ULTRA-THIN SOI CMOS WITH RAISED EPITAXIAL SOURCE AND DRAIN AND EMBEDDED SIGE PFET EXTENSION
A method for improving channel carrier mobility in ultra-thin Silicon-on-oxide (UTSOI) FET devices by integrating an embedded pFET SiGe extension with raised source/drain regions. The method includes selectively growing embedded SiGe (eSiGe) extensions in pFET regions and forming strain-free raised Si or SiGe source/drain (RSD) regions on CMOS. The eSiGe extension regions enhance hole mobility in the pFET channels and reduce resistance in the pFET extensions. The strain-free raised source/drain regions reduce contact resistance in both UTSOI pFETs and nFETs.
Latest IBM Patents:
This application is a divisional of U.S. application Ser. No. 11/684,122, filed Mar. 9, 2007.
BACKGROUNDThe present invention related generally to the fabrication of complementary metal oxide semiconductor (CMOS) field effect transistors (FET), and more particularly, to a method for forming ultra-thin SOI (UTSOI) field effect transistors with stressed channel regions which provide increased carrier mobility among other benefits.
CMOS FETs are employed in almost every electronic circuit application such as signal processing, computing, and wireless communications. It has been demonstrated that ultra-thin SOI (UTSOI) FETs have a very good short channel control due to extremely thin channel region. Thin body devices however, lead to high series resistance Rext, which can be mitigated by forming raised source/drain (RSD) regions. It has also been demonstrated however, that thick channel SOI FETs exhibit improved FET performance such as switching speed and drive current, by applying stress in the channel. The improvement stems from enhanced carrier mobility in stressed FET channels.
Incorporating stress into UTSOI FETs is a challenge because of the tin channel region.
Commonly-owned, co-pending United States Patent Publication No. US200601 75659A1 appears to describe a substrate having an UTSOI region and a bulk-Si region, and, in particular, forming of nFET and pFET devices on UTSOI.
Commonly-owned, co-pending United States Patent Publication No. US20050093021A1 describes a strained SiGe layer epitaxially grown on the Si body serving as a buried channel for holes, a Si layer epitaxially grown on the SiGe layer serving as a surface channel for electrons, and a source and a drain containing an epitaxially deposited, strained SiGe of opposing conductivity type than the Si body.
Commonly-owned co-pending U.S. Pat. No. 6,939,751 describes a (Raised Source Drain) RSD FET device with a recessed channel is formed with a raised silicon sources and drains and a gate electrode structure formed on an SOI structure (a Si layer formed on a substrate).
None of this prior art however, addresses the integration of an embedded pFET SiGe extension with raised source/drain regions.
It would thus be highly desirable to provide a method of making UTSOI CMOS devices where the PFET has an embedded SiGe extensions region and, where both NFETs and PFETs have raised source/drain structures.
SUMMARYThe present invention provides a novel semiconductor device structure that includes integrating embedded PFET devices with a SiGe extension with raised CMOS source drain regions. Particularly, according to the invention, epitaxially grown raised source and drain structures are formed to reduce contact and source/drain resistance. Additionally, implemented are the embedded SiGe extensions to improve the PFET device extension and channel region conductivity.
The present invention provides a methodology that includes selectively growing embedded SiGe (eSiGe) extensions in pFET regions and forming strain-free raised Si or SiGe source/drain (RSD) regions on CMOS. The eSiGe extension regions enhance hole mobility in the pFET channels and reduce resistance in the pFET extensions. The strain-free raised source/drain regions reduce contact resistance in both UTSOI pFETs and nFETs.
