Projection exposure apparatus
Constant speed drive of a reticle and a wafer in a relative scanning direction and positioning of the reticle and the wafer are simultaneously performed with high precision by a slit scanning exposure scheme. A reticle side scanning stage for scanning a reticle relative to a slit-like illumination area in the relative scanning direction is placed on a reticle side base. A reticle side fine adjustment stage for moving and rotating the reticle within a two-dimensional plane is placed on the reticle side scanning stage. The reticle is placed on the reticle side fine adjustment stage. Constant speed drive and positioning of the reticle and a wafer are performed by independently controlling the reticle side scanning stage and the reticle side fine adjustment stage.
Latest Nikon Patents:
- BONDING METHOD, BONDING DEVICE, AND HOLDING MEMBER
- IMAGING ELEMENT AND IMAGING DEVICE
- ENCODER DEVICE AND MANUFACTURING METHOD THEREOF, DRIVE DEVICE, STAGE DEVICE, AND ROBOT DEVICE
- Control method, control device and production apparatus
- Apparatus and method for producing three-dimensional work pieces
More than one reissue application has been filed for the reissue of U.S. Pat. No. 5,477,304. The reissue applications are application Ser. No. 08/994,758 (the present application) filed Dec. 19, 1997, application Ser. No. 09/779,686 filed Feb. 9, 2001 and application Ser. No. 09/962,334 filed Sep. 26, 2001. Application Ser. Nos. 09/779,686 and 09/962,334 are divisionals of application Ser. No. 08/994,758.
This is a continuation of application Ser. No. 08/139,803 filed Oct. 22, 1993, now abandoned.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a projection exposure apparatus used when a semiconductor integrated circuit, a liquid crystal display device, or the like is manufactured and, more particularly, to a projection exposure apparatus for performing exposure by a scanning exposure scheme.
2. Related Background Art
When a semiconductor element, a liquid crystal display element, or the like is to be manufactured by a lithographic process, a projection exposure apparatus is used. This apparatus is designed to project a pattern image of a photomask or reticle (to be generically referred to as a reticle hereinafter) on a photosensitive substrate through a projection optical system. As such an apparatus, a projection scanning type exposure apparatus is known, which is designed to simultaneously scan a reticle and a photosensitive substrate through a projection optical system.
As a conventional exposure apparatus of this type, an apparatus having a reflecting projection optical system with Xl magnification is known. In this apparatus, a reticle stage for holding a reticle and a wafer stage for holding a photosensitive substrate (to be referred to as a wafer hereinafter) are coupled to a common movable column, and the reticle and the wafer are scanned/exposed at the same speed. In such a scanning exposure apparatus (mirror projection aligner) with Xl magnification, if a reticle pattern and a reticle pattern image projected on a wafer do not have a mirror-image relationship, an exposure operation is completed by a one-dimensionally scanning an integral movable column in the widthwise direction of arcuated slit illumination light while the reticle and the wafer are aligned and held on the movable column. As is apparent, with a projection system with Xl magnification in which a reticle pattern and a reticle pattern image projected on a wafer have a mirror-image relationship, the reticle stage and the wafer stage must be moved in opposite directions at the same speed.
Another conventional scanning exposure apparatus incorporating a refracting element is also known. In this apparatus, while the projecting magnification is increased or decreased with the refracting element, both the reticle stage and the wafer stage are relatively scanned at a speed ratio corresponding to a magnification. In this case, the projection optical system used is constituted by a combination of a reflecting element and a refracting element or by only a refracting element. An example of the reduction projection optical system constituted by a combination of a reflecting element and a refracting element is disclosed in U.S. Pat. No. 4,747,678.
In addition, a method of performing step & scan exposure by using a reduction projection optical system capable of full-field projection is disclosed in U.S. Pat. No. 4,924,257. In this method, the reticle stage for holding a reticle is designed to be movable in both the X direction as a scanning direction and the Y direction perpendicular to the scanning direction. Similarly, the wafer stage for holding a wafer is designed to be movable in both the X and Y directions. As disclosed in U.S. Pat. No. 5,004,348, the wafer stage and the reticle stage of an exposure apparatus based on the widely used conventional step and repeat scheme are also designed to be movable in both the X and Y directions. A conventional scanning exposure apparatus may use the wafer and reticle stages of the above-described exposure apparatus of the step and repeat scheme so as to perform control to synchronously scan the two stages in the X direction as the scanning direction. In this case, while a wafer and a reticle are scanned in the X direction, the wafer stage and the reticle stage are finely moved within the X-Y plane to adjust the positions of the wafer and the reticle in the X and Y directions and the direction of rotation, thereby correcting the position deviation of the wafer relative to the reticle. Both the stages, however, are relatively heavy. For this reason, they are poor in response characteristics and require complicated control. That is, in a conventional scanning exposure apparatus, it is difficult to perform constant speed drive control in the scanning direction and simultaneously perform high-precision control of positioning operations in the X and Y directions and the direction of rotation.
As the above-described scanning exposure apparatus, a projection exposure apparatus based on a scanning exposure scheme designed to perform stitching is known (U.S. Pat. No. 3,538,828). In this scanning exposure scheme designed to perform stitching, exposure light having a predetermined shape is radiated on a reticle, and the reticle and a wafer are synchronously scanned, thereby performing exposure with respect to an area corresponding to the first column on the wafer.
Subsequently, the reticle is replaced or is moved in the second direction perpendicular to the first direction of the illumination area by a predetermined amount. The wafer is laterally shifted (stitching) in a direction conjugate to the second direction of the illumination area. Exposure light is radiated on the reticle again, and the reticle and the wafer are synchronously scanned, thus performing exposure with respect to an area corresponding to the second column on the wafer. With this operation, one shot area, on the wafer, which can be exposed can be further increased. In this case, the moving amount of the wafer in the second direction is set such that the exposure areas of the first and second columns on the wafer overlap each other.
In such an exposure apparatus, high-precision overlapping of patterns and a reduction in illuminance irregularity at the overlapping portion between the areas of the first and second columns are required. However, these requirements are not satisfied by the conventional exposure apparatus.
The following problem is posed even in an exposure apparatus having a regular hexagonal illumination area such as the one disclosed in U.S. Pat. No. 4,924,257.
The exposure area 3 which relatively moves along the trace 2AP and the exposure area 3 which relatively moves along the trace 2CP are scanned in the Y direction, i.e., the widthwise direction, such that their isosceles triangle areas are superposed on each other in a connection area 4.
Consider an exposure point through which an area 3a of the right-hand isosceles triangle of the exposure area 3 passes. The distances by which exposure points P1 to P8 shown in
When stitching of the wafer is performed, and the wafer is scanned in the −X direction with respect to the exposure area 3 (the second wafer scanning operation), energies corresponding to 0 to seven pulses are respectively exposed on the exposure points P1 to P8. Therefore, energy corresponding to eight pulses is radiated on the exposure points P1 to P8, similar to the exposure point P0, by performing exposure twice upon stitching, as in the second embodiment.
However, at an exposure point P9 between the exposure points P4 and P5, even if slit scanning exposure is performed twice, radiated energy varies. That is, as shown in
In the case shown in
It is the first object of the present invention to provide a scanning exposure apparatus which can drive a reticle and a wafer in a predetermined direction at a constant speed while controlling their positions with high precision. It is the second object of the present invention to realize a high-precision pattern overlapping operation and reduce illuminance irregularity at a connection portion, on a photosensitive substrate, which is scanned and exposed twice by a stitching operation in a scanning exposure apparatus designed to perform a stitching operation.
