Patents Examined by Khiem D Nguyen
  • Patent number: 11488973
    Abstract: Memory device and formation method are provided. The memory device includes a substrate; a staircase structure on the substrate; a string driver structure over the staircase structure on a side opposite to the substrate; and a metal routing structure, between the string driver structure and the staircase structure along a vertical direction with respect to a lateral surface of the substrate. The staircase structure includes a plurality of word line tiers. The string driver structure includes a plurality of transistors to individually address the plurality of word line tiers. The string driver structure and the metal routing structure are vertically aligned with the staircase structure based on a lateral central region of the staircase structure.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: November 1, 2022
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventor: Jin Yong Oh
  • Patent number: 11489500
    Abstract: A differential amplifier of a memory controller may include: an amplification stage configured to amplify input differential signals to generate intermediate differential signals; a control circuit configured to control slew rates for the intermediate differential signals; and an output circuit configured to selectively perform one or more switching operations according to the intermediate differential signals to generate output differential signals.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: November 1, 2022
    Assignee: SK hynix Inc.
    Inventor: Keun Jin Chang
  • Patent number: 11489497
    Abstract: A bias circuit includes first to fourth transistors and a phase compensation circuit. In the first transistor, a reference current or voltage is supplied to a first terminal, and the first terminal and a second terminal are connected. In the second transistor, a first terminal is connected to the first transistor, and a third terminal is grounded. In the third transistor, a power supply voltage is supplied to a first terminal, a second terminal is connected to the first transistor, and a bias current or voltage is supplied from a third terminal to an amplifier transistor. In the fourth transistor, a first terminal is connected to the third transistor, a second terminal is connected to the second transistor, and a third terminal is grounded. The phase compensation circuit is provided in a path extending from the fourth transistor to the third transistor through the second and first transistors.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: November 1, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Takashi Soga
  • Patent number: 11489503
    Abstract: Cross-coupling of switched-capacitor output common-mode feedback capacitors in dynamic residue amplifiers is provided via a cross-coupled amplifier, comprising: a current source connected to a first node; a feedback capacitor connected to the first node and a second node; a feedback resistor connected between the second node and ground; an amplifier having an input connected to the second node; a gain transistor having: a drain connected to the first node; a source connected to ground; and a gate connected to an output of the amplifier; and a load capacitor connected to the first node and ground.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: November 1, 2022
    Assignee: XILINX, INC.
    Inventors: Vipul Bajaj, Bruno Miguel Vaz
  • Patent number: 11489494
    Abstract: A dynamic amplifier includes an amplifier configured to differentially amplify first and second input signals to generate first and second output signals, a bias circuit, and a variable impedance circuit. The bias circuit is connected between a first power node configured to supply a first source voltage and the amplifier, and configured to apply bias to the amplifier. The variable impedance circuit is connected between the amplifier and a second power node configured to supply a second source voltage that is lower than the first source voltage. The variable impedance circuit is configured to adjust amplification gain of the amplifier, by adjusting impedance based on a magnitude of one among the first and second input signals and the first and second output signals.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: November 1, 2022
    Assignees: SAMSUNG ELECTRONICS CO., LTD., INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSITY
    Inventors: Yunhong Kim, Youngcheol Chae
  • Patent number: 11488838
    Abstract: A semiconductor device has a first conductive layer and a semiconductor die disposed adjacent to the first conductive layer. An encapsulant is deposited over the first conductive layer and semiconductor die. An insulating layer is formed over the encapsulant, semiconductor die, and first conductive layer. A second conductive layer is formed over the insulating layer. A first portion of the first conductive layer is electrically connected to VSS and forms a ground plane. A second portion of the first conductive layer is electrically connected to VDD and forms a power plane. The first conductive layer, insulating layer, and second conductive layer constitute a decoupling capacitor. A microstrip line including a trace of the second conductive layer is formed over the insulating layer and first conductive layer. The first conductive layer is provided on an embedded dummy die, interconnect unit, or modular PCB unit.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: November 1, 2022
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: Yaojian Lin, Xu Sheng Bao, Kang Chen
  • Patent number: 11482497
    Abstract: A package structure and method of forming the same are provided. The package structure includes a first die and a second die disposed side by side, a first encapsulant laterally encapsulating the first and second dies, a bridge die disposed over and connected to the first and second dies, a second encapsulant and a first RDL structure. The bridge die includes a semiconductor substrate, a conductive via and an encapsulant layer. The semiconductor substrate has a through substrate via embedded therein. The conductive via is disposed over a back side of the semiconductor substrate and electrically connected to the through substrate via. The encapsulant layer is disposed over the back side of the semiconductor substrate and laterally encapsulates the conductive via. The second encapsulant is disposed over the first encapsulant and laterally encapsulates the bridge die. The first RDL structure is disposed on the bridge die and the second encapsulant.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: October 25, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Lin, Chih-Wei Wu, Chia-Nan Yuan, Ying-Ching Shih, An-Jhih Su, Szu-Wei Lu, Ming-Shih Yeh, Der-Chyang Yeh
  • Patent number: 11482976
    Abstract: A differential amplifier includes first and second MOS transistors of a first conductivity type which constitute a differential input circuit, a bias current source which supplies a bias current to the first and second MOS transistors, and a third MOS transistor of the first conductivity type provided between the bias current source and the first and second MOS transistors and constituted to limit a back-gate voltage of the first and second MOS transistors.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: October 25, 2022
    Assignee: ABLIC INC.
