Patents by Inventor Wen Hung (Steven) Lu

Wen Hung (Steven) Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200151556
    Abstract: A Static Random Access Memory (SRAM) device in a binary neural network is provided. The SRAM device includes an SRAM inference engine having an SRAM computation architecture with a forward path that include multiple SRAM cells. The multiple SRAM cells are configured to form a chain of SRAM cells such that an output of a given one of the multiple SRAM cells is an input to a following one of the multiple SRAM cells. The SRAM computation architecture is configured to compute a prediction from an input.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 14, 2020
    Inventors: Chia-Yu Chen, Jui-Hsin Lai, Ko-Tao Lee, Li-Wen Hung
  • Patent number: 10651344
    Abstract: A light-emitting device includes a semiconductor structure including a first semiconductor layer, a second semiconductor layer, and an active layer formed between the first semiconductor layer and the second semiconductor layer; a surrounding part surrounding the semiconductor structure and exposing a surface of the first semiconductor layer; a first insulating structure formed on the semiconductor structure, including a plurality of protrusions covering the surface of the first semiconductor layer and a plurality of recesses exposing the surface of the first semiconductor layer; a first contact portion formed on the surrounding part and contacting the surface of the first semiconductor layer by the plurality of recesses; a first pad formed on the semiconductor structure; and a second pad formed on the semiconductor structure.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: May 12, 2020
    Assignee: EPISTAR CORPORATION
    Inventors: Chao-Hsing Chen, Jia-Kuen Wang, Tzu-Yao Tseng, Wen-Hung Chuang, Cheng-Lin Lu
  • Patent number: 10651052
    Abstract: A semiconductor package structure includes a first insulating layer, a first conductive layer, a multi-layered circuit structure, a protection layer, and a semiconductor chip electrically connected to the multi-layered circuit structure. The first insulating layer defines a first through hole extending through the first insulating layer. The first conductive layer includes a conductive pad disposed in the first through hole and a trace disposed on an upper surface of the first insulating layer. The multi-layered circuit structure is disposed on an upper surface of the first conductive layer. The multi-layered circuit structure includes a bonding region disposed on the conductive pad of the first conductive layer and an extending region disposed on the trace of the first conductive layer. The protection layer covers the upper surface of the first insulating layer and the extending region of the multi-layered circuit structure, and exposes the bonding region of the multi-layered circuit structure.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: May 12, 2020
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Wen Hung Huang, Yan Wen Chung
  • Patent number: 10651036
    Abstract: Small size chip handling and electronic component integration are accomplished using handle fixturing to transfer die or other electronic components from a full area array to a targeted array. Area array dicing of a thinned device wafer on a handle wafer/panel may be followed by selective or non-selective de-bonding of targeted die or electronic components from the handle wafer and optional attachment to a carrier such as a transfer head or tape. Alignment fiducials may facilitate precision alignment of the transfer head or tape to the device wafer and subsequently to the targeted array. Alternatively, the dies or other electronic elements are transferred selectively from either a carrier or the device wafer to the targeted array.
    Type: Grant
    Filed: August 25, 2019
    Date of Patent: May 12, 2020
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Qianwen Chen, Bing Dang, Jeffrey D. Gelorme, Li-wen Hung, John U. Knickerbocker
  • Patent number: 10651134
    Abstract: A method of manufacturing a multi-layer wafer is provided. At least one stress compensating polymer layer is applied to at least one of two heterogeneous wafers. The stress compensating polymer layer is low temperature bonded to the other of the two heterogeneous wafers to form a multi-layer wafer pair. Channels are created between die on at least one of the two heterogeneous wafers. The channels are back filled with one of oxide or polymer to create a channel oxide deposition.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: May 12, 2020
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey Gelorme, Li-Wen Hung, John U. Knickerbocker
  • Publication number: 20200145564
    Abstract: A photographing module includes a metal cover, a base, a lens portion and a leaf spring. The lens portion is displaceably disposed in an inner space. The leaf spring is assembled with the lens portion and includes an inner fixing portion, an outer fixing portion and an elastic portion. The inner fixing portion is assembled with the lens portion. The outer fixing portion contacts and is fixedly disposed with the metal cover. The elastic portion connects the inner fixing portion and the outer fixing portion. The leaf spring further includes a plurality of contact portions and a plurality of auxiliary elastic portions. Each of the auxiliary elastic portions connects the outer fixing portion and one of the contact portions. For the leaf spring, only the contact portions thereof contact side plates of the metal cover.