In order to achieve the first object, according to the present invention, an exposure apparatus for exposing a pattern of a mask onto a photosensitive substrate comprises the following components, as shown in FIG. 1:
synchronous scanning means (20, 23, 24, 27, 31) for synchronously scanning the mask (7) and the photosensitive substrate (14) while maintaining a predetermined speed ratio, when the pattern of the mask (7) is exposed onto the photosensitive substrate (14); and
adjusting means (21) for adjusting a position of the mask (7) within a predetermined reference plane parallel to a scanning direction of the mask (7), independently of scanning of the mask (7) which is performed by the synchronous scanning means (20, 23, 24, 27, 31), during scanning exposure of the pattern of the mask (7) onto the photosensitive substrate (14).
According to the exposure apparatus of the present invention, when the pattern of the mask (7) is to be scanned/exposed on the photosensitive substrate (14), the synchronous scanning means (20, 23, 24, 27, 31) synchronously scans the mask (7) and the photosensitive substrate (14). The adjustment means (21) adjusts the position of the mask (7) independently of this scanning operation with respect to the mask (7) and the photosensitive substrate (14). Therefore, the position deviation of the mask (7) relative to the photosensitive substrate (14) during a scanning exposure operation can be corrected with high precision.
In addition, in order to achieve the first object, an exposure apparatus according to the present invention comprises the following components, for example, as shown in FIG. 1:
an illumination optical system (22) for radiating exposure light on a predetermined illumination area on a mask (7) on which a pattern to be transferred is formed;
a projection optical system (13) for projecting an image of a pattern on the mask (7), irradiated with the exposure light, onto a photosensitive substrate (14);
a mask stage (20) for scanning the mask (7) relative to the illumination area in a direction perpendicular to an optical axis of the projection optical system (13);
a substrate stage (27) for scanning the photosensitive substrate (14) relative to the projected image of the pattern in a direction perpendicular to the optical axis of the projection optical system (13);
mask position detecting means (35) for detecting a position of the mask (7) within a plane perpendicular to the optical axis of the projection optical system (13);
substrate position detecting means (47) for detecting a position of the photosensitive substrate (14) within a plane perpendicular to the optical axis of the projection optical system (13);
adjustment means (21) for adjusting the position of the mask (7) within the plane perpendicular to the optical axis of the projection optical system (13); and
control means (23) for causing the mask stage (20) and the substrate stage (27) to synchronously scan when the pattern of the mask (7) is exposed on the photosensitive substrate (14), calculating a position deviation of the mask (7) relative to the photosensitive substrate (14) on the basis of detection signals from the mask position detecting means (35) and the substrate position detecting means (47), and causing the adjustment means (21) to adjust the position of the mask (7), independently of a scanning operation with respect to the mask (7) which is performed by the mask stage (20), on the basis of the position deviation.
According to the exposure apparatus of the present invention, the drive section for driving the mask (7) is divided into the mask stage (20), which is scanned in synchronism with the substrate stage (27), and the adjustment means (21) for adjusting the position of the mask (7), and these two drive means are independently controlled. Therefore, as the mask stage (20), for example, a heavy stage which can stably move at a constant speed in a scanning operation is used. As the adjustment means (21), for example, a lightweight stage with high controllability is used, which is capable of fine movement in a translation direction and a rotational direction. With this arrangement, scanning exposure can be performed with excellent positional controllability.
In order to achieve the second object, an exposure apparatus according to the present invention comprises the following components, for example, as shown in FIG. 6:
synchronous scanning means (23, 31, 66) for synchronously scanning a mask (7) and a photosensitive substrate (14) in a predetermined first direction of an illumination area (43) while maintaining a predetermined speed ratio; and
illumination condition setting means (53, 55) for setting the illumination area (43) to be rectangular, and letting a light intensity distribution of the illumination area (43) in a second direction perpendicular to the first direction have a trapezoidal shape so that a middle portion of the distribution exhibits a substantially constant light intensity, and two side portions of the distribution exhibit a gradually decreasing light intensity.
According to the exposure apparatus of the present invention, the light intensity distribution of the illumination area (43) in the second direction perpendicular to the first direction in which the mask (7) and the photosensitive substrate (14) are relatively scanned has a trapezoidal shape. Consequently, as shown in
When the exposure area (43 P) is to be laterally shifted on the photosensitive substrate (14) by stitching, areas (43 aP, 43 bP) in which the illuminance gradually decreases are superposed on each other, as shown in FIG. 10A. With this operation, at an exposure point Q3 on a connection portion (80c) which is scanned twice by stitching, the sum of a light intensity SA in the first scanning operation and a light intensity SB in the second scanning operation becomes equal to a light intensity SC of a portion, of the trapezoidal light intensity distribution, in which the light intensity is constant, as shown in FIG. 10B. Therefore, the light intensity at an arbitrary point on the connection portion (80c) on the photosensitive substrate (14) becomes almost equal to the light intensity at an exposure point on a non-connection portion, thereby reducing the illuminance irregularity.
In addition, in order to achieve the second object, a projection exposure apparatus according to the present invention comprises the following components, for example, as shown in FIG. 6:
a pulse light source (52) for pulse-emitting exposure light;
an illumination optical system (53, 55, 58) for illuminating a predetermined illumination area (43) on a mask, on which a pattern to be transferred is formed, with the exposure light;
a projection optical system (13) for projecting an image of the pattern, irradiated with the exposure light, onto a photosensitive substrate (14);
synchronous scanning means (23, 31, 66) for synchronously scanning a mask (7) and a photosensitive substrate (14) at least twice in a predetermined first direction of the illumination area (43) while maintaining a predetermined speed ratio;
substrate moving means (28) for moving the photosensitive substrate (14) in a second direction perpendicular to the first direction while first and second scanning operations with respect to the mask (7) and the photosensitive substrate (14) are performed by the synchronous scanning means (23, 31, 66); and
control means for controlling at least one of said pulse light source (52) and said synchronous scanning means (23, 31, 66) such that a position of the photosensitive substrate (14) in the first direction at the time when the light source (52) performs pulse emission, in the first scanning operation with respect to the photosensitive substrate (14) and the mask (7) coincides with that in the second scanning operation.
According to the projection exposure apparatus of the present invention, as shown in
A projection exposure apparatus according to the first embodiment of the present invention will be described below with reference to
An air guide elongated in the X direction is formed on a reticle side base 19 in a stage system for a reticle 7. A reticle side scanning stage 20 is placed on the reticle side base 19 to be slidable in the X direction within the X—Y plane. A reticle side fine adjustment stage 21 is placed on the reticle side scanning stage 20 so as to be translated and rotated within the X—Y plane. The reticle 7 is held on the reticle side fine adjustment stage 21. In an exposure operation, a pattern area of the reticle 7 is illuminated with exposure light IL from an illumination optical system 22 in the form of a rectangular illumination area (to be referred to as a slit-like illumination area hereinafter), and the reticle 7 is scanned in the X direction with respect to the slit-like illumination area. The illumination optical system 22 is constituted by a light source, a shutter, an optical integrator, a field stop for setting the slit-like illumination area, a condenser lens, and the like.
Three movable mirrors (only a movable mirror 33 is shown in
In an exposure operation, a pattern in a slit-like illumination area on the reticle 7 is projected/exposed on the wafer 14 through a projection optical system 13.