    Inventor: Yoshiomi Shiina
  • Patent number: 11482480
    Abstract: A package substrate and method of manufacturing a package substrate and a semiconductor device package are provided. The package substrate includes a circuit layer, an optically-cured dielectric layer, a plurality of block layers and a sacrificial layer. The circuit layer includes a plurality of conductive pads. The optically-cured dielectric layer has an upper surface and a lower surface opposite to the upper surface. The optically-cured dielectric layer covers the circuit layer, and first surfaces of the conductive pads are at least partially exposed from the upper surface of the optically-cured dielectric layer. The block layers are respectively disposed on the first surfaces of the conductive pads exposed by the optically-cured dielectric layer. The sacrificial layer is disposed on the optically-cured dielectric layer and covering the block layers.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: October 25, 2022
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventor: You-Lung Yen
  • Patent number: 11476817
    Abstract: An active current source load of a fully differential amplifier which is converted into a transconductance (gm) component also at higher frequency by feed-forwarding input signals to their gates. With signal coupling to gate, unity gain bandwidth (UGB) of the amplifier increases by a factor of two. In addition to this, the signal is coupled to source as well to achieve three-fold UGB enhancement. Thus, the effective trans-conductance is gmp at dc and becomes gmp+(gmngate+gmnsrc) at high frequency which triples the UGB when gmp=gmngate/src.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: October 18, 2022
    Assignee: Intel Corporation
    Inventors: Saurabh Anmadwar, Dheeraj Shetty, Madhuban Kishor
  • Patent number: 11463059
    Abstract: The present invention is directed to electrical circuits. In a specific embodiment, the present invention provides variable gain amplifier that includes an impedance ladder and a control circuit. The impedance ladder includes n switches configured in parallel. The control circuit includes a digital-to-analog converter and an amplifier. The control circuit generates n control signals for the n switches. There are other embodiments as well.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: October 4, 2022
    Assignee: Marvell Asia Pte Ltd.
    Inventors: Praveen Prabha, Karthik Raviprakash, Luke Wang, Stephane Dallaire
  • Patent number: 11463056
    Abstract: An integrated circuit includes a multiplexer circuit configured to provide an output signal on a conductive line, a programmable gain amplifier having a non-inverting input connected to the conductive line to receive the output signal from the multiplexer, a slew rate adjust circuit connected at a first node on the conductive line between the multiplexer circuit and the programmable gain amplifier, a first switch including a first terminal connected to the first node and a second terminal connected to the input of the programmable gain amplifier, and a low pass filter connected between the first and second terminals of the first switch.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: October 4, 2022
    Assignee: NXP USA, Inc.
    Inventors: Carmelo Morello, Hanqing Xing, Ranga Seshu Paladugu, Soon G. Lim
  • Patent number: 11462474
    Abstract: Embodiments of three-dimensional (3D) memory devices and methods for forming the 3D memory devices are disclosed. In an example, a NAND memory device includes a substrate, a plurality of NAND strings on the substrate, one or more peripheral devices above the NAND strings, a single crystalline silicon layer above the peripheral devices, and one or more interconnect layers between the peripheral devices and the NAND strings. In some embodiments, the NAND memory device includes a bonding interface at which an array interconnect layer contacts a peripheral interconnect layer.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: October 4, 2022
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Jifeng Zhu, Zhenyu Lu, Jun Chen, Yushi Hu, Qian Tao, Simon Shi-Ning Yang, Steve Weiyi Yang
  • Patent number: 11456709
    Abstract: The present application discloses a transconductance amplifier and a related chip. The transconductance amplifier is configured to generate an output current according to a positive input voltage and a negative input voltage, wherein the transconductance amplifier includes: an input stage, configured to receive the positive input voltage and the negative input voltage and generate a positive output current and a negative output current, wherein the input stage includes: a first transistor, wherein a gate thereof is coupled to the positive input voltage; a second transistor, wherein a gate thereof is coupled to the negative input voltage; a first resistor, serially connected between the first transistor and the second transistor; a third transistor, wherein a source of the third transistor is coupled between the first resistor and the first transistor, and a drain of the third transistor is configured to output the positive output current; and a fourth transistor.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: September 27, 2022
    Assignee: SHENZHEN GOODIX TECHNOLOGY CO., LTD.