Thus, according to one aspect of the invention, there is provided a novel PFET transistor device comprising:
a semiconductor substrate having a buried layer of insulator material formed therein and an Ultra-thin Silicon On Insulator (UTSOI) layer formed a top said buried layer of insulator material, said UTSOI layer providing an active area for a PFET device;
a gate structure including a gate dielectric layer formed in said UTSOI active area for said PFET device and a gate electrode conductor formed atop said gate dielectric layer;
epitaxially grown embedded semiconductor extensions formed in respective recesses created as a result of removing portions of the UTSOI layer at respective source region and drain region at each side of said gate structure of said PFET device; and,
raised source/drain (RSD) structures on top of respective epitaxially grown embedded semiconductor extensions,
wherein said epitaxially grown embedded semiconductor PFET extensions create compressive stress in the UTSOI layer thereby enhancing PFET device performance.
According to this aspect of the invention, a thickness of the UTSOI layer ranges between 10 Å to about 300 Å. It is further understood that an n-well structure is formed in the UTSOI regions for the PFET device.
Preferably, each of the formed RSD structures are distanced from a gate edge by a distance sufficient to lower parasitic capacitance between the gate and the respective source/drain. This distance may range between 30 nm-40 nm distance corresponding to the thickness of formed thick disposable sidewall spacers at sidewalls of said gate electrode prior to forming the raised RSD structures.
According to another aspect of the invention, there is provided a novel method of forming a PFET transistor device comprising:
a) forming an Ultra-thin Silicon On Insulator (UTSOI) layer a top a buried layer of insulator material within a semiconductor substrate, said UTSOI layer providing an active area for a PFET device;
b) forming atop said UTSOI active area a gate structure for said PFET device, said gate structure including a gate dielectric layer formed atop said UTSOI active layer and a corresponding gate conductor formed atop said gate dielectric layer;
c) removing portions of the UTSOI layer at respective source region and drain region at each side of said gate electrode of said PFET device to create a respective recess at the active UTSOI area while leaving said UTSOI layer under said gate electrode defining a gate channel region for the PFET device;
d) epitaxially growing embedded semiconductor extensions in each respective recess corresponding to said source and drain regions of the PFET device; and
e) forming thick disposable sidewall spacers at sidewalls of said gate electrode of said PFET device;
f) forming raised source/drain (RSD) structures on top of respective epitaxially grown embedded semiconductor extensions corresponding to said source and drain regions of the PFET device; and,
g) removing said thick disposable sidewall spacers at said PFET device,
wherein said epitaxially grown embedded semiconductor extensions create compressive stress in the thin SOI layer thereby enhancing device performance.
Preferably, each of the formed RSD structures are distanced from a gate edge by a distance sufficient to lower parasitic capacitance between the gate and the respective source/drain. This distance may range between 30 nm-40 nm distance corresponding to the thickness of formed thick disposable sidewall spacers at sidewalls of said gate electrode prior to forming the raised RSD structures.
The objects, features and advantages of the present invention will become apparent to one skilled in the art, in view of the following detailed description taken in combination with the attached drawings, in which:
The present invention is directed to a method for forming ultra-thin SOI (UTSOI) field effect transistors with stressed channel regions that provide increased carrier mobility.
Insofar as the top Si-containing layer 18 of the SOI substrate 10 is concerned, that Si-containing layer may have a variable thickness, which is also dependent on the embodiment and conditions used in fabricating the SOI substrate. Typically, however, the top Si-containing layer 18 of the SOI substrate 10 has a thickness from about 10 to about 1000 Å, with a top Si-containing layer thickness from about 200 to about 700 Å being more typical. According to the invention, the ultra-thin SOI layer 18 is of a thickness ranging between 10 and 300 Å. The thickness of the bottom Si-containing layer 12 of the SOI substrate 10 is inconsequential to the present invention.
The UTSOI substrate of the present invention can be used in forming high-performance semiconductor devices or circuits. Examples of such devices or circuits that can contain the SOI substrate of the present invention include, but are not limited to: microprocessors, memory cells such as dynamic random access memory (DRAM) or static random access memory (SRAM), application specific integrated circuits (ASICs), optical electronic circuits, and larger and more complicated circuits. Since these devices or circuits are well known to those skilled in the art, it is not necessary to provide a detail description concerning the same herein. It is however emphasized that the active devices and/or circuits of such semiconductor devices and circuits are typically formed in the top Si-containing layer of the UTSOI substrate. The invention is described hereinafter with respect to forming NFET device 25 and PFET device 30 formed in the top Si-containing layer of the SOI substrate.