In a stage system for the wafer 14, an air guide elongated in the X direction is formed on a wafer side base 26, and a wafer side X stage 27 is placed on the wafer side base 26 to be slidable in the X direction within the X—Y plane. A wafer side Y stage 28 is placed on the wafer side X stage 27 so as to be movable in the Y direction within the X—Y plane. The wafer 14 is held on the wafer side Y stage 28. Although not shown, a Z stage, a leveling stage, and the like are arranged between the wafer side Y stage 28 and the wafer 14. A stepping motor 29 is disposed on one end of the wafer side X stage 27. The stepping motor 29 drives the wafer side Y stage 28 in the Y direction through a ball screw 30.
Three movable mirrors (only a movable mirror 45 is shown in
The Y-axis laser interferometer 35 is fixed on the reticle side base 19 to oppose the movable mirror 33. Similarly, an X-axis laser interferometer 36A is fixed on the reticle side base 19 to oppose the movable mirror 34A. A laser interferometer 36B for rotation measurement is fixed on the reticle side base 19 to oppose the movable mirror 34B. Y-coordinate data RSy, X-coordinate data RSx, and rotational angle data RSθ of the reticle side fine adjustment stage 21, which are respectively obtained by the Y-axis laser interferometer 35, the X-axis laser interferometer 36A, and the rotation measurement laser interferometer 36B, are supplied to the main control system 23 in FIG. 1.
Actuators 38, 40, and 42 are disposed on the reticle side scanning stage 20 in FIG. 2. The actuators 38 and 40 finely adjust the reticle side fine adjustment stage 21 in the X direction. The actuator 42 finely adjusts the reticle side fine adjustment stage 21 in the Y direction. The positions at which the actuators 38 and 40 are in contact with the reticle side fine adjustment stage 21 are almost symmetrical with the movable mirrors 34A and 34B. The reticle side fine adjustment stage 21 is biased toward the actuators 38, 40, and 42 through three pairs of springs 37A and 37B, 39A and 39B, and 41A and 41B. By adjusting the displacement amounts of the three actuators 38, 40, and 42, the reticle side fine adjustment stage 21 and the reticle 7 can be moved and rotated within the X—Y plane.
A slit-like illumination area 43 elongated in the Y direction is formed on the reticle 7 by the exposure light IL. The optical axis of the Y-axis laser interferometer 35 is set on a straight line which passes a center 43A of the illumination area 43 and is parallel to the Y axis. When the reticle 7 is to be rotated, it must be rotated about the center 43A of the illumination area 43 as an axis. However, when the reticle 7 is scanned in the X direction, the position, of the reticle 7, corresponding to the center 43A changes. For this reason, the rotational center of the reticle 7 is shifted in accordance with the position of the center 43A by adjusting the displacement amounts of the three actuators 38, 40, and 42.
The movable mirror 45 having a reflecting surface which is perpendicular to the Y axis and is elongated in the X direction is disposed on an end portion, of the wafer side Y stage 28, in the Y direction. A movable mirror 46 having a reflecting surface which is perpendicular to the X axis and is elongated in the Y direction is disposed on an end portion, of the wafer side Y stage 28, in the X direction. A Y-axis measurement laser interferometer 47A and the rotation measurement laser interferometer 47B are fixed on the wafer side base 26 so as to oppose the movable mirror 45 and be separated from each other by the X direction by a predetermined distance. Similarly, an X-axis measurement laser interferometer 48 is fixed on the wafer side base 26 so as to oppose the movable mirror 46. Y-coordinate data WSy, X-coordinate data WSx, and rotational angle data WSθ of the wafer side Y stage 28, which are respectively obtained by the Y-axis measurement laser interferometer 47A, the X-axis laser interferometer 48, and the rotation measurement laser interferometer 47B, are supplied to the main control system 23 in FIG. 1.
In this case, the optical axis of the projection optical system 13 is located at the intersection between the optical axis of the laser interferometer 47A and the optical axis of the laser interferometer 48. An off-axis alignment system 49 is arranged on the side, of the projection optical system 13, in the Y direction. The detection center of the alignment system 49 is located on the optical axis of the laser interferometer 47B, and the optical axis of the laser interferometer 48 is located on a straight line which passes the detection center of the alignment system 49 and is parallel to the X axis. An area of a conjugate image formed on the wafer 14 by the projection optical system 13 and corresponding to the slit-like illumination area 43 shown in
A method of controlling the reticle stage system and the wafer stage system in a slit scanning exposure operation in this embodiment will be described next.
In general, a pattern of the reticle 7 is reduced/projected on the wafer 14. This is because reduction projection is advantageous in managing the dimensions of a pattern of the reticle 7, dust, and the like. If, however, the projecting magnification of the projection optical system 13 is set to be β, the reticle side stage must be driven at high speed by an amount corresponding to a multiple of the reciprocal of the projecting magnification D with respect to the wafer side stage in a slit scanning exposure operation. In many cases, therefore, the processing performance with respect to relative scanning and stage control in an exposure operation depends on the drive performance of the reticle side stage.
The main control system 23 in
A control method will be described below with reference to the flow chart in FIG. 4 and
In step 101 in
In addition, the main control system 23 performs positional control of the wafer side Y stage 28 and the reticle side fine adjustment stage 21. More specifically, the main control system 23 detects the X-coordinate data WSx associated with the wafer 14 and the X-coordinate data RSx associated with the reticle 7, and samples (WSx/β+RSx) on the basis of these data. Similarly, the main control system 23 samples (WSy/β+RSy) on the basis of the Y-coordinate data WSy associated with the wafer 14 and the Y-coordinate data WRy associated with the reticle 7; and (WSθ+RSθ) on the basis of the rotational angle data RSθ associated with the wafer 14 and the rotational angle data RSθ associated with the reticle 7.
Subsequently, the main control system 23 issues the Y-direction drive command ODWy and the second drive command ODR2 to the drives 31 and 25, respectively, to perform position control such that these three data become predetermined reference values, respectively. These three reference values are predetermined on the basis of the design coordinate values of the respective shots arranged on a wafer, and are stored in a storage unit in the main control system 23. When each shot is to be exposed, the positions of the wafer and the reticle are controlled on the basis of the three reference values corresponding to each shot and the three sampled data.
With this operation, the center of the illumination area 43 shifts from the position A to the position B located outside the pattern area of the reticle 7 in
In step 102, the main control system 23 drives the wafer side X stage 27 such that the stage 27 is decelerated temporarily and is accelerated in the X direction, and also drives the wafer side Y stage 28 such that the stage 28 is accelerated temporarily and is decelerated in the Y direction. Meanwhile, the main control system 23 decelerates the reticle side scanning stage 20 and resets the reticle side fine adjustment stage 21 to the initial position. With this operation, the center of the illumination area 43 shifts from the position B to a position C located farther outside than the position B and stops thereat in
In step 103, the main control system 23 drives the wafer side X stage 27 in the X direction at the speed V. In addition, since the position of the wafer side Y stage 28 is fluctuating owing to the acceleration and deceleration of the wafer side Y stage 28 in step 102, the main control system 23 stabilizes the position of the wafer side Y stage 28 through the stepping motor 29. Meanwhile, the main control system 23 accelerates the reticle side scanning stage 20 in the −X direction. With this operation, the center of the illumination area 43 shifts from the position C to a position D closer to the reticle 7 in
In step 104, the main control system 23 drives the wafer side X stage 27 in the X direction at the speed V, and drives the reticle side scanning stage 20 in the −X direction at the constant speed V/β. In addition, the main control system 23 performs positional control of the wafer side Y stage 28 and the reticle side fine adjustment stage 21. More specifically, similar to step 101, the main control system 23 samples (WSx/β+ RSx), (WSy/β+RSy), and (WSθ+RSθ) from the coordinate positions of the wafer 14 and the reticle 7. The main control system 23 then issues the Y-direction drive command ODWy and the second drive command ODR2 to the drives 31 and 25, respectively, and performs position control such that these three data become predetermined values, respectively.
