Abstract: An image sensor device may include an array of image sensing pixels with adjacent image sensing pixels being arranged in macropixel, and a processor coupled to the array of image sensing pixels. The processor may be configured to receive pixel signals from the array of image sensing pixels, and arrange the received pixel signals into macropixel signal sets for respective macropixels. The processor may be configured to perform, in parallel, an image enhancement operation on the received pixel signals for each macropixel signal set to generate enhanced macropixel signals, and transmit the enhanced macropixel signals.
Abstract: A receiver for digital signals includes a radiofrequency stage. A feedback loop controls an amplitude of a modulated radiofrequency signal passing through the radiofrequency stage as a function of a comparison of a baseband signal with a reference value. A baseband stage includes an RC network cascaded to the radiofrequency stage and coupled to a baseband detector that generates the baseband signal. The feedback loop includes a circuit for detecting a range of variation of the comparison. The amplitude of the modulated radiofrequency signal is controlled as a function of an end value (e.g., maximum or minimum) of the detected range of variation. A switching circuit operates to selectively short circuit a resistive component of the RC network during receiver start-up.
Type:
Grant
Filed:
September 29, 2016
Date of Patent:
November 14, 2017
Assignee:
STMicroelectronics S.r.l.
Inventors:
Ranieri Guerra, Roberto Larosa, Giuseppe Palmisano
Abstract: An apparatus comprising: a sensor; and a resistor array comprising a set of resistors; wherein on a first cycle: at least one first of said resistors is configured to provide a first resistance value; and on a second cycle: at least one second of said resistors is configured to provide said first resistance value.
Type:
Grant
Filed:
August 30, 2013
Date of Patent:
November 14, 2017
Assignee:
STMICROELECTRONICS INTERNATIONAL N.V.
Inventors:
Tanmoy Sen, Aswani Aditya Kumar Tadinada
Abstract: A support structure includes an internal cavity. An elastic membrane extends to divide the internal cavity into a first chamber and a second chamber. The elastic membrane includes a nanometric-sized pin hole extending there through to interconnect the first chamber to the second chamber. The elastic membrane is formed of a first electrode film and a second electrode film separated by a piezo insulating film. Electrical connection leads are provided to support application of a bias current to the first and second electrode films of the elastic membrane. In response to an applied bias current, the elastic membrane deforms by bending in a direction towards one of the first and second chambers so as to produce an increase in a diameter of the pin hole.
Abstract: Multicast transmissions are efficient but do not allow for individual acknowledgement that the data was received by each receiver. This is not acceptable for isochronous systems that require specific levels of QoS for each device. A multimedia communications protocol is provided that uses a novel multi-destination burst transmission protocol in multimedia isochronous systems. The transmitter establishes a bi-directional burst mode for multicasting data to multiple devices and receiving Reverse Start of Frame (RSOF) delimiters from each multicast-destination receiver in response to multiple SOF delimiters, thus providing protocol-efficient multi-destination acknowledgements.
Type:
Grant
Filed:
September 10, 2015
Date of Patent:
November 14, 2017
Assignee:
STMicroelectronics, Inc.
Inventors:
Oleg Logvinov, Aidan Cully, David Lawrence, Michael Macaluso
Abstract: An integrated circuit includes a silicon-on-insulator wafer and interconnect layer providing a support for a coplanar waveguide formed above a top side of the support. A through-silicon via is formed from a back side of the support and passing through the silicon-on-insulator wafer to reach the interconnect layer. A trench is formed from the back side of the support underneath the coplanar waveguide. The trench extends over at least an entire length of the coplanar waveguide. The trench passes through the silicon-on-insulator wafer to reach the interconnect layer and may have a substantially same depth as the through-silicon via.
Abstract: A micromechanical structure of a MEMS device, integrated in a die of semiconductor material provided with a substrate and having at least a first axis of symmetry lying in a horizontal plane, has a stator structure, which is fixed with respect to the substrate, and a rotor structure, having a suspended mass, mobile with respect to the substrate and to the stator structure as a result of an external action, the stator structure having fixed sensing electrodes capacitively coupled to the rotor structure; a compensation structure is integrated in the die for compensation of thermo-mechanical strains. The compensation structure has stator compensation electrodes, which are fixed with respect to the substrate, are capacitively coupled to the rotor structure, and are arranged symmetrically to the fixed sensing electrodes with respect to the first axis of symmetry.
Abstract: A hybrid analog-digital pixel circuit is fabricated on two wafers. A first wafer includes the analog pixel circuitry and a second wafer includes the digital control and processing circuitry. Externally accessible contact structures for electrically interconnecting the two wafers are arranged in groups. Each group includes externally accessible contact structures for carrying signals associated solely with operation of a corresponding pixel.
Abstract: A sensor of volatile substances includes: a first electrode structure and a second electrode structure capacitively coupled, comb-fingered, and arranged coplanar in a plane; and a sensitive layer, of a sensitive material that is permeable to a volatile substance and has electrical permittivity depending upon a concentration of the volatile substance absorbed by the sensitive material. The sensitive layer extends from opposite sides of the plane.
Abstract: An acoustic galvanic isolation device includes a substrate capable of transmitting an acoustic wave. A first network of vibrating membrane electroacoustic transducers is arranged on a first surface of the substrate. A second network of vibrating membrane electroacoustic transducers is arranged on a second opposite surface of the substrate. An effective thickness of the substrate exhibits a gradient between the first and second surfaces with respect to propagating the acoustic wave.
Abstract: An electronic device may include a touchscreen having sensing capacitors, and readout circuitry. The readout circuitry may be configured to accumulate a sample set from each sensing capacitor, divide the sample set into sample subsets, remove a given sample subset when the given sample subset exceeds a threshold, and process remaining sample subsets for touch input.