The term “Si-containing” when used in conjunction with layers 12 and 18 denotes any semiconductor material that includes silicon therein. Illustrative examples of such Si-containing materials include but are not limited to: Si, SiGe, SiGeC, SiC, Si/Si, Si/SiGe, preformed SOI wafers, silicon germanium-on-insulators (SGOI) and other like semiconductor materials. The preformed SOI wafers and SGOI wafers, which can be patterned or unpatterned, may also include a single or multiple buried oxide regions formed therein. The Si-containing material can be undoped or doped (p or n-doped) depending on the future use of the SOI substrate.
As part of the conventional UTSOI processing, the SOI layer 18 is thinned using oxidation and wet etch techniques. After forming the ultra-thin SOI layer 18, very thin pad oxidation and pad nitride layers are deposited and via lithographic techniques, the active UTSOI areas 26, 31 for respective NFET device 25 and PFET transistor device 30 are defined. That is, a lithographic mask is patterned and formed over the top SOI layer 18 to expose regions for forming shallow trench isolation (STI) structures. This processing includes applying a photoresist to the surface of the SOI substrate 18, exposing the photoresist and developing the exposed photoresist using a conventional resist developer. The etching step used in forming the STI trenches includes any standard Si directional reactive ion etch process. Other dry etching processes such as plasma etching, ion beam etching and laser ablation, are also contemplated herein. The etch can be stopped on the top of the thick BOX layer 15 with no more than 50 Å BOX loss. The STI regions 20a, 20b and 20c are then formed, e.g., by depositing an STI oxide, e.g., SiO2 in the formed trenches, annealing and chemical mechanical polishing (CMP) the resultant structure. These STI regions isolate the NFET 25 and PFET 30 devices to be formed.
Continuing, further processing steps are performed for forming the NFET 25 and PFET 30 devices including: preparing a top-contact to back Si substrate formation. This may be achieved, for example, by the following steps: (i) blanket nitride deposition, (ii) lithographically defining contact areas on STI oxide regions, (iii) a thin nitride RIE followed by a deep oxide RIE to create a trench all the way down to the Si substrate 12, (iv) resist strip, (v) thick poly silicon deposition, and (vi) poly silicon CMP that stops on the thin nitride layer, performing an STI deglaze to strip the previously formed pad nitride and pad oxide layers (not shown) [pad nitride is stripped using hot phosphoric acid and then pad oxide is removed using hydrofluoric acid], forming a sacrificial oxidation (sacox) layer to screen well implants for each device, and performing an ion implantation step for forming CMOS wells by: (i) lithographically defining NFET areas 26, (ii) p-type ion implants into 26, examples are Boron, BF2, or Indium, (iii) resist strip, (iv) lithographically defining PFET areas 31, (v) n-type ion implants into 31, such as Arsenic, Phosphorus, or Antimony, and (vi) resist strip. The CMOS well implant, which typically forms a well region within the SOI layer 18, is carried out using a conventional ion implantation process well known to those skilled in the art. P- or N-type dopants can be used in forming the well region. For example, for the NFET, a p-well may be fabricated in the active UTSOI area 26 for the NFET, an n-well may be fabricated in the active UTSOI area 31 for the PFET. After ion implantation, wafers are subjected to rapid thermal annealing to remove implant damage. After forming CMOS NFET and PFET p-well and n-well structures, respectively, a step is performed for stripping the sacrificial oxidation layer. Then, a gate dielectric step is performed for forming the respective gate dielectric layers 36, 41 for each respective NFET 25 and PFET 30 device.