In this manner, the positions of the reticle 7 and the wafer 14 are controlled. At this time, the center of the illumination area 43 is at a position E located outside the pattern area of the reticle 7, as shown in
In step 105, when constant speed drive of the reticle 7 and the wafer 14 and coordinate position correction thereof are completed, the center of the illumination area 43 is at a position F located immediately before the pattern area of the reticle 7, as shown in
With the same control as that performed in step 101, the illumination area 43 relatively scans the reticle 7 up to its central position G, as shown in
As described above, according to the first embodiment, the stage system on the reticle 7 side is divided into the reticle side scanning stage 20 and the reticle side fine adjustment stage 21, and these stages can be independently driven. With this arrangement, while the reticle 7 and the wafer 14 are driven at constant speeds, respectively, the coordinate positions of the reticle 7 and the wafer 14 can be easily and quickly corrected. Therefore, a pattern image of the reticle 7 can be exposed on each shot area of the wafer 14 without distortion.
Provided that the weights of the reticle side scanning stage 20 and the reticle side fine adjustment stage 21 are respectively represented by M1 and M2, a relative scanning linear motor drives the stages 20 and 21 with a weight (M1+M2). In contrast to this, since the actuators 38, 40, and 42 shown in
M2·α=(M1+M2)b (1)
Therefore, the acceleration b is lower than the acceleration a, and positional control of the reticle side fine adjustment stage 21 hardly affects the constant speed scanning operation of the reticle side scanning stage 20, thus realizing stable speed control.
A projection exposure apparatus according to the second embodiment of the present invention will be described next with reference to
Referring to
The reticle 7 is held on a reticle stage 61. Movable mirrors 62 are attached to the reticle stage 61 in the X direction (a lateral direction parallel to the drawing surface of
In this case, a left side portion of the area 75a and a right side portion of the area 75b are superposed on each other at a connection area 75c having the width M in the Y direction, and the connection portion 75c is scanned by the area 43a or 43b in which the light intensity (illuminance) of the illumination area 43 gradually decreases. With this operation, the illuminance distribution of the connection portion 75c is made uniform, and the position deviation of a transferred pattern can be prevented. In addition, in order to make the illuminance in the pattern area 75 constant, no area at an end portion of the pattern area 75 in the Y direction is scanned by the area 43a or 43b in which the illuminance of the illumination area 43 gradually decreases. Since the Y-direction width of the area, in the illumination area 43, in which the illuminance is constant is represented by L, and the Y-direction width of the pattern area 75 is represented by LT, the Y-direction width M of the area 43a or 43b in which the illuminance gradually decreases to 0 is given by:
M=LT−2·L (2)
In general, the pattern area 75 is scanned n times in the X direction by the illumination area 43 to transfer a pattern of the pattern area 75 onto a wafer 14. In order to prevent the formation of an area which is illuminated only with the area 43a or 43b in which the illuminance gradually decreases, the width M of the area 43a or 43b in which the illuminance gradually decreases may be set as follows:
M=(n·LP−LT)/(n+1) (3)
The condition for the width β·D of the exposure area 43 P in the X direction as the relative scanning direction will be described next. In this case, provided that the pulse emission period (i.e., the reciprocal of an emission frequency f) of the pulse laser source 52 in
β·D=m·ΔL=m·T·V (4)
Although energy corresponding to m pulses is radiated on exposure points which are scanned once by the two side areas 43 aP and 43 bP of the exposure area 43 P, the radiated energy is lower than that radiated on the other exposure points. However, as described above, in the second embodiment, since a connection portion is scanned twice by the areas 43 aP and 43 bP in a stitching operation, energy represented by m·ΔE is also radiated on each exposure point of the connection portion. Therefore, the same amount of energy is radiated on all the exposure points on the wafer, preventing illuminance irregularity.
An example of stitching and slit scanning exposure in the second embodiment will be described next. Referring to
With this operation, as shown in
When the first slit scanning exposure operation is completed, the reticle 7 is moved in the Y direction by stitching so as to move the illumination area 43 to an upper left position in the pattern area 75 along a trace 78, as shown in FIG. 8. Referring to
As shown in
With this control, as shown in
As has been described above, all the exposure points which are scanned by the exposure area 43 P once are irradiated with a pulse laser corresponding to m pulses. The exposure point Q3 inside the connection portion 80c is irradiated with the same amount of energy as that radiated on an exposure point which is scanned once by two scanning operations of the exposure area 43 P (i.e., an exposure point outside the connection portion). Therefore, the illuminances at all the exposure points on the wafer 14 are made uniform. In addition, at an exposure point inside the connection portion 80c, the number of pulses radiated in two scanning operations is 2 m, which is twice that radiated at an exposure point outside the connection portion. Therefore, at the connection portion 80c, especially variations in the energy of a pulse laser beam for each pulse and the influences of speckles are reduced. More specifically, at the connection portion 80c, the variations in illuminance due to variations in the energy of a pulse laser beam for each pulse are reduced to ½1/2 the variations at a non-connection portion.
In the second embodiment, when slit scanning exposure is to be performed with respect to the area 80a on the wafer 14 shown in
In general, if the positioning precisions of the reticle stage 61 and wafer stages (27 and 28) in the X and Y directions are respectively represented by Δx and Δy, overlapping errors at the connection portion 80c are respectively represented by 21/2Δx and 21/2Δy. In contrast to this, according to the method of the second embodiment, the overlapping errors are only Δx and Δy because the positions of the reticle 7 and the wafer 14 in exposing the area 80b by the second scanning operation are controlled in accordance with shot distortion caused in exposing the area 80a by the first scanning operation.
A method of exposing the entire exposure surface of the wafer 14 will be described next. Consider a case where the stitching and slit scanning exposure operation described in the second embodiment is applied to this exposure method. As shown in
According to another exposure method, as shown in
In the first and second embodiments, since a refracting optical system is used as the projection optical system 13, a rectangular illumination area is set on the reticle 7, as shown in
Assume that a width D of the illumination area 81 in the relative scanning direction is constant, and that the longitudinal direction, of the illumination area 81, which is perpendicular to the relative scanning direction is defined as the Y direction. In this case, the Y-direction illuminance distribution of the illumination area 81 is set to be trapezoidal, as shown in FIG. 13B. That is, in two side areas 81a and 81b of the illumination area 81 in the Y direction, the illuminances linearly decrease to 0. By setting such an illuminance distribution, the illuminance irregularity at the connection portion in a stitching operation can be reduced, similar to the second embodiment described above.
Consider a case where a regular hexagonal illumination area is set, as a modification of the second embodiment described above. The arrangement of this modification is the same as that of the second embodiment except for the shape of an illumination area.
