Patents Assigned to Sensor Electronics Technology, Inc.
-
Patent number: 9653313Abstract: A semiconductor structure, such as a group III nitride-based semiconductor structure is provided. The semiconductor structure includes a cavity containing semiconductor layer. The cavity containing semiconductor layer can have a thickness greater than two monolayers and a multiple cavities. The cavities can have a characteristic size of at least one nanometer and a characteristic separation of at least five nanometers.Type: GrantFiled: May 2, 2016Date of Patent: May 16, 2017Assignee: Sensor Electronic Technology, Inc.Inventors: Maxim S. Shatalov, Jinwei Yang, Wenhong Sun, Rakesh Jain, Michael Shur, Remigijus Gaska
-
Patent number: 9647076Abstract: A circuit including a semiconductor device having a set of space-charge control electrodes is provided. The set of space-charge control electrodes is located between a first terminal, such as a gate or a cathode, and a second terminal, such as a drain or an anode, of the device. The circuit includes a biasing network, which supplies an individual bias voltage to each of the set of space-charge control electrodes. The bias voltage for each space-charge control electrode can be: selected based on the bias voltages of each of the terminals and a location of the space-charge control electrode relative to the terminals and/or configured to deplete a region of the channel under the corresponding space-charge control electrode at an operating voltage applied to the second terminal.Type: GrantFiled: April 12, 2016Date of Patent: May 9, 2017Assignee: Sensor Electronic Technology, Inc.Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
-
Patent number: 9647103Abstract: The current invention introduces a modulated field element incorporated into the semiconductor device outside the controlling electrode and active areas. This element changes its conductivity and/or dielectric properties depending on the electrical potentials of the interface or interfaces between the modulated field element and the semiconductor device and/or incident electromagnetic radiation. The element is either connected to only one terminal of the semiconductor device, or not connected to any terminal of a semiconductor device nor to its active area(s). Such an element can be used as modulated field plate, or a part of a field plate, as a passivation layer or its part, as a guard ring or its part, as a smart field or charge control element or its part, as a feedback element or its part, as a sensor element or its part, as an additional electrode or its part, as an electromagnetic signal path or its part, and/or for any other functions optimizing or modernizing device performance.Type: GrantFiled: November 26, 2007Date of Patent: May 9, 2017Assignee: Sensor Electronic Technology, Inc.Inventors: Alexei Koudymov, Michael Shur, Remigijus Gaska
-
Patent number: 9647168Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The p-type contact layer and electron blocking layer can be doped with a p-type dopant. The dopant concentration for the electron blocking layer can be at most ten percent the dopant concentration of the p-type contact layer. A method of designing such a heterostructure is also described.Type: GrantFiled: November 18, 2015Date of Patent: May 9, 2017Assignee: Sensor Electronic Technology, Inc.Inventors: Rakesh Jain, Maxim S. Shatalov, Jinwei Yang, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
-
Patent number: 9646911Abstract: A composite substrate configured for epitaxial growth of a semiconductor layer thereon is provided. The composite substrate includes multiple substrate layers formed of different materials having different thermal expansion coefficients. The thermal expansion coefficient of the material of the semiconductor layer can be between the thermal coefficients of the substrate layer materials. The composite substrate can have a composite thermal expansion coefficient configured to reduce an amount of tensile stress within the semiconductor layer at room temperature and/or an operating temperature for a device fabricated using the heterostructure.Type: GrantFiled: April 10, 2015Date of Patent: May 9, 2017Assignee: Sensor Electronic Technology, Inc.Inventors: Michael Shur, Maxim S. Shatalov, Alexander Dobrinsky, Remigijus Gaska
-
Publication number: 20170121701Abstract: An approach for preparing a vaccine using ultraviolet radiation is described. Aspects of this approach involve multiple iterations of inactivation of the vaccine using an ultraviolet radiation source at a set of different wavelengths and dosages. A recognition test of the vaccine using the set of different wavelengths and dosages is performed after the multiple iterations of inactivation. A controller compares results from the inactivation test and the recognition test to determine an area of acceptable radiation dosages and wavelengths generated from the ultraviolet radiation source that irradiate the live organisms without affecting efficacy and safety of the vaccine. The area of acceptable ultraviolet radiation dosages and wavelengths is representative of a difference between an ultraviolet radiation dosage that is required for inactivation and an ultraviolet radiation dosage that leads to a loss of recognition.Type: ApplicationFiled: October 31, 2016Publication date: May 4, 2017Applicant: Sensor Electronic Technology, Inc.Inventors: Alexander Dobrinsky, Michael Shur
-
Publication number: 20170117438Abstract: A heterostructure for use in an electronic or optoelectronic device is provided. The heterostructure includes one or more semiconductor layers containing columnar nanostructures (e.g., nanowires). The nanowire semiconductor layer can include sub-layers of varying composition, at least one of which is an active layer that can include quantum wells and barriers. A heterostructure can include n-type and p-type semiconductor contact layers adjacent to the nanowire semiconductor layer containing the active layer.Type: ApplicationFiled: October 23, 2016Publication date: April 27, 2017Applicant: Sensor Electronic Technology, Inc.Inventors: Michael Shur, Grigory Simin, Alexander Dobrinsky