The gate dielectric layers 36, 41 for each of the respective NFET 25 and PFET 30 devices may comprise conventional dielectric materials such as oxides, nitrides and oxynitrides of silicon that have a dielectric constant from about 4 (i.e., typically a silicon oxide) to about 8 (i.e., typically a silicon nitride), measured in vacuum. Alternatively, the gate dielectric 14 may comprise generally higher dielectric constant dielectric materials having a dielectric constant from about 8 to at least about 100. Such higher dielectric constant dielectric materials may include, but are not limited to hafnium oxides, hafnium silicates, zirconium oxides, lanthanum oxides, titanium oxides, barium-strontium-titantates (BSTs) and lead-zirconate-titanates (PZTs). The gate dielectrics 36, 41 for each of the respective NFET 25 and PFET 30 devices may be formed using any of several methods that are appropriate to its material of composition. Non-limiting examples include thermal or plasma oxidation or nitridation methods, chemical vapor deposition methods (including atomic layer deposition methods) and physical vapor deposition methods. Typically, the gate dielectric layers 36, 41 for each of the NFET 25 and PFET 30 devices comprise a thermal silicon oxide dielectric material that has a thickness from about 10 to about 30 angstroms.
Continuing, there is next formed the gate electrodes 37, 42 for each respective NFET 25 and PFET 30 devices. The gate electrodes 37, 42 may comprise materials including but not limited to certain metals, metal alloys, metal nitrides and metal suicides, as well as laminates thereof and composites thereof. The gate electrodes 37, 42 may also comprise doped polysilicon and polysilicon-germanium alloy materials (i.e., having a dopant concentration from about 1e19 to about 1e22 dopant atoms per cubic centimeter) and polycide materials (doped polysilicon/metal silicide stack materials). Similarly, the foregoing materials may also be formed using any of several methods. Non-limiting examples include salicide methods, chemical vapor deposition methods and physical vapor deposition methods, such as, but not limited to evaporative methods and sputtering methods. Typically, the gate electrodes 37, 42 each comprise a doped polysilicon material that has a thickness from about 500 to about 1500 angstroms. The NFET gate polysilicon is then doped with n-type dopants (As or P or Sb) and the PFET gate polysilicon with p-type dopants (B or BF2 or In). Selective doping is achieved using photolithography to cover one type of FETs while exposing the other to ion implants.
In a further processing step, capping layers 38, 43 for respective gate devices 25 and 30 are formed that comprises a capping material that in turn typically comprises a hard mask material. This hard mask material is required for selective Si or SiGe epitaxy that is performed later. Without the hard mask, Si or SiGe also gets deposited on the gate polysilicon and causes a gate mushroom that could come in physical contact with the raised source/drain, thereby, causing gate-to-source and/or gate-to-drain shorts. Dielectric hard mask materials are most common but by no means limit the instant embodiment or the invention. Non-limiting examples of hard mask materials include oxides, nitrides and oxynitrides of silicon. Oxides, nitrides and oxynitrides of other elements are not excluded. The capping material may be formed using any of several methods that are conventional in the semiconductor fabrication art. Non-limiting examples include chemical vapor deposition methods and physical vapor deposition methods. Preferably, a silicon nitride (SiN) and high-temperature oxide (HTO) hard mask deposition is performed to cap the gate polysilicon for raised source/drain (RSD) integration. Using typical gate lithography and etch techniques, the gate devices 25 and 30 result having a respective SiN cap 38, 43 formed on top. These respective SiN capping layers 38, 43 have a thickness from about 100 to about 500 angstroms.
In a further processing step such as shown in
The CMOS structure at this stage is shown in
Continuing to
Continuing to
Continuing to
Continuing to
Referring to
From this structure, conventional CMOS processing may continue to finish CMOS FEOL processing including steps such as: halo ion implantation, offset spacer formation, extension ion implantation, final spacer formation, deep S/D ion implantation, deep S/D activation anneals, silicidation, and dual stress liner (DSL) process.