In the modification, in the first and second wafer scanning operations, the wafer is set at the same X-direction position when a pulse laser source performs pulse emission. More specifically, as shown in
Furthermore, in the modification, the pulse emission timing is controlled such that a wafer is set at the same X direction position when the pulse laser source performs pulse emission in the first and second scanning operations. However, a wafer side. X stage 27 may be controlled.
In the second embodiment and its modification, a stitching operation using one reticle has been described. However, a plurality of reticles may be placed on the same reticle stage, and scanning exposure may be repeatedly performed while the reticles are interchanged with each other in a stitching operation. In addition, the reticle stage in the second embodiment and its modification may be constituted by a reticle side scanning stage and a reticle side fine adjustment stage, as in the case of the reticle stage system in the first embodiment.
The present invention is not limited to the first and second embodiments described above, and various changes and modifications can be made without departing from the scope and spirit of the invention.
Claims
1. An exposure apparatus for radiating exposure light on a predetermined illumination area on a mask on which a pattern to be transferred is formed, and exposing the pattern on a photosensitive substrate, comprising:
- a scanning system for synchronously scanning the mask and the photosensitive substrate in a predetermined first direction of the illumination area while maintaining a predetermined speed ratio; and
- an illumination condition setting portion for setting the illumination area to be rectangular, and letting a light intensity distribution of the illumination area in a second direction substantially perpendicular to the first direction have a trapezoidal shape so that a middle portion of the distribution exhibits a substantially constant light intensity, and two side portions of the distribution exhibit a gradually decreasing light intensity.
2. An apparatus according to claim 1, wherein said scanning system scans the mask and the photosensitive substrate at least twice in the first direction, and further comprising a substrate moving system for moving the photosensitive substrate in the second direction while first and second scanning operations with respect to the mask and the photosensitive substrate are performed by said scanning system.
3. A apparatus according to claim 2, further comprising a mask moving system for moving the mask in the second direction while first and second scanning operations with respect to the mask and the photosensitive substrate are performed by said scanning system.
4. A apparatus according to claim 2, further comprising:
- storage portion for storing a relative positional difference between the mask and the photosensitive substrate when the mask and the photosensitive substrate are to be synchronously scanned in the first direction; and
- a controller for controlling a position of at least of one of the mask and the photosensitive substrate such that the relative positional difference in the first scanning operation with respect to the mask and the photosensitive substrate coincides with that in the second scanning operation.
5. An apparatus according to claim 2 wherein said illumination condition setting portion determines a length M of each of the side portions, of the illumination area, in which the light intensity gradually decreases, in the second direction so as to establish. where n is an integer of not less than one, LP is a length of an illumination area on the mask in the second direction, and LT is a width of a pattern area, formed on the mask, in the second direction.
- M=(n·LP−LT)/(n+1)
6. An apparatus according to claim 5, further comprising a projection optical system for projecting an image of a pattern of the mask, irradiated with the exposure light, onto the photosensitive substrate at a projecting magnification β, and wherein a moving amount of the photosensitive substrate moved by said substrate moving system in the second direction is defined as
- n·(LP−M)/β
7. A projection exposure apparatus comprising:
- a pulse light source for pulse-emitting exposure light;
- an illumination optical system for illuminating a predetermined illumination area on a mask, on which a pattern to be transferred is formed, with the exposure light;
- a projection optical system for projecting an image of the pattern, irradiated with the exposure light, onto a photosensitive substrate;
- a scanning system for synchronously scanning the mask and the photosensitive substrate at least twice in a predetermined first direction of the illumination area while maintaining a predetermined speed ratio;
- a substrate moving system for moving the photosensitive substrate in a second direction substantially perpendicular to the first direction while first and second scanning operations with respect to the mask and the photosensitive substrate are performed by said scanning system; and
- a controller for controlling at least one of said pulse light source and said scanning system such that a position of the photosensitive substrate in the first direction at the time when said pulse light source performs pulse emission in the first scanning operation with respect to the photosensitive substrate and the mask coincides with that in the second scanning operation.
8. An apparatus according to claim 7, wherein said controller includes a position storage portion for detecting a position of the photosensitive substrate in the first direction when said pulse light source performs pulse emission, and storing data indicating the position, and controls one of said pulse light source and said synchronous scanning means on the basis of the stored data indicating the position of the photosensitive substrate.
9. A scanning exposure apparatus comprising:
- a projection optical system for projecting a pattern image of a mask onto a photosensitive substrate;
- a scanning system for synchronously scanning a the mask and a the photosensitive substrate for scanning exposure; and, wherein said scanning system includes a mask stage for scanning the mask in a direction perpendicular to an optical axis of said projection optical system and a substrate stage for scanning the substrate in the direction perpendicular to the optical axis, and causes the mask stage and the substrate stage to scan at a speed ratio corresponding to a projecting magnification of said projection optical system; and
- a first measuring system for measuring a position of the mask within a plane perpendicular to said optical axis, wherein said first measuring system includes a rotational angle detecting device for detecting a rotational angle of the mask within the plane perpendicular to said optical axis;
- a second measuring system for measuring a position of the substrate within a plane perpendicular to said optical axis; and
- an adjusting system for moving the mask to decrease a positional deviation between the mask and the substrate, independently of scanning of the mask which is performed by said scanning system, during the scanning exposure, wherein said adjusting system includes a finely movable stage for relatively moving the mask on said mask stage, a driving member for finely driving said finely movable stage in the direction perpendicular to said optical axis, and a controller for controlling the driving member in accordance with signals from said first and second measuring systems.
10. An apparatus according to claim 9, further comprising:
- a projection optical system for projecting a pattern image of the mask onto the substrate; and wherein
- said scanning system includes a mask stage for scanning the mask in a direction perpendicular to an optical axis of said projection optical system and a substrate stage for scanning the substrate in the direction perpendicular to the optical axis, and causes the mask stage and the substrate stage to scan at a speed ratio corresponding to a projecting magnification of said projection optical system.
11. An apparatus according to claim 10, wherein
- said adjusting system includes a finely movable stage for relatively moving the mask on said mask stage and a driving member for finely driving said finely movable stage in the direction perpendicular to said optical axis.
12. An apparatus according to claim 11, further comprising: p1 a first measuring system for measuring a position of the mask within a plane perpendicular to said optical axis; and
- a second measuring system for measuring a position of the substrate within a plane perpendicular to said optical axis, and wherein
- said adjusting system includes a controller for controlling the driving member in accordance with signals from said first and second measuring systems.
13. A apparatus according to claim 12, wherein
- said first measuring system includes a rotational angle detecting device for detecting a rotational angle of the mask within the plane perpendicular to said optical axis.
14. An apparatus according to claim 13 9, wherein
- said finely movable stage includes a mirror having a reflecting surface substantially perpendicular to said plane, and
- said first measuring system includes an interferometer for radiating a light beam onto said reflecting surface and receiving the light beam reflected by said reflecting surface.
15. A scanning exposure apparatus for projecting a pattern image of a mask onto a sensitive plate through a projection optical system in a scanning manner, the exposure apparatus comprising:
- (a) a plate stage for scanning the plate in at least one-dimensional direction under said projection optical system for the scanning exposure;
- (b) a first mask stage for scanning the mask in at least said one-dimensional direction above said projection optical system for the scanning exposure;
- (c) a second mask stage for finely moving the mask on said first mask stage in each of translational and rotational directions;
- (d) a first driving system for synchronously driving said plate stage and said first mask stage with a predetermined velocity ratio for the scanning exposure, wherein said first driving system includes a mask driving unit for moving the first mask stage and a plate driving unit for moving said plate stage;
- (e) a detecting system for detecting a positional deviation amount between the mask and the plate in a real time manner during the scanning exposure; and
- (f) a second driving system for driving said second mask stage to decrease the detected deviation amount during the scanning exposure, while said plate stage and said first mask stage are moved by said first driving system.