Type:
Grant
Filed:
August 31, 2015
Date of Patent:
November 14, 2017
Assignee:
STMICROELECTRONICS ASIA PACIFIC PTE. LTD.
Inventors:
Kusuma Adi Ningrat, Lokesh Kumar Korapati, Jerry Kim
Abstract: A miniature oxygen sensor makes use of paramagnetic properties of oxygen gas to provide a fast response time, low power consumption, improved accuracy and sensitivity, and superior durability. The miniature oxygen sensor disclosed maintains a sample of ambient air within a micro-channel formed in a semiconductor substrate. O2 molecules segregate in response to an applied magnetic field, thereby establishing a measurable Hall voltage. Oxygen present in the sample of ambient air can be deduced from a change in Hall voltage with variation in the applied magnetic field. The magnetic field can be applied either by an external magnet or by a thin film magnet integrated into a gas sensing cavity within the micro-channel. A differential sensor further includes a reference element containing an unmagnetized control sample. The miniature oxygen sensor is suitable for use as a real-time air quality monitor in consumer products such as smart phones.
Abstract: A method is provided for performing a management of a multi-subscription SIM module. The multi-subscription SIM module includes at least one memory adapted to store at least a first and a second profile associated with a respective first and a second mobile network operator. The memory includes a volatile portion. The operation of storing includes installing or updating profiles by downloading one or more downloaded profiles from a remote host. The management includes selecting one or more enabled profiles including an application to be executed and allocating a partition of the volatile portion of the memory to the one or more enabled profile.
Abstract: An integrated circuit (IC) device may include a leadframe and an IC die having a first surface coupled to the lead frame and a second surface opposite the first surface. The IC device may further include a conductive clip including a first portion coupled to the second surface of the IC die, a second portion coupled to the first portion and extending laterally away from the IC die, and at least one flexible lead coupled to the second portion and looping back under the second portion toward the leadframe. Furthermore, a package may be over the leadframe, IC die, and conductive clip and have an opening therein exposing the at least one flexible lead.
Abstract: An electronic device includes first and second transistors coupled in series between first and second source voltage levels. An inductor is coupled between a node coupling the first and second transistors and a load. Control logic is operative to generate control pulses operative to switch the first and second transistors. The controller generates the control pulses as a continuous stream of control pulses in a continuous conduction mode, and skips generation of some control pulses in a discontinuous conduction mode in response to a pulse skipping signal. A pulse skipping circuit is operative to generate a sense voltage as a function of an inductor current in the inductor, compare the sense voltage to ground, and generate a pulse skipping signal to the control logic when the sense voltage is below ground.
Type:
Grant
Filed:
February 5, 2016
Date of Patent:
November 14, 2017
Assignee:
STMicroelectronics International N.V.
Inventors:
Matthieu Thomas, Bohumil Janik, Ondrej Tlaskal
Abstract: A circuit generates a number of oscillations. The circuit includes a first branch with at least one delay line introducing symmetrical delays on rising edges and on falling edges and at least one asymmetrical delay element introducing different delays on rising edges and on falling edges. The circuit further includes a second branch looped back on the first branch and including at least one delay line introducing symmetrical delays on rising edges and on falling edges.
Type:
Application
Filed:
November 28, 2016
Publication date:
November 9, 2017
Applicant:
STMicroelectronics (Rousset) SAS
Inventors:
Albert Martinez, Michel Agoyan, Jean Nicolai
Abstract: An AC/DC converter includes: a first terminal and a second terminal for receiving an AC voltage and a third terminal and a fourth terminal for supplying a DC voltage. A rectifying bridge includes input terminals respectively coupled to the first terminal and the second terminal, and output terminals respectively coupled to the third terminal and fourth terminal. A first branch of the rectifying bridge includes, connected between the output terminals, two series-connected thyristors with a junction point of the two thyristors being connected to a first one of the input terminals. A second branch of the rectifying bridge is formed by series connected diodes. A control circuit is configured to generate control signals for application to the control gates of the thyristors.
Abstract: A logic two-to-one multiplexer includes: two input terminals; one output terminal; a control terminal. Four series-connected two-to-one multiplexers are connected such that a first multiplexer has its inputs connected to the input terminals, a last multiplexer has its output connected to the output terminal, and the other multiplexers have their respective inputs interconnected to the output of the previous multiplexer in the series association. Half of the multiplexers are controlled in reverse with respect to the other half of the multiplexers.
Abstract: An electronic device includes a supporting substrate having a front mounting face and an electrical connection network. An integrated circuit chip is mounted to the mounting face and is electrically connected to the electrical connection network. A primary encapsulation block embeds the integrated circuit chip and extends above and around the integrated circuit chip on the mounting face of the supporting substrate. An opening is provided in the primary encapsulation block to at least partially uncover an electrical contact. An additional wire made from an electrically conductive material has an end that is electrically connected to the electrical contact. An additional encapsulation block above the primary encapsulation block embeds the additional wire.
Type:
Application
Filed:
July 25, 2017
Publication date:
November 9, 2017
Applicants:
STMicroelectronics (Alps) SAS, STMicroelectronics (Grenoble 2) SAS
Inventors:
Yvon Imbs, Laurent Schwarz, David Auchere, Laurent Marechal
Abstract: A pulse counting circuit receives pulses supplied by a source circuit having at least two inverted pulse signal supply terminals. The circuit includes a first counter to count pulses of a first pulse signal and supply a first count and a second counter to count pulses of a second pulse signal and supply a second count. A selection circuit selects one of the first and second counts.