-
Publication number: 20170117437Abstract: An optoelectronic device configured for improved light extraction through a region of the device other than the substrate is described. A group III nitride semiconductor layer of a first polarity is located on the substrate and an active region can be located on the group III nitride semiconductor layer. A group III nitride semiconductor layer of a second polarity, different from the first polarity, can located adjacent to the active region. A first contact can directly contact the group III nitride semiconductor layer of the first polarity and a second contact can directly contact the group III nitride semiconductor layer of the second polarity. Each of the first and second contacts can include a plurality of openings extending entirely there through and the first and second contacts can form a photonic crystal structure. Some or all of the group III nitride semiconductor layers can be located in nanostructures.Type: ApplicationFiled: October 23, 2016Publication date: April 27, 2017Applicant: Sensor Electronic Technology, Inc.Inventors: Michael Shur, Grigory Simin, Alexander Dobrinsky
-
Patent number: 9634189Abstract: A patterned surface for improving the growth of semiconductor layers, such as group III nitride-based semiconductor layers, is provided. The patterned surface can include a set of substantially flat top surfaces and a plurality of openings. Each substantially flat top surface can have a root mean square roughness less than approximately 0.5 nanometers, and the openings can have a characteristic size between approximately 0.1 micron and five microns. One or more of the substantially flat top surfaces can be patterned based on target radiation.Type: GrantFiled: April 26, 2016Date of Patent: April 25, 2017Assignee: Sensor Electronic Technology, Inc.Inventors: Maxim S. Shatalov, Rakesh Jain, Jinwei Yang, Michael Shur, Remigijus Gaska
-
Patent number: 9634183Abstract: A solution for designing and/or fabricating a structure including a quantum well and an adjacent barrier is provided. A target band discontinuity between the quantum well and the adjacent barrier is selected to coincide with an activation energy of a dopant for the quantum well and/or barrier. For example, a target valence band discontinuity can be selected such that a dopant energy level of a dopant in the adjacent barrier coincides with a valence energy band edge for the quantum well and/or a ground state energy for free carriers in a valence energy band for the quantum well. Additionally, a target doping level for the quantum well and/or adjacent barrier can be selected to facilitate a real space transfer of holes across the barrier. The quantum well and the adjacent barrier can be formed such that the actual band discontinuity and/or actual doping level(s) correspond to the relevant target(s).Type: GrantFiled: March 14, 2016Date of Patent: April 25, 2017Assignee: Sensor Electronic Technology, Inc.Inventors: Maxim S. Shatalov, Remigijus Gaska, Jinwei Yang, Michael Shur, Alexander Dobrinsky
-
Publication number: 20170110628Abstract: A semiconductor structure comprising a buffer structure and a set of semiconductor layers formed adjacent to a first side of the buffer structure is provided. The buffer structure can have an effective lattice constant and a thickness such that an overall stress in the set of semiconductor layers at room temperature is compressive and is in a range between approximately 0.1 GPa and 2.0 GPa. The buffer structure can be grown using a set of growth parameters selected to achieve the target effective lattice constant a, control stresses present during growth of the buffer structure, and/or control stresses present after the semiconductor structure has cooled.Type: ApplicationFiled: December 28, 2016Publication date: April 20, 2017Applicant: Sensor Electronic Technology, Inc.Inventors: Maxim S. Shatalov, Jinwei Yang, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
-
Patent number: 9627351Abstract: A solution for packaging a two terminal device, such as a light emitting diode, is provided. In one embodiment, a method of packaging a two terminal device includes: patterning a metal sheet to include a plurality of openings; bonding at least one two terminal device to the metal sheet, wherein a first opening corresponds to a distance between a first contact and a second contact of the at least one two terminal device; and cutting the metal sheet around each of the least one two terminal device, wherein the metal sheet forms a first electrode to the first contact and a second electrode to the second contact.Type: GrantFiled: August 25, 2015Date of Patent: April 18, 2017Assignee: Sensor Electronic Technology, Inc.Inventors: Yuri Bilenko, Michael Shur, Remigijus Gaska, Alexander Dobrinsky
-
Patent number: 9625372Abstract: A solution for evaluating a sample gas for a presence of a trace gas, such as ozone, is provided. The solution uses an ultraviolet source and an ultraviolet detector mounted in a chamber. The chamber can include reflecting walls and/or structures configured to guide ultraviolet light. A computer system can operate the ultraviolet source in a high power pulse mode and acquire data corresponding to an intensity of the ultraviolet radiation detected by the ultraviolet detector while a sample gas is present in the chamber. Using the data, the computer system can determine a presence and/or an amount of the trace gas in the sample gas.Type: GrantFiled: April 16, 2013Date of Patent: April 18, 2017Assignee: Sensor Electronic Technology, Inc.Inventors: Yuri Bilenko, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
-