16. The scanning exposure apparatus according to claim 15, wherein said detecting system includes a first measuring unit to detect a relative translational deviation amount between the mask and the plate and a second measuring unit to detect a relative rotational deviation amount between the mask and the plate.
17. The scanning exposure apparatus according to claim 16, wherein said second drive system includes a first actuator unit for finely moving said second mask stage in said one-dimensional scanning direction and in a cross direction of said scanning direction based on said translational deviation amount.
18. The scanning exposure apparatus according to claim 16, wherein, said second drive system includes a second actuator unit for finely rotating said second mask stage about a predetermined point on the mask based on said rotational deviation amount.
19. The scanning exposure apparatus according to claim 18, wherein said predetermined point on the mask is changed in said one-dimensional scanning direction according to the scanning position of the mask.
20. The scanning exposure apparatus according to claim 16, wherein said first and second measuring units include a mask side interferometer system for measuring a coordinate position and a rotational angle of the mask and a plate side interferometer system for measuring a coordinate position and a rotational angle of the plate.
21. The scanning exposure apparatus according to claim 15, wherein each of said plate stage and said first mask stage is linearly movable in said one-dimensional scanning direction by restraining of respective linear air-guide structures.
22. The scanning exposure apparatus according to claim 21, wherein said first driving system includes a mask side linear motor for driving said first mask stage guide by the corresponding linear air-guide structure and a plate side linear motor for driving said plate stage guided by the corresponding linear air-guide structure.
23. A scanning exposure apparatus for projecting a pattern image of a mask onto a sensitive plate through a projection optical system in a scanning manner, the exposure apparatus comprising:
- (a) a plate stage for moving the plate in at least one-dimensional direction under said projection optical system which has an imaging reduction ratio 1/β;
- (b) a first mask stage for moving the mask in at least said one-dimensional direction above said projection optical system;
- (c) a second mask stage for finely moving the mask on said first mask stage in each of translational and rotational directions;
- (d) an illuminating system for irradiating the mask with a radiation having a slit shaped distribution elongated perpendicular to said one-dimensional direction and the mask in order to project a slit shaped partial pattern image of the mask onto the plate through said projection optical system;
- (e) a first driving system for synchronously, relatively driving said plate stage and first mask stage with a velocity ratio B for the scanning exposure of the plate by said slit shaped partial pattern image of the mask;
- (f) a detecting system for detecting a deviation amount from an ideal positional relation of the mask and the plate occurring at a term of the scanning exposure; and
- (g) a second driving system for driving said second mask stage to correct the deviation during the scanning exposure when said detected deviation amount is out of a predetermined tolerance.
24. The scanning exposure apparatus according to claim 23, wherein said detecting system includes a first measuring system to detect a translational deviation amount from said ideal positional relation of the mask and the plate and a second measuring system to detect a rotational deviation amount from said ideal positional relation of the mask and the plate.
25. The scanning exposure apparatus according to claim 24, wherein said second drive system includes a first actuator system for finely moving said second mask stage in said one-dimensional scanning direction and a cross direction thereof based on said translational deviation amount.
26. The scanning exposure apparatus according to claim 24, wherein said second drive system includes a second actuator system for finely rotating said second mask stage about a predetermined point on the mask based on said rotational deviation amount.
27. The scanning exposure apparatus according to claim 26, wherein said predetermined point on the mask is changed in said one-dimensional scanning direction according to the scanning position of the mask.
28. The scanning exposure apparatus according to claim 23, wherein said first driving system includes a mask side linear motor for driving said first mask stage supported by an air-guide structure and a plate side linear motor for driving said plate stage supported by an air-guide structure.
29. A scanning exposure apparatus for projecting a pattern image of a mask onto a sensitive plate through a projection system having a predetermined magnification ratio in a scanning manner, the apparatus comprising:
- (a) a scanning system for synchronously, relatively scanning the mask and the plate with respect to a projection field of said projection system at a velocity ratio corresponding to said magnification ratio during the scanning exposure, wherein the scanning system includes a mask driving unit and a plate driving unit, said wherein the mask and the plate are moved synchronously using the mask driving unit and the plate driving unit during the scanning exposure;
- (b) a finely movable stage provided on said scanning system for finely moving the mask relative to said scanning system in each of translational and rotational directions;
- (c) a detecting system for detecting a positional deviation amount between an ideal positional relation and an actual positional relation of the mask and the plate during the scanning exposure, wherein said detecting system includes a first interferometer system to measure positional information of the mask and a second interferometer system to measure positional information of the plate, and wherein said finely movable stage has a reflection surface, and said first interferometer system measures the positional information of the mask by applying a measuring beam to the reflection surface; and
- (d) a control system for driving said finely movable stage based on said detected deviation amount in order to decrease the positional deviation of the mask and the plate.
30. A scanning exposure method in which a pattern area of a mask is transferred onto a sensitive plate through a projection optical system in a scanning manner, the method comprising the steps of:
- (a) irradiating the mask with a radiation having a slit shaped intensity distribution in order to project a slit image portion of said pattern area of the mask toward the plate through said projection optical system;
- (b) synchrouously scanning each of the mask and the plate relative to said projection optical system in a scanning directional perpendicular to a longitudinal direction of said slit image portion at a predetermined velocity ratio by using a scanning mechanism for the scanning exposure, wherein the scanning mechanism includes a mask driving unit for moving the mask and a plate driving unit for moving the plate;
- (c) detecting a deviation value between an ideal positional relation and an actual positional relation of the mask and the plate at a term of the scanning exposure by using a first measuring system to measure positional information of the mask and a second measuring system to measure positional information of the plate; and
- (d) correcting a position of the mask determined by said scanning mechanism so as to decrease said detected deviation value by using a fine moving mechanism provided on said scanning mechanism at the term of the scanning exposure.
31. The scanning exposure method according to claim 30, wherein said detecting step includes detecting a relative rotational deviation between the mask and the plate and said fine moving mechanism finely rotates the mask to decrease said rotational deviation.
32. The scanning exposure method according to claim 31, wherein said relative rotational deviation is detected by using a mask side interferometer system and a plate side interferometer system.
33. A scanning exposure method in which a pattern area of a mask is transferred onto a sensitive plate through a projection system in a scanning manner, the method comprising the steps of:
- (a) irradiating the mask with a radiation in order to project an image portion of said pattern area of the mask onto the plate through said projection system;
- (b) synchronously scanning each of the mask and the plate relative to said projection system in a scanning direction at a predetermined velocity ratio by using a scanning mechanism for the scanning exposure, wherein the scanning mechanism includes a mask driving unit for moving the mask and a plate driving unit for moving the plate, and wherein the mask and the plate are moved in accordance with an imaging reduction ratio of the projection system;
- (c) detecting a deviation between the ideal positional relation and an actual positional relation of the mask and the plate at a term of the scanning exposure by using a first measuring system to measure positional information of the mask and a second measuring system to measure positional information of the plate; and
- (d) correcting a position of the mask determined by said scanning mechanism for decreasing said detected deviation by using a fine moving mechanism provided on said scanning mechanism at the term of the scanning exposure.
