Having Pulling During Growth (e.g., Czochralski Method, Zone Drawing) Patents (Class 117/13)
  • Patent number: 8961686
    Abstract: For manufacturing a monocrystal, a monocrystal pulling-up device controls pressure within a flow straightening cylinder to be from 33331 Pa to 79993 Pa and a flow velocity of inert gas in the cylinder to be from 0.06 m/sec to 0.31 m/sec (0.005 to 0.056 SL/min·cm2) during a post-addition-pre-growth period. By controlling the flow velocity of the inert gas to be in the above-described range during the post-addition-pre-growth period, the inert gas flows smoothly even when the pressure within the cylinder is relatively high. Evaporation of a volatile dopant because of a reverse flow of the inert gas can be restrained. The volatile dopant can be prevented from adhering to the flow straightening cylinder in an amorphous state, and the volatile dopant can be prevented from dropping into a melt or sticking on the melt while growing a crystal. Foulings can be easily removed.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: February 24, 2015
    Assignee: Sumco Techxiv Corporation
    Inventors: Shinichi Kawazoe, Fukuo Ogawa, Yasuhito Narushima, Toshimichi Kubota
  • Patent number: 8956454
    Abstract: According to the invention, a device and a method for producing materials having a monocrystalline or multicrystalline structure are provided, in which a container is arranged between two pressure regions and the setting of the height of the melt in the container takes place via the setting of the differential pressure between the pressure regions. As a result, even particulate material can be fed continuously to the container and melted uniformly. Delivery material with high purity can also be pulled out of the container.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: February 17, 2015
    Assignee: Streicher Maschinenbau GmbH & Co. KG
    Inventor: Rupert Köckeis
  • Publication number: 20150044467
    Abstract: Provided is a method of growing an ingot. The method of growing the ingot includes melting a silicon to prepare a silicon melt solution, preparing a seed crystal having a crystal orientation [110], growing a neck part from the seed crystal, and growing an ingot having the crystal orientation [110] from the neck part. The neck part has a diameter of about 4 mm to about 8 mm.
    Type: Application
    Filed: November 30, 2011
    Publication date: February 12, 2015
    Inventors: Hwajin Jo, Sanghee Kim, Youngho Jung, Namseok Kim
  • Patent number: 8951344
    Abstract: Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of geometrically ordered multi-crystalline silicon may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm is provided.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: February 10, 2015
    Assignee: AMG Idealcast Solar Corporation
    Inventor: Nathan G. Stoddard
  • Patent number: 8951346
    Abstract: A silica glass crucible for pulling up a silicon single crystal including an outer layer formed from a natural silica glass layer, and an inner layer formed from a synthetic silica glass layer, wherein the synthetic silica glass layer includes a first synthetic silica glass layer formed in a region within a certain range from the center of a crucible bottom section, and a second synthetic silica glass layer formed in a region which excludes the formation region of the first synthetic silica glass layer, and wherein the first synthetic silica glass layer has a thickness of 0.5 mm or more and 1.5 mm or less and a concentration of an OH group included in the first synthetic silica glass layer being 100 ppm or less.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: February 10, 2015
    Assignee: Japan Super Quartz Corporation
    Inventors: Kazuhiro Harada, Masaki Morikawa, Satoshi Kudo
  • Patent number: 8940095
    Abstract: An apparatus for growth of uniform multi-component single crystals is provided. The single crystal material has at least three elements and has a diameter of at least 50 mm, a dislocation density of less than 100 cm?2 and a radial compositional variation of less than 1%.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: January 27, 2015
    Assignee: Rensselaer Polytechnic Institute
    Inventor: Partha Dutta
  • Patent number: 8936685
    Abstract: The present invention provides a vitreous silica crucible which can suppress the sidewall lowering of the crucible under high temperature during pulling a silicon single crystal, and a method of manufacturing such a vitreous silica crucible. The vitreous silica crucible 10 includes an opaque vitreous silica layer 11 provided on the outer surface side of the crucible and containing numerous bubbles, and a transparent vitreous silica layer 12 provided on the inner surface side. The opaque vitreous silica layer 11 includes a first opaque vitreous silica portion 11a provided on the crucible upper portion, and a second opaque vitreous silica portion 11b provided on the crucible lower portion. The specific gravity of the second opaque vitreous silica portion 11b is 1.7 to 2.1, and the specific gravity of the first opaque vitreous silica portion 11a is 1.4 to 1.8, and smaller than that of the second opaque vitreous silica portion.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: January 20, 2015