    Type: Application
    Filed: September 11, 2019
    Publication date: May 7, 2020
    Inventors: Te-Sheng TSENG, Wen-Hung HSU, Ming-Ta CHOU
  • Publication number: 20200139522
    Abstract: A socket is provided, including a socket main body, a switch member and at least one positioning unit. The socket main body has a working portion and a sleeve portion which are disposed along an extending direction of an axis, and the sleeve portion has a receiving space which is for the inserting portion of a driving tool to insert thereinto; the switch member is movable along the extending direction, disposed to the sleeve portion, and rotatable about the axis; the at least one positioning unit includes a first receiving portion penetrating through the sleeve portion and being lateral to the axis, a second receiving portion formed on the switch member and facing the sleeve portion, and a positioning member movably received in the first receiving portion, and a part of the receiving member protrudes beyond the first receiving portion.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Inventors: WEN-HUNG CHIANG, KATSUMI OSAFUNE
  • Publication number: 20200144367
    Abstract: The current disclosure describes techniques for individually selecting the number of channel strips for a device. The channel strips are selected by defining a three-dimensional active region that include a surface active area and a depth/height. Semiconductor strips in the active region are selected as channel strips. Semiconductor strips contained in the active region will be configured to be channel strips. Semiconductor strips not included in the active region are not selected as channel strips and are separated from source/drain structures by an auxiliary buffer layer.
    Type: Application
    Filed: October 1, 2019
    Publication date: May 7, 2020
    Inventors: Ya-Jui Tsou, Zong-You Luo, Wen Hung Huang, Jhih-Yang Yan, CheeWee Chee-Wee Liu
  • Patent number: 10643937
    Abstract: A wiring structure includes an insulating layer and a conductive structure. The insulating layer has an upper surface and a lower surface opposite to the upper surface, and defines an opening extending through the insulating layer. The conductive structure is disposed in the opening of the insulating layer, and includes a first barrier layer and a wetting layer. The first barrier layer is disposed on a sidewall of the opening of the insulating layer, and defines a through hole extending through the first barrier layer. The wetting layer is disposed on the first barrier layer. A portion of the wetting layer is exposed from the through hole of the first barrier layer and the lower surface of the insulating layer to form a ball pad.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: May 5, 2020
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Wen Hung Huang, Chien-Mei Huang, Yan Wen Chung
  • Patent number: 10644865
    Abstract: An electronic system includes transmitting circuitry of a first clock domain and receiving circuitry of a second domain. The transmitting circuitry re-times a digital input signal with rising edges of a clocking signal of the first clock domain when a phase of the clocking signal of the first clock domain leads a phase of a clocking signal associated with the digital input signal. Otherwise, the transmitting circuitry re-times the digital input signal with falling edges of the clocking signal of the first clock domain when the phase of the clocking signal of the first clock domain does not lead the phase of the clocking signal associated with a digital input signal. The receiving circuitry receives the re-timed digital input signal from the transmitting circuitry.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: May 5, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shu-Chun Yang, Mu-Shan Lin, Wen-Hung Huang
  • Publication number: 20200136015
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first inter-metal dielectric (IMD) layer on a substrate; forming a metal interconnection in the first IMD layer; forming a bottom electrode layer and a pinned layer on the first IMD layer; forming a sacrificial layer on the pinned layer; patterning the sacrificial layer, the pinned layer, and the bottom electrode layer to form a first magnetic tunneling junction (MTJ); forming a second IMD layer around the first MTJ; and removing the sacrificial layer.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 30, 2020
    Inventors: Ching-Wen Hung, Ya-Sheng Feng
  • Patent number: 10636903
    Abstract: A semiconductor device includes a first dielectric layer on a substrate, a hard mask layer on the first dielectric layer, a trench in the hard mask layer and the first dielectric layer, a first source/drain electrode layer on a sidewall of the trench, a second dielectric layer on the first source/drain electrode layer in the trench, a second source/drain electrode layer on the second dielectric layer in the trench, a third dielectric layer on the second source/drain electrode layer in the trench, a 2D material layer overlying the hard mask layer, the first source/drain electrode layer, the second dielectric layer, the second source/drain electrode layer, and the third dielectric layer, a gate dielectric layer on the 2D material layer, and a gate electrode on the gate dielectric layer.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: April 28, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Ching-Wen Hung
  • Publication number: 20200124821
    Abstract: A lens driving apparatus includes a holder, a cover, a carrier, a first magnet, a coil, a spring, two second magnets and a hall sensor. The holder includes an opening hole. The cover is made of metal material and coupled to the holder. The carrier is movably disposed in the cover, and for coupling to a lens. The first magnet is connected to an inner side of the cover. The coil is wound around an outer side of the carrier, and adjacent to the first magnet. The spring is coupled to the carrier. The second magnets are disposed on one end of the carrier which is toward the holder. The hall sensor is for detecting a magnetic field of any one of the second magnets, wherein the magnetic field is varied according to a relative displacement between the hall sensor and the second magnet which is detected.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventors: Chun-Yi LU, Te-Sheng TSENG, Wen-Hung HSU
  • Publication number: 20200126951
    Abstract: A method of manufacturing a multi-layer wafer is provided. The method comprises creating under bump metallization (UMB) pads on each of the two heterogeneous wafers; applying a conductive means above the UMB pads on at least one of the two heterogeneous wafers; and low temperature bonding the two heterogeneous wafers to adhere the UMB pads together via the conductive means. At least one stress compensating polymer layer may be applied to at least one of two heterogeneous wafers. The multi-layer wafer comprises two heterogeneous wafers, each of the heterogeneous wafer having UMB pads and at least one of the heterogeneous wafers having a stress compensating polymer layer and a conductive means applied above the UMB pads on at least one of the two heterogeneous wafers. The two heterogeneous wafers low temperature bonded together to adhere the UMB pads together via the conductive means.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Inventors: Bing DANG, Li-Wen HUNG, John U. KNICKERBOCKER, Jae-Woong NAH
  • Publication number: 20200111774
    Abstract: An electronic device includes: a first insulation layer and a first conductive pillar. The first insulation layer has a first surface and a second surface opposite to the first surface, and the first conductive pillar comprises a first portion and a second portion. The first portion of the first conductive pillar is surrounded by the first insulation layer. The second portion of the first conductive pillar is disposed on the first surface of the first insulation layer. A height of the second portion of the first conductive pillar is equal to or greater than 10% of a height of the first portion of the conductive pillar.
