The disclosure relates to a magnetometer sensor with negatively charged nitrogen-vacancy centers in diamond. One example embodiment is a magnetometer sensor. The magnetometer sensor includes a diamond crystal with one or more negatively charged nitrogen-vacancy centers. The magnetometer sensor also includes one or more light sources. Further, the magnetometer sensor includes an electrode. In addition, the magnetometer sensor includes a read-out module. The read-out module includes a read-out circuit configured to read-out a photocurrent from the electrode and a lock-in amplifier. The lock-in amplifier includes a first input, a second input, and an output. The magnetometer sensor additionally includes a microwave source configured to apply a microwave field to the negatively charged nitrogen-vacancy centers. The microwave source includes a microwave generator for generating continuous wave microwaves and a microwave modulator configured to modulate the continuous wave microwaves.
    Type: Application
    Filed: May 5, 2017
    Publication date: November 16, 2017
    Applicants: IMEC VZW, Universiteit Hasselt
    Inventors: Jaroslav Hruby, Emilie Bourgeois, Milos Nesladek, Ward De Ceuninck
  • Publication number: 20170325701
    Abstract: Devices, systems, and methods for controlling acquisition of a signal representing a physiological measurement are described herein. An example device comprises: an input for receiving the signal in digital form, wherein the signal has been acquired by means of at least one electrode without galvanic contact between the electrode and the living being and has been processed by circuitry for acquisition of the signal in analog domain to refine the signal before the signal is converted from analog to digital domain; an adaptation decision module, being configured to determine whether a measure of signal quality indicates that an adaptation of the circuitry for acquisition of the signal in analog domain is beneficial for the robustness of the system and/or the quality of the obtained signals; wherein the adaptation decision module, is arranged to output a control signal for controlling a parameter affecting amplifier saturation in processing of the signal.
    Type: Application
    Filed: May 8, 2017
    Publication date: November 16, 2017
    Applicants: IMEC VZW, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Ivan Dario Castro Miller, Tom Torfs
  • Publication number: 20170326546
    Abstract: The present disclosure relates to devices and methods for analyzing a fluid sample. An example device comprises a fluidic substrate comprising a micro-fluidic component embedded therein, for propagating a fluid sample; a needle or inlet for providing the fluid sample which is fluidically connected to the micro-fluidic component; a lid attached to the fluidic substrate thereby at least partly covering the fluidic substrate and at least partly closing the micro-fluidic component; wherein the fluidic substrate is a glass fluidic substrate and wherein the lid is a microchip. The present disclosure also relates to a method for fabricating a fluid analysis device. The method comprises providing a fluidic substrate; providing a lid; attaching the lid to the fluidic substrate to close the fluidic substrate at least partly.
    Type: Application
    Filed: November 26, 2015
    Publication date: November 16, 2017
    Applicant: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Paolo Fiorini
  • Publication number: 20170331652
    Abstract: Embodiments described herein include a receiver, a method, and a plurality of high-pass filters for demodulating a radio frequency (RF) signal. An example receiver includes a plurality of high-pass filters. The receiver includes a demodulator configured to demodulate an RF signal received at an input of the demodulator and configured to output a demodulated signal. The receiver also includes a plurality of high-pass filters connected to an output of the demodulator. The plurality of high-pass filters are configured to receive the demodulated signal and configured to high-pass filter the demodulated signal. The plurality of high-pass filters are configured to operate with a first set of filter responses during a first time period of the demodulated signal and configured to operate with a second set of filter responses during a second time period of the demodulated signal.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 16, 2017
    Applicant: Stichting IMEC Nederland
    Inventor: Johan van den Heuvel
  • Publication number: 20170326551
    Abstract: The present disclosure relates to a fluid analysis device which comprises a sensing device for analyzing a fluid sample, the sensing device comprising a micro-fluidic component for propagating the fluid sample and a microchip configured for sensing the fluid sample in the micro-fluidic component; a sealed fluid compartment containing a further fluid, the compartment being fluid-tight connected to the sensing device and adapted for providing the further fluid to the micro-fluidic component when the sealed fluid compartment is opened; and an inlet for providing the fluid sample to the micro-fluidic component. Further, the present disclosure relates to a method for sensing a fluid sample using the fluid analysis device.
    Type: Application
    Filed: November 24, 2015
    Publication date: November 16, 2017
    Applicant: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Paolo Fiorini
  • Publication number: 20170330760
    Abstract: The present disclosure relates to a method for manufacturing pillar or hole structures in a layer of semiconductor device, and associated semiconductor structure. At least one embodiment relates to a method for manufacturing pillar structures in a layer of a semiconductor device. The pillar structures are arranged at positions forming a hexagonal matrix configuration. The method includes embedding alignment pillar structures in a backfill brush polymer layer. The method also includes providing a BCP layer on a substantially planar surface defined by an upper surface of the alignment pillar structures and the backfill brush polymer layer. Further, the method includes inducing polymer microphase separation of the BCP polymer layer into pillar structures of a first component of the BCP polymer layer embedded in a second component of the BCP polymer layer.