Publication number: 20170104140Abstract: A composite material, which can be used as an encapsulant for an ultraviolet device, is provided. The composite material includes a matrix material and at least one filler material incorporated in the matrix material that are both at least partially transparent to ultraviolet radiation of a target wavelength. The filler material includes microparticles and/or nanoparticles and can have a thermal coefficient of expansion significantly smaller than a thermal coefficient of expansion of the matrix material for relevant atmospheric conditions. The relevant atmospheric conditions can include a temperature and a pressure present during each of: a curing and a cool down process for fabrication of a device package including the composite material and normal operation of the ultraviolet device within the device package.Type: ApplicationFiled: December 23, 2016Publication date: April 13, 2017Applicant: Sensor Electronic Technology, Inc.Inventors: Remigijus Gaska, Maxim S. Shatalov, Alexander Dobrinsky, Jinwei Yang, Michael Shur
-
Publication number: 20170104131Abstract: A profiled surface for improving the propagation of radiation through an interface is provided. The profiled surface includes a set of large roughness components providing a first variation of the profiled surface having a characteristic scale approximately an order of magnitude larger than a target wavelength of the radiation. The set of large roughness components can include a series of truncated shapes. The profiled surface also includes a set of small roughness components superimposed on the set of large roughness components and providing a second variation of the profiled surface having a characteristic scale on the order of the target wavelength of the radiation.Type: ApplicationFiled: December 26, 2016Publication date: April 13, 2017Applicant: Sensor Electronic Technology, Inc.Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
-
Publication number: 20170104135Abstract: A mounting structure for mounting a set of optoelectronic devices is provided. A mounting structure for a set of optoelectronic devices can include: a body formed of an insulating material; and a heatsink element embedded within the body. A heatsink can be located adjacent to the mounting structure. The set of optoelectronic devices can be mounted on a side of the mounting structure opposite of the heatsink.Type: ApplicationFiled: October 12, 2016Publication date: April 13, 2017Applicant: Sensor Electronic Technology, Inc.Inventors: Michael Shur, Grigory Simin, Alexander Dobrinsky
-
Publication number: 20170104138Abstract: A solution for packaging an optoelectronic device using an ultraviolet transparent polymer is provided. The ultraviolet transparent polymer material can be placed adjacent to the optoelectronic device and/or a device package on which the optoelectronic device is mounted. Subsequently, the ultraviolet transparent polymer material can be processed to cause the ultraviolet transparent polymer material to adhere to the optoelectronic device and/or the device package. The ultraviolet transparent polymer can be adhered in a manner that protects the optoelectronic device from the ambient environment.Type: ApplicationFiled: December 22, 2016Publication date: April 13, 2017Applicant: Sensor Electronic Technology, Inc.Inventors: Maxim S. Shatalov, Saulius Smetona, Alexander Dobrinsky, Michael Shur, Mikhail Gaevski
-
Publication number: 20170104129Abstract: A device having a layer with a patterned surface for improving the growth of semiconductor layers, such as group III nitride-based semiconductor layers with a high concentration of aluminum, is provided. The patterned surface can include a substantially flat top surface and a plurality of stress reducing regions, such as openings. The substantially flat top surface can have a root mean square roughness less than approximately 0.5 nanometers, and the stress reducing regions can have a characteristic size between approximately 0.1 microns and approximately five microns and a depth of at least 0.2 microns. A layer of group-III nitride material can be grown on the first layer and have a thickness at least twice the characteristic size of the stress reducing regions.Type: ApplicationFiled: December 23, 2016Publication date: April 13, 2017Applicant: Sensor Electronic Technology, Inc.Inventors: Rakesh Jain, Wenhong Sun, Jinwei Yang, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
-
Publication number: 20170100495Abstract: Ultraviolet radiation is directed within an area. Items located within the area and/or one or more conditions of the area are monitored over a period of time. Based on the monitoring, ultraviolet radiation sources are controlled by adjusting a direction, an intensity, a pattern, and/or a spectral power of the ultraviolet radiation generated by the ultraviolet radiation source. Adjustments to the ultraviolet radiation source(s) can correspond to one of a plurality of selectable operating configurations including a storage life preservation operating configuration, a disinfection operating configuration, and an ethylene decomposition operating configuration.Type: ApplicationFiled: December 22, 2016Publication date: April 13, 2017Applicant: Sensor Electronic Technology, Inc.Inventors: Michael Shur, Maxim S. Shatalov, Timothy James Bettles, Yuri Bilenko, Saulius Smetona, Alexander Dobrinsky, Remigijus Gaska, Igor Agafonov
-
Publication number: 20170100494Abstract: A system for providing ultraviolet treatment to light absorbing liquids, such as biological liquids in a medical instrument, is disclosed. The system can include an ultraviolet impenetrable housing configured to enclose a portion of the medical instrument containing the biological fluid. At least one ultraviolet radiation source is integrated within the housing that emits ultraviolet radiation towards the medical instrument and the biological fluid. A control unit is configured to direct the ultraviolet radiation source to treat the biological fluid with ultraviolet radiation.Type: ApplicationFiled: October 13, 2016Publication date: April 13, 2017Applicant: Sensor Electronic Technology, Inc.Inventors: Alexander Dobrinsky, Timothy James Bettles, Michael Shur