    Type: Application
    Filed: October 3, 2018
    Publication date: April 9, 2020
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Pei-Jen LO, Chien-Han CHIU, Wen Hung HUANG
  • Patent number: 10608045
    Abstract: A semiconductor device and method of forming the same, the semiconductor device includes a substrate, first plug, a magnetoresistive random access memory (MRAM) structure, a spacer layer, a seal layer and a first conductive pattern. The substrate has a first region and a second region, and the first plug is disposed on a dielectric layer disposed on the substrate, within the first region. The MRAM structure is disposed in the dielectric layer and electrically connected to the first plug. The spacer layer is disposed both within the first region and the second region, to cover the MRAM structure. The seal layer is disposed on the MRAM structure and the first plug, only within the first region. The first conductive pattern penetrates through the seal layer to electrically connect the MRAM structure.
    Type: Grant
    Filed: March 10, 2019
    Date of Patent: March 31, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Wen Hung, Yu-Ping Wang
  • Publication number: 20200098584
    Abstract: A manufacturing method of a semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate having an active component region and a non-active component region, a first dielectric layer, a second dielectric layer, high resistivity metal segments, dummy stacked structures and a metal connection structure. The high resistivity metal segments are formed in the second dielectric layer and located in the non-active component region. The dummy stacked structures are located in the non-active component region, and at least one dummy stacked structure penetrates through the first dielectric layer and the second dielectric layer and is located between two adjacent high resistivity metal segments. The metal connection structure is disposed on the second dielectric layer, and the high resistivity metal segments are electrically connected to one another through the metal connection structure.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 26, 2020
    Inventor: Ching-Wen Hung
  • Patent number: 10600882
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes a substrate, and an interlayer dielectric disposed on the substrate which has agate structure therein. The gate structure further includes a gate electrode with a protruding portion, and a gate dielectric layer disposed between the gate electrode and the substrate. A spacer is disposed between the interlayer dielectric and the gate electrode. An insulating cap layer is disposed atop the gate electrode and encompasses the top and the sidewall of the protruding portion.
    Type: Grant
    Filed: October 11, 2015
    Date of Patent: March 24, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Wen Hung, Chih-Sen Huang, Yi-Wei Chen, Chun-Hsien Lin
  • Publication number: 20200089083
    Abstract: A camera module includes a metal yoke, a holding base, a plastic barrel, a plurality of plastic lens elements, a leaf spring pair and a coil element. The holding base is connected to the metal yoke and defines an inner space. The holding base has a through hole which is corresponding to an opening of the metal yoke. The plastic barrel is movably disposed in the inner space. The plastic lens elements are disposed in the plastic barrel. The leaf spring pair includes two leaf springs which are located on a same plane and connected to the plastic barrel. The coil element surrounds an outer surface of the plastic barrel and electrically connected to the leaf spring pair, wherein two ends of the coil element is connected to the leaf springs by a thermal pressing method.
    Type: Application
    Filed: June 14, 2019
    Publication date: March 19, 2020
    Inventors: Te-Sheng TSENG, Ming-Ta CHOU, Wen-Hung HSU
  • Publication number: 20200081321
    Abstract: A camera module includes a plastic carrier, an imaging lens assembly, a reflective element and a plurality of auto-focusing elements. The plastic carrier includes an inner portion and an outer portion, wherein an inner space is defined by the inner portion, and the outer portion includes at least one mounting structure. The imaging lens assembly is disposed in the inner space of the plastic carrier. The reflective element is for folding an image light by a reflective surface of the reflective element into the imaging lens assembly. The auto-focusing elements include at least two magnets and at least one wiring element, wherein the auto-focusing elements are for moving the plastic carrier along a second optical axis of the imaging lens assembly, and the magnets or the wiring element can be disposed on the mounting structure of the outer portion.
    Type: Application
    Filed: July 2, 2019
    Publication date: March 12, 2020
    Inventors: Te-Sheng TSENG, Ming-Ta CHOU, Wen-Hung HSU