    Assignee: Japan Super Quartz Corporation
    Inventors: Toshiaki Sudo, Makiko Kodama, Minoru Kanda, Hiroshi Kishi
  • Patent number: 8936684
    Abstract: The present invention provides a vitreous silica crucible which can suppress buckling and sidewall lowering of the crucible and the generation of cracks. According to the present invention, a vitreous silica crucible is provided for pulling a silicon single crystal having a wall, the wall including a non-doped inner surface layer made of natural vitreous silica or synthetic vitreous silica, a mineralizing element-maldistributed vitreous silica layer containing dispersed island regions each containing a mineralizing element, and wherein the vitreous silica of the island regions and the vitreous silica of a surrounding region of the island regions is a combination of mineralizing element-doped natural vitreous silica and non-doped synthetic vitreous silica, or a combination of mineralizing element-doped synthetic vitreous silica and non-doped natural vitreous silica, and the inner surface layer is made of vitreous silica of a different kind from that of the island region.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: January 20, 2015
    Assignee: Japan Super Quartz Corporation
    Inventors: Toshiaki Sudo, Hiroshi Kishi, Ken Kitahara
  • Patent number: 8936679
    Abstract: According to one exemplary embodiment, a single crystal pulling-up apparatus of pulling-up silicon single crystals by a Czochralski method, is provided with: a neck diameter measuring portion which measures a diameter of a grown neck portion; a first compensation portion which outputs a first compensated pulling-up speed for the seed crystals based on a difference between a measured value of the diameter of the neck portion and a target value of the neck portion diameter previously stored; a second compensation portion which outputs a second pulling-up speed while limiting an upper limit of the first pulling-up speed to a first limit value; and a crucible rotation number compensation portion which lowers the number of a rotation of a crucible at least in a period where the upper limit of the first pulling-up speed is limited to the first limit value.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: January 20, 2015
    Assignee: Globalwafers Japan Co., Ltd
    Inventors: Hironori Banba, Hiromichi Isogai, Yoshiaki Abe, Takashi Ishikawa, Shingo Narimatsu, Jun Nakao, Hiroyuki Abiko, Michihiro Ohwa
  • Patent number: 8926749
    Abstract: A method for recharging a crucible with polycrystalline silicon comprises adding flowable chips to a crucible used in a Czochralski-type process. Flowable chips are polycrystalline silicon particles made from polycrystalline silicon prepared by a chemical vapor deposition process, and flowable chips have a controlled particle size distribution, generally nonspherical morphology, low levels of bulk impurities, and low levels of surface impurities. Flowable chips can be added to the crucible using conventional feeder equipment, such as vibration feeder systems and canister feeder systems.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: January 6, 2015
    Assignee: Hemlock Semi Conductor
    Inventors: Arvid Neil Arvidson, Terence Lee Horstman, Michael John Molnar, Chris Tim Schmidt, Roger Dale Spencer, Jr.
  • Patent number: 8920561
    Abstract: A silicon single crystal pull-up apparatus includes a pull-up furnace, a sample chamber in which a sublimable dopant is housed, a sample tube which can be raised and lowered between the interior of the sample chamber and the interior of the pull-up furnace, a raising and lowering means for raising and lowering the sample tube, a supply pipe which is installed inside the pull-up furnace and supplies the sublimable dopant to a melt, and a connection means for connecting the sample tube and the supply pipe. The connection means is constructed from a ball joint structure comprising a convex member which projects from one end of the sample tube and a concave member which is provided at one end of the supply pipe and is formed to be engageable with the convex member. The contact surfaces of the convex member and the concave member are formed to be curved surfaces.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: December 30, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Yasuhito Narushima, Shinichi Kawazoe, Fukuo Ogawa, Toshimichi Kubota, Tomohiro Fukuda
  • Publication number: 20140374861
    Abstract: A method for manufacturing an epitaxial wafer for manufacture of an image pickup device, wherein, before the growth of the epitaxial layer, a thickness X of a region where oxygen concentration in the epitaxial layer becomes 4×1017 atoms/cm3 or more after the manufacture of the image pickup device is calculated and, in the growth of the epitaxial layer, the epitaxial layer is grown with a thickness such that a thickness of a region where the oxygen concentration in the epitaxial layer is less than 4×1017 atoms/cm3 after the manufacture of the image pickup device is 6 ?m or more in addition to the thickness X. As a result, it is possible to provide the epitaxial wafer in which an adverse effect of an impurity such as oxygen in the silicon wafer is not exerted on an image pickup device forming portion of the epitaxial layer and a manufacturing method thereof.