The present invention thus provides a novel semiconductor device structure that includes integrating PFET devices with an embedded SiGe extension coupled with raised CMOS source drain regions. The embedded SiGe extensions particularly help to 1) create compressive stress in the thin SOT layer thereby improving hole mobility (the eSiGe extensions are positioned close to the channel region thereby maximizing its stress effect); 2) minimize dopant (e.g., Boron) loss in extension regions, thereby enhancing extension conductivity; and, 3) for relatively thick SOI or bulk PFETS, the presence of the Ge retards boron diffusion thus enabling a shallow extension junction which is beneficial to short-channel control.
While there has been shown and described what is considered to be preferred embodiments of the invention, it will, of course, be understood that various modifications and changes in form or detail could readily be made without departing from the spirit of the invention. It is therefore intended that the invention be not limited to the exact forms described and illustrated, but should be constructed to cover all modifications that may fall within the scope of the appended claims.
Claims
1. A semiconductor transistor device comprising:
- a semiconductor substrate having a buried layer of insulator material formed therein and an Ultra-thin Silicon On Insulator (UTSOI) layer formed a top said buried layer of insulator material;
- STI (Shallow Trench Isolation) structures formed in said UTSOI layer for isolating active areas for forming an NFET device and PFET for forming a gate channel region for respective NFET and PFET device;
- a gate structure including a gate dielectric layer formed in each isolated active area for each respective NFET and PFET device and a gate electrode conductor formed atop each said respective gate dielectric layer for each respective NFET and PFET device;
- epitaxially grown embedded semiconductor extensions formed in respective recesses created as a result of removing portions of the SOI layer at respective source region and drain region at each side of said gate electrode of said PFET device;
- raised source/drain (RSD) structures on top of respective epitaxially grown embedded semiconductor extensions corresponding to said source and drain regions of the PFET device; and,
- raised source/drain (RSD) structures on top of source and drain regions of the NFET device,
- wherein said epitaxially grown embedded semiconductor extensions create compressive stress in the UTSOI layer thereby enhancing PFET device performance.
2. The semiconductor transistor device as claimed in claim 1, wherein said formed eSiGe extensions abut the short SOI channel region to maximize its compressive stress effect.
3. The semiconductor transistor device as claimed in claim 1, wherein said formed epitaxial raised source/drain (RSD) structures range between 100 to 400 angstroms in thickness for said PFET device.
4. The semiconductor transistor device as claimed in claim 1, wherein, for each formed NFET and PFET device, each said formed epitaxial RSD structures are located a distance from an edge of a respective gate conductor that is sufficient to lower parasitic capacitance between the gate and the respective source/drain structure for each formed NFET and PFET device.
5. The semiconductor transistor device as claimed in claim 1, wherein said distance between between each formed RSD structure and a respective gate edge is between 30 nm-40 nm.
6. A semiconductor transistor device comprising:
- a semiconductor substrate having a buried layer of insulator material formed therein and an Ultra-thin Silicon On Insulator (UTSOI) layer formed a top said buried layer of insulator material, said UTSOI layer providing an active area for a PFET device;
- a gate structure including a gate dielectric layer formed in said UTSOI active area for said PFET device and a gate electrode conductor formed atop said gate dielectric layer;
- epitaxially grown embedded semiconductor extensions formed in respective recesses created as a result of removing portions of the UTSOI layer at respective source region and drain region at each side of said gate structure of said PFET device; and,
- raised source/drain (RSD) structures on top of respective epitaxially grown embedded semiconductor extensions,
- wherein said epitaxially grown embedded semiconductor PFET extensions create compressive stress in the UTSOI layer thereby enhancing PFET device performance.
Type: Application
Filed: Aug 4, 2009
Publication Date: Nov 26, 2009
Applicant: International Business Machines Corporation (Armonk, NY)
Inventors: Amlan Majumdar (White Plains, NY), Gen Pei (Yorktown Heights, NY), Zhibin Ren (Hopewell Junction, NY), Dinkar Singh (Chicago, IL), Jeffrey W. Sleight (Ridgefield, CT)
Application Number: 12/535,306
International Classification: H01L 27/12 (20060101); H01L 29/786 (20060101);