    Type: Application
    Filed: October 28, 2015
    Publication date: November 16, 2017
    Applicants: IMEC VZW, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Arjun SINGH, Roel GRONHEID
  • Publication number: 20170326552
    Abstract: The present disclosure relates to a fluid analyzing device that includes a sensing device for analyzing a fluid sample. The sensing device includes a microchip configured for sensing the fluid sample, and a closed micro-fluidic component for propagating the fluid sample to the microchip. The fluid sample can be provided to the micro-fluidic component via an inlet of the fluid analyzing device. And a vacuum compartment, which is air-tight connected to the sensing device, can create in the micro-fluidic component a suction force suitable for propagating the fluid sample through the micro-fluidic component.
    Type: Application
    Filed: November 24, 2015
    Publication date: November 16, 2017
    Applicant: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Paolo Fiorini
  • Patent number: 9816935
    Abstract: The present disclosure relates to structures, systems, and methods for characterizing one or more fluorescent particles. At least one embodiment relates to an integrated waveguide structure. The integrated waveguide structure includes a substrate. The integrated waveguide structure also includes a waveguide layer arranged on top of the substrate. The waveguide layer includes one or more excitation waveguides, one or more emission waveguides, and a particle radiation coupler, which includes a resonator element. In addition, the integrated waveguide structure includes one or more sensing sites configured with respect to the one or more excitation waveguides and the one or more emission waveguides such that a fluorescent particle at one of the sensing sites is activated by an excitation radiation transmitted via the one or more excitation waveguides and radiation emitted by the fluorescent particle is coupled into at least one of the emission waveguides by the particle radiation coupler.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: November 14, 2017
    Assignee: IMEC VZW
    Inventors: Peter Peumans, Pol Van Dorpe
  • Patent number: 9818524
    Abstract: A coupling element is disclosed, comprising four coils that are arranged such that each one of the coils extends both in a first layer and a second layer. The first layer and the second layer are stacked with respect to each other and separated by an intermediate dielectric layer. The layout of each layer is configured to provide a transformer coupling between a first one and a third one of the coils, and between a second one and a fourth one of the coils. Further, the first coil and the second coil, and the third coil and the fourth coil, respectively, are routed so as to allow a differential signaling. A semiconductor device and a differential hybrid coupler comprising the coupling element are also disclosed.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: November 14, 2017
    Assignee: IMEC VZW
    Inventor: Kristof Vaesen
  • Publication number: 20170322516
    Abstract: At least one embodiment relates to an autofocus method for determining a focal plane for at least one object. The method includes reconstructing a holographic image of the at least one object such as to provide a reconstructed image at a plurality of different focal depths. The reconstructed image includes a real component and an imaginary component. The method also include performing a first edge detection on the real component for at least two depths of the plurality of different focal depths and a second edge detection on the imaginary component for the at least two depths. Further, the method includes obtaining a first measure of clarity for each of the at least two depths based on a first measure of statistical dispersion with respect to the first edge detection and a second measure of clarity.
    Type: Application
    Filed: November 30, 2015
    Publication date: November 9, 2017
    Applicants: IMEC TAIWAN CO., IMEC VZW
    Inventors: Ching-Chun Hsiao, Ting-Ting Chang, Chao-Kang Liao
  • Patent number: 9811051
    Abstract: The present disclosure relates to apparatuses and methods for performing in-line lens-free digital holography of objects. At least one embodiment relates to an apparatus for performing in-line lens-free digital holography of an object. The apparatus includes a point light source adapted for emitting coherent light. The apparatus also includes an image sensing device adapted and arranged for recording interference patterns resulting from interference from light waves directly originating from the point light source and object light waves. The object light waves originate from light waves from the point light source that are scattered or reflected by the object. The image sensing device comprises a plurality of pixels. The point light source comprises a broad wavelength spectrum light source and a pinhole structure. The image sensing device comprises a respective narrow band wavelength filter positioned above each pixel that filters within a broad wavelength spectrum of the point light source.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: November 7, 2017
    Assignee: IMEC VZW
    Inventors: Richard Stahl, Murali Jayapala, Andy Lambrechts, Geert Vanmeerbeeck
  • Publication number: 20170315213
    Abstract: The present disclosure relates to a method for cancelling spillover in a MIMO radar system. The method comprises (i) transmitting and receiving a signal in a transmit-receive pair, the received signal including a spillover signal; (ii) routing a part of the transmitted signal of the transmit-receive pair to the received signal to increase the power level of the spillover signal; and (iii) cancelling the spillover signal and the part of the transmitted signal by a spillover cancellation subsystem associated with the transmit-receive pair. Because the part of the transmitted signal corresponds to the spillover signal, both of these signals may be added together to result in a combined signal having a high enough power level to improve the functioning of the spillover cancellation subsystem.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 2, 2017
    Applicant: IMEC VZW
    Inventor: Ilja Ocket
  • Patent number: 9806737