34. A scanning exposure apparatus for projecting a pattern image of a mask onto a sensitive plate through a projection system in a scanning matter, the exposure apparatus comprising:
- (a) a plate stage for moving the plate under said projection system in an X direction for the scanning exposure and in a Y direction perpendicular to the X direction;
- (b) a first mask stage for moving the mask in the X direction for the scanning exposure above said projection system;
- (c) a second mask stage for finely moving the mask on said first mask stage in each of translational and rotational directions;
- (d) first driving means for synchronously driving each of said plate stage and said first mask stage with a pre-determined velocity ratio in the X direction during the scanning exposure; and
- (e) second driving means for driving said plate stage and said second mask stage to maintain a translational relation of the mask and plate in the Y direction and for driving said second mask stage to maintain a relative rotational relation of the mask and the plate, during the scanning exposure.
35. A scanning exposure apparatus for projecting a pattern image of a mask onto a sensitive plate through a projection system having a predetermined magnification ratio in a scanning manner, the apparatus comprising:
- (a) a scanning system which has a first driving system to move the mask and a second driving system to move the plate and which synchronously scans the mask and the plate with respect to a projection field of said projection system at a velocity ratio corresponding to said magnification ratio during a scanning exposure;
- (b) a finely movable stage, connected to said scanning system, which moves the mask relative to said scanning system;
- (c) a detector which detects a positional deviation amount between the mask and the plate during the scanning exposure; and
- (d) a control system, connected to said finely movable stage and said detector, which drives said finely movable stage based on said detected deviation amount during the scanning exposure.
36. A scanning exposure method in which a pattern of a mask is transferred onto a sensitive plate through a projection system in a scanning manner, the method comprising:
- (a) irradiating the mask with a radiation in order to project an image of said pattern of the mask onto the plate through said projection system;
- (b) synchronously scanning each of the mask and the plate relative to said projection system by using a scanning mechanism for a scanning exposure, wherein the scanning mechanism includes a mask driving unit for moving the mask and a plate driving unit for moving the plate, and wherein a scanning velocity of the mask is different from a scanning velocity of the plate;
- (c) detecting a positional deviation amount between the mask and the plate at a term of the scanning exposure by using a first interferometer to measure positional information of the mask and a second interferometer to measure positional information of the plate; and
- (d) correcting a position of the mask determined by said scanning mechanism for decreasing said detected deviation using a fine moving mechanism at the term of the scanning exposure.
37. A scanning exposure apparatus in which a first object is moved in a first direction and a second object is moved in a second direction for scanning exposure, the apparatus comprising:
- a projection system for the scanning exposure, which is disposed in an optical path of an exposure beam, the first object being provided on one side of the projection system and the second object being provided on the other side of the projection system;
- a first driving system which moves the first object in the first direction, at least a part of the first driving system being on one side of the projection system;
- a second driving system which moves the first object in a plane substantially parallel to the surface of the first object while the first object is moved by the first driving system, at least a part of the second driving system being on the one side of the projection system;
- a third driving system which moves the second object in the second direction, at least a part of the third driving system being on the other side of the projection system;
- a first movable member which is movable in the first direction; and
- a second movable member which is movable relative to the first movable member and which holds the first object,
- wherein the first object held by the second movable member is moved in the first direction by moving the first movable member using the first driving system, and the first object is moved relative to the first movable member by moving the second movable member using the second driving system, and
- wherein the first object and the second object are synchronously moved by the first driving system and the third driving system.
38. An apparatus according to claim 37, wherein the first object includes a mask having a pattern area, and the second object includes a work-piece on which a pattern of the mask is transferred.
39. An apparatus according to claim 38, wherein said second driving system rotates said first object.
40. An apparatus according to claim 37, wherein said first driving system includes a linear motor.
41. An apparatus according to claim 40, wherein said third driving system includes a linear motor.
42. An apparatus according to claim 37, further comprising:
- a detecting system which detects a relative relationship between the first object and the second object, wherein the second driving system moves the second movable member based on the detected relationship.
43. An apparatus according to claim 42, wherein said detecting system includes an interferometer.
44. An apparatus according to claim 37, wherein at least a part of said second driving system is provided on said first movable member.
45. An apparatus according to claim 37, further comprising:
- a reflective surface disposed on the second movable member; and
- an interferometer, optically connected to the reflective surface, which is used for detecting positional information of the first object.
46. An apparatus according to claim 37, wherein the second driving system moves the second movable member without a weight of the first movable member.
47. An apparatus according to claim 37, wherein the exposure beam irradiated onto said first object defines a rectangular illumination area on said first object, said first direction and said second direction are parallel and reverse to one another, said projection system has a reduction magnification, and a scanning speed of said first object is different from a scanning speed of said second object.
48. An apparatus according to claim 37, wherein said projection system includes a reflective and refractive optical system.
49. An apparatus according to claim 38, wherein said second driving system moves said mask before the pattern area of said mask begins to be illuminated with the exposure beam.
50. An apparatus according to claim 37, wherein:
- the second driving system operates to correct a positional relationship between the first object and the second object during a synchronous movement of the first object and the second object.
51. An apparatus according to claim 39, wherein during movement of said mask by said first driving system, said second driving system rotates said mask about a rotation axis passing through a predetermined point in an illumination region of said exposure beam irradiated to said mask.
52. An apparatus according to claim 37, further comprising:
- a first measuring device which detects positional information of the first object; and
- a second measuring device which detects positional information of the second object; and
- wherein the second driving system moves the second movable member based on the positional information detected by the first and second measuring devices.
53. An apparatus according to claim 52, wherein:
- said first measuring device includes a first interferometer system, and said second measuring device includes a second interferometer system.
54. An apparatus according to claim 37, further comprising:
- a fourth driving system which moves said second object in a plane which is substantially parallel to a surface of the second object and in a direction crossing said second direction, at least a part of the fourth driving system being disposed on the other side of the projection system.
55. A scanning exposure method in which a first object is moved in a first direction and a second object is moved in a second direction for a scanning exposure, the method comprising:
- moving a first object in the first direction by using a first driving system;
- shifting the first object in a plane substantially parallel to a surface of the first object by using a second driving system while the first object is moved by the first driving system, wherein the first driving system moves a first movable member, the second driving system shifts a second movable member, which supports the first object, relative to the first movable member, and wherein the first object is moved in the first direction by moving the first movable member using the first driving system and is shifted by shifting the second movable member using the second driving system; and
- moving a second object in the second direction by using a third driving system,
- wherein the first object and the second object are synchronously moved by the first driving system and the third driving system.
56. A method according to claim 55, wherein the first object includes a mask having a pattern area, and the second object includes a work-piece on which a pattern of the mask is transferred.
57. A method according to claim 56, wherein said second driving system rotates said first object.
58. A method according to claim 55, wherein said first driving system includes a linear motor.
59. A method according to claim 58, wherein said third driving system includes a linear motor.
60. A method according to claim 55, further comprising:
- detecting a relative relationship between the first object and the second object.
61. A method according to claim 60, wherein said relative relationship is detected by an interferometer system including a first interferometer unit and a second interferometer unit which detect positional information of the first and second objects respectively.
62. A method according to claim 55, wherein at least a part of said second driving system is provided on said first movable member.
63. A method according to claim 55, wherein the second driving system shifts the first object without a weight of the first movable member.