    Inventor: Wen-Chi Wang
  • Patent number: 11456710
    Abstract: A low noise amplifier (LNA) includes a pair of n-type transistors, each configured to provide a first transconductance; a pair of p-type transistors, each configured to provide a second transconductance; a first pair of coupling capacitors, cross-coupled between the pair of n-type transistors, and configured to provide a first boosting coefficient to the first transconductance; and a second pair of coupling capacitors, cross-coupled between the pair of p-type transistors, and configured to provide a second boosting coefficient to the second transconductance, wherein the LNA is configured to use a boosted effective transconductance based on the first and second boosting coefficients, and the first and second transconductances to amplify an input signal.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: September 27, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: An-Hsun Lo, Wen-Sheng Chen, En-Hsiang Yeh, Tzu-Jin Yeh
  • Patent number: 11456236
    Abstract: A vertical semiconductor device including a plurality of vertical memory cells on an upper surface of a first substrate, an adhesive layer on a lower surface of the first substrate that is opposite to the upper surface of the first substrate, a second substrate having first peripheral circuits thereon, a lower insulating interlayer on the second substrate, and a plurality of wiring structures electrically connecting the vertical memory cells and the first peripheral circuits. A lower surface of the adhesive layer and an upper surface of the lower insulating interlayer may be in contact with each other.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: September 27, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-Sung Yang, Joon-Sung Lim, Sung-Min Hwang, Ji-Young Kim, Ji-Won Kim
  • Patent number: 11451203
    Abstract: An isolation amplification circuit having an input stage circuitry and a control circuitry stage interconnected through a galvanic isolation barrier. The input stage circuitry includes a first filter network and a second filter network for supplying first and second output signals in response to the application of first and second electrical input signals. The input stage circuitry includes a first feedback path configured for applying a first feedback signal to a common node of the first filter network to close a first feedback loop around the first filter network and a second feedback path configured for applying a second feedback signal to a common node of the second filter network to close a second feedback loop around the second filter network.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: September 20, 2022
    Assignee: CathVision ApS
    Inventors: Harold Wodlinger, Arkadiusz Biel, Hogyu Xi, Richard Fine
  • Patent number: 11450628
    Abstract: Provided is a package structure including a first die; a plurality of through vias, aside the first die; a first encapsulant laterally encapsulating the first die and the plurality of through vias; a first redistribution layer (RDL) structure on first sides of the first die, plurality of through vias, and the first encapsulant; a second RDL structure on second sides of the first die, the plurality of through vias, and the first encapsulant; and a plurality of conductive connectors, electrically connected to the second RDL structure. Portions of the first RDL structure, the plurality of through vias, and the second RDL structure are electrically connected to each other and form a solenoid inductor laterally aside the first die.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: September 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Chun Tang, Chung-Hao Tsai, Chen-Hua Yu, Chuei-Tang Wang, Chia-Chia Lin
  • Patent number: 11451202
    Abstract: A signal output circuit includes an inverting amplifier circuit, a feedback capacitor and a low pass filter. The inverting amplifier circuit includes an input terminal and an output terminal. The inverting amplifier circuit executes an inverting amplification based on an input signal to output a signal to the output terminal at a pull-up state. An output stage of the inverting amplifier circuit is an open collector or an open drain. The feedback capacitor is connected between the input terminal and the output terminal of the inverting amplifier circuit. The low pass filter has an input and an output. The input of the low pass filter is connected to the output terminal of the inverting amplifier. The output of the low pass filter is connected to the feedback capacitor.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: September 20, 2022
    Assignee: DENSO CORPORATION
    Inventor: Takahisa Koyasu
  • Patent number: 11449024
    Abstract: A control system configurable by a configuration application and comprising one or more control processors, one or more gateways, a communication network, a portable electronic device executing the configuration application and one or more controllable devices wherein the controllable device is represented by one or more virtual devices.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: September 20, 2022
    Inventors: Evan Robert Ackmann, Fred Bargetzi, John Pavlik, Doug Jacobson