    Abstract: A circuit and a method for converting an analog signal to a digital value representation is disclosed. In one aspect, the circuit includes an incremental sigma-delta analog-to-digital converter (ADC). The circuit further includes a first input line for providing a primary analog signal representing a sensor measurement to the incremental sigma-delta ADC. The circuit further includes a second input line for providing a secondary analog signal to the incremental sigma-delta ADC. The incremental sigma-delta ADC receives the primary and secondary analog signals during a first period (TADC1) and a second period (TADC2), respectively. The circuit further includes a filter configured to weight the digital values in a sequence of digital values output by the incremental sigma-delta ADC, and to output a single digital value representing the sensor measurement.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: October 31, 2017
    Assignee: IMEC VZW
    Inventors: Jan Craninckx, Jonathan Borremans, Maarten De Bock
  • Patent number: 9800258
    Abstract: The disclosure relates to a circuit for stabilizing a digital-to-analog converter reference voltage. One example embodiment is a circuit for stabilizing a voltage on a reference node. The circuit includes a digital-to-analog converter that includes an array of capacitors and arranged for: receiving an input voltage via an input node, receiving a voltage via a reference node and a digital-to-analog code via a controller node, and outputting a digital-to-analog output voltage. The circuit also includes a capacitive network on the reference node comprising a fixed capacitor arranged to be pre-charged to an external reference voltage and a variable capacitor arranged to be pre-charged to an external auxiliary voltage. Further, the circuit includes a measurement block. In addition, the circuit includes a calibration block arranged for determining an updated setting of the variable capacitor based on the digital-to-analog code and the measured voltage on the reference node.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: October 24, 2017
    Assignee: IMEC VZW
    Inventors: Ewout Martens, Jan Craninckx
  • Patent number: 9799632
    Abstract: Alignment of a first micro-electronic component to a receiving surface of a second micro-electronic component is realized by a capillary force-induced self-alignment, combined with an electrostatic alignment. The latter is accomplished by providing at least one first electrical conductor line along the periphery of the first component, and at least one second electrical conductor along the periphery of the location on the receiving surface of the second component onto which the component is to be placed. The contact areas surrounded by the conductor lines are covered with a wetting layer. The electrical conductor lines may be embedded in a strip of anti-wetting material that runs along the peripheries to create a wettability contrast. The wettability contrast helps to maintain a drop of alignment liquid between the contact areas so as to obtain self-alignment by capillary force.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: October 24, 2017
    Assignees: IMEC VZW, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Vikas Dubey, Ingrid De Wolf, Eric Beyne
  • Patent number: 9791621
    Abstract: A method for fabricating an integrated semiconductor photonics device is disclosed. The method may include providing a first substrate having on its top surface a monocrystalline semiconductor layer suitable for supporting an optical mode and forming a homogenous and conformal first dielectric layer on a planar surface of the monocrystalline semiconductor layer. The method may further include providing a dielectric waveguide core on the first dielectric layer, the dielectric waveguide core optically coupled to a first region of the monocrystalline semiconductor layer through the first dielectric layer. The method may further include depositing a second dielectric layer on the dielectric waveguide core, thereby covering the dielectric waveguide core, and annealing the substrate to drive hydrogen out of the dielectric waveguide core.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: October 17, 2017
    Assignee: IMEC VZW
    Inventors: Philippe Absil, Shankar Kumar Selvaraja
  • Patent number: 9792165
    Abstract: A method for binding a first and second devices is disclosed. The method is implemented using the architectural principles of REST, which allows a binding initiator to directly contact the first device and instruct the device of actions to be taken. Specifically, the binding initiator may contact the first device by providing a first REST request to the device, the request specifying that the first device is to monitor a state of a particular REST resource identified by the request and is to trigger the second device to perform a specified action when the state of that REST resource satisfies a particular condition. Using REST further allows the first device to directly contact the second device and instruct the second device to perform the specified action. Since the first device is now able to directly contact the second device, these two devices may be considered to be bound.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: October 17, 2017
    Assignees: KONINKLIJKE KPN N.V., IMEC VZW, UNIVERSITEIT GENT
    Inventors: Jeroen Hoebeke, Girum Teklemariam, Floris Van Den Abeele
  • Patent number: 9786795
    Abstract: The disclosed technology generally relates to semiconductor devices and more particularly to selector devices for memory devices having a resistance switching element, particularly resistive random access memory (RRAM) devices. In one aspect, a selector device includes a first barrier structure comprising a first metal and a first semiconductor or a first low bandgap dielectric material, and a second barrier structure comprising a second metal and a second semiconductor or a second low bandgap dielectric material. The selector device additionally includes an insulator interposed between the first semiconductor or the first low bandgap dielectric material and the second semiconductor or the second low bandgap dielectric material. The first barrier structure, the insulator, and the second barrier structure are stacked to form a metal/semiconductor or low bandgap dielectric/insulator/semiconductor or low bandgap dielectric/metal structure.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: October 10, 2017
    Assignees: IMEC VZW, Katholieke Universiteit Leuven
    Inventors: Bogdan Govoreanu, Christoph Adelmann, Leqi Zhang, Malgorzata Jurczak