64. A method according to claim 55, wherein an exposure beam irradiated onto said first object defines a rectangular illumination area on said first object, said first direction and said second direction are parallel and reverse to one another, a projection system for the scanning exposure has a reduction magnification, and a scanning speed of said first object is different from a scanning speed of said second object.
65. A method according to claim 56, wherein said second driving system shifts said mask before the pattern area of said mask begins to be illuminated with an exposure beam.
66. A method according to claim 55, wherein:
- the second driving system operates to correct a positional relationship between the first object and the second object during a synchronous movement of the first object and the second object.
67. A method of manufacturing a circuitry element with use of the method as defined in claim 55, wherein the circuitry element is formed on a substrate by projecting a pattern of a mask onto the substrate during the scanning exposure, the substrate is one of the first and second objects, and the mask is the other of the first and second objects.
68. A method according to claim 57, wherein during movement of said mask by said first driving system, said second driving system rotates said mask about a rotation axis passing through a predetermined point in an illumination region of an exposure beam irradiated to said mask.
69. A method according to claim 55, wherein said first driving system is capable of moving said first object by a longer distance than that moved by said second driving system.
70. A method according to claim 55, wherein during movement of said first object by said first driving system, at least a portion of said second driving system moves in said first direction in order to shift said first object.
71. A method according to claim 60, wherein said second driving system moves the first object based on the detected relative relationship.
72. A method according to claim 55, further comprising:
- measuring positional information of the first object; and
- measuring positional information of the second object,
- wherein said positional information of the first object includes positional information of said first object in a direction which crosses said first direction,
- said positional information of the second object includes positional information of said second object in a direction which crosses said second direction, and
- wherein said second driving system shifts the second movable member based on the measured positional information of the first and second objects.
73. A method according to claim 55, further comprising:
- measuring positional information of the first object; and
- measuring positional information of the second object,
- wherein said positional information of the first object includes information on rotation of the first object;
- said positional information of the second object includes information on rotation of the second object, and
- wherein said second driving system shifts the second movable member based on the measured positional information of the first and second objects.
74. A method according to claim 55, wherein during the scanning exposure, speed of said first object is controlled by using said first driving system and position of said first object is controlled by using said second driving system.
75. A method for making a scanning exposure apparatus in which a first object is moved in a first direction and a second object is moved in a second direction for a scanning exposure, the method comprising:
- providing a projection system for the scanning exposure, which is disposed in an optical path of an exposure beam, the first object being provided on one side of the projection system and the second object being provided on the other side of the projection system;
- providing a first driving system which moves the first object in the first direction, at least a part of the first driving system being on the one side of the projection system;
- providing a second driving system which moves the first object in a plane substantially parallel to a surface of the first object while the first object is moved by the first driving system, at least a part of the second driving system being on the one side of the projection system;
- providing a third driving system which moves the second object in the second direction, at least a part of the third driving system being on the other side of the projection system;
- providing a first movable member which is movable in the first direction; and
- providing a second movable member which is movable relative to the first movable member and which holds the first object;
- wherein the first object held by the second movable member is moved in the first direction by moving the first movable member using the first driving system, and the first object is moved relative to the first movable member by moving the second movable member using the second driving system, and
- wherein the first object and the second object are synchronously moved by the first driving system and the third driving system.
76. A method according to claim 75, wherein the first object includes a mask having a pattern area, and the second object includes a work-piece on which a pattern of the mask is transferred.
77. A method according to claim 76, wherein said second driving system rotates said first object.
78. A method according to claim 75, wherein said first driving system includes a linear motor.
79. A method according to claim 78, wherein said third driving system includes a linear motor.
80. A method according to claim 75, further comprising:
- providing a detecting system which detects a relative relationship between the first object and the second object, wherein the second driving system moves the second movable member based on the detected relationship.
81. A method according to claim 80, wherein said detecting system includes an interferometer.
82. A method according to claim 75, wherein at least a part of said second driving system is provided on said first movable member.
83. A method according to claim 75, further comprising:
- providing a reflective surface disposed on the second movable member; and
- providing an interferometer, optically connected to the reflective surface, which is used for detecting positional information of the first object.
84. A method according to claim 75, wherein the second driving system moves the second movable member without a weight of the first movable member.
85. A method according to claim 75, wherein the exposure beam irradiated onto said first object defines a rectangular illumination area on said first object, said first direction and said second direction are parallel and reverse to one another, said projection system has a reduction magnification, and a scanning speed of said first object is different from a scanning speed of said second object.
86. A method according to claim 75, wherein said projection system includes a reflective and refractive optical system.
87. A method according to claim 76, wherein said second driving system moves said mask before the pattern area of said mark begins to be illuminated with the exposure beam.
88. A method according to claim 75, wherein:
- the second driving system operates to correct a positional relationship between the first object and the second object during a synchronous movement of the first object and the second object.
89. A method of manufacturing a circuitry element with use of a scanning exposure apparatus made by the method as defined in claim 75.
90. A method according to claim 77, wherein during movement of said mask by said first driving system, said second driving system rotates said mask about a rotation axis passing through a predetermined point in an illumination region of said exposure beam irradiated onto said mask.
91. A method according to claim 75, further comprising:
- providing a fourth driving system which moves said second object in a plane which is substantially parallel to a surface of the second object and in a direction which crosses said second direction, at least a part of the fourth driving system being disposed on the other side of the projection system.
92. A method according to claim 75, further comprising:
- providing a first measuring device which detects positional information of the first object; and
- providing a second measuring device which detects positional information of the second object; and
- wherein the second driving system moves the second movable member based on the positional information detected by the first and second measuring devices.
93. A method according to claim 92, wherein
- said first measuring device includes a first interferometer system, and said second measuring device includes a second interferometer system.
3538828 | November 1970 | Genpvese |
4747678 | May 31, 1988 | Shafer et al. |
4748478 | May 31, 1988 | Suwa et al. |
4749867 | June 7, 1988 | Matsushita et al. |
4822975 | April 18, 1989 | Torigoe |
4924257 | May 8, 1990 | Jain |
5004348 | April 2, 1991 | Magome |
5187519 | February 16, 1993 | Takabayashi et al. |
5227839 | July 13, 1993 | Allen |
5281996 | January 25, 1994 | Bruning et al. |
5473410 | December 5, 1995 | Nishi |
5506684 | April 9, 1996 | Ota et al. |
5767948 | June 16, 1998 | Loopstra et al. |
5796469 | August 18, 1998 | Ebinuma |
A-56-60017 | May 1981 | JP |
A-62-150721 | July 1987 | JP |
63-128713 | June 1988 | JP |
A-64-18002 | January 1989 | JP |
A-1-251210 | October 1989 | JP |
A-3-129720 | June 1991 | JP |
A-4-196513 | July 1992 | JP |
A-4-235558 | August 1992 | JP |
A-4-277612 | October 1992 | JP |
A-4-291913 | October 1992 | JP |
- Buckley et al., “Step and scan: A systems overview of a new lithography tool”, SPIE vol. 1088 Optical/Laser Microlithography II (1989), p. 424-433.
Type: Grant
Filed: Dec 19, 1997
Date of Patent: May 2, 2006
Assignee: Nikon Corporation (Tokyo)
Inventor: Kenji Nishi (Kawasaki)
Primary Examiner: Alan Mathews
Attorney: Oliff & Berridge PLC
Application Number: 08/994,758
International Classification: G03B 27/42 (20060101); G03B 27/48 (20060101); G03B 27/50 (20060101); G03F 9/00 (20060101);