    Type: Application
    Filed: October 2, 2012
    Publication date: December 25, 2014
    Inventors: Ryoji Hoshi, Masahiro Sakurada, Izumi Fusegawa
  • Patent number: 8906157
    Abstract: Single crystal composed of silicon with a section having a diameter that remains constant, are pulled by a method wherein the single crystal is pulled with a predefined pulling rate vp having the units [mm/min]; and the diameter of the single crystal in the section having a diameter that remains constant is regulated to the predefined diameter by regulating the heating power of a first heating source which supplies heat to the single crystal and to a region of the melt that adjoins the single crystal and is arranged above the melt, such that diameter fluctuations are corrected with a period duration T that is not longer than (2·18 mm)/vp.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: December 9, 2014
    Assignee: Siltronic AG
    Inventors: Thomas Schroeck, Wilfried von Ammon, Claus Kropshofer
  • Publication number: 20140352605
    Abstract: Making a barium-doped silica crucible includes forming a crucible by introducing into a rotating crucible mold bulk silica grains to form a bulky wall. After heating the interior of the mold to fuse the bulk silica grains, an inner silica grain, doped with barium, is introduced into the crucible. Residual heat or additional heat at least partially melts the inner silica grain, allowing the barium-doped silica layer to fuse to the wall of the crucible to form a glossy inner layer. Next, at least a part of the barium-doped silica layer is roughened. Also described are the crucible made thereby as well as silicon ingots made using the crucibles as described herein.
    Type: Application
    Filed: August 28, 2013
    Publication date: December 4, 2014
    Applicant: Heraeus Shin-Etsu America, Inc.
    Inventors: Michael R. Fallows, Jeffrey S. Bailey, JR., Katsuhiko Kemmochi
  • Patent number: 8888911
    Abstract: The present invention provides a technique which enables production of single crystal silicon having relatively low resistivity by preventing cell growth during crystal growth from occurring, especially in a case where a relatively large amount of dopant is added to a molten silicon raw material. Specifically, the present invention provides a method of producing single crystal silicon by the Czochralski process, comprising producing single crystal silicon having relatively low resistivity by controlling a height of a solid-liquid interface when the single crystal silicon is pulled up.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: November 18, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Masayuki Uto, Tuneaki Tomonaga, Toshimichi Kubota, Fukuo Ogawa, Yasuhito Narushima
  • Patent number: 8871023
    Abstract: A silicon single crystal pull-up apparatus is provided with a chamber into which an inert gas is introduced; a crucible that supports a silicon melt within the chamber; a heater that heats the silicon melt in the crucible; a lifting device for lifting and lowering the crucible; a thermal radiation shield disposed above the crucible; a cylindrical purging tube that is provided inside the thermal radiation shield so as to straighten the inert gas; a CCD camera that photographs the mirror image of the thermal radiation shield reflected on the liquid surface of the silicon melt through the purging tube; a liquid surface level calculator that calculates the liquid surface level of the silicon melt from the position of the mirror image photographed by the camera; and a conversion table creator that creates a conversion table representing a relationship between the liquid surface level of the silicon melt and the mirror image position obtained.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: October 28, 2014
    Assignee: Sumco Corporation
    Inventors: Keiichi Takanashi, Kengo Hayashi, Yasuhito Narushima
  • Patent number: 8864907
    Abstract: A condition of a single crystal manufacturing step subjected to the Czochralski method applying an initial oxygen concentration, a dopant concentration or resistivity, and a heat treatment condition is determined simply and clearly on the basis of the conditions of a wafer manufacturing step and a device step so as to obtain a silicon wafer having a desired gettering capability. A manufacturing method of a silicon substrate which is manufactured from a silicon single crystal grown by the CZ method and provided for manufacturing a solid-state imaging device is provided. The internal state of the silicon substrate, which depends on the initial oxygen concentration, the carbon concentration, the resistivity, and the pulling condition of the silicon substrate, is determined by comparing a white spot condition representing upper and lower limits of the density of white spots as device characteristics with the measured density of white spots.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 21, 2014
    Assignee: Sumco Corporation
    Inventors: Kazunari Kurita, Shuichi Omote
  • Patent number: 8864906
    Abstract: A method for producing a silicon wafer in which occurrence of slip starting from interstitial-type point defects is prevented in a part from the shoulder to the top of the straight cylinder portion of a silicon single crystal when the silicon single crystal is grown by pulling method under growth conditions entering an I-rich region. In order to prevent occurrence of slip in the range from the shoulder (10A) to the top of the straight cylinder portion (10B), the silicon single crystal (10) is pulled under conditions that the oxygen concentration Oi from the shoulder (10A) to the top of the straight cylinder portion (10B) of the silicon single crystal (10) is not lower than a predetermined concentration for preventing slip starting from interstitial-type point defects, more specifically not lower than 9.0×1017 atoms/cm3.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: October 21, 2014
    Assignee: Sumco Techxiv Kabushiki Kaisha
    Inventors: Hidetoshi Kuroki, Motoaki Yoshinaga, Yutaka Shiraishi, Masahiro Shibata
  • Patent number: 8858706
    Abstract: A single-crystal manufacturing apparatus according to the Czochralski method, including: a crucible that contains a raw material; a main chamber configured to accommodate a heater for heating and melting the raw material; and a pulling chamber configured to pull and accommodate a grown single crystal, the pulling chamber being continuously provided above the main chamber; an inner shield provided between the heater and the main chamber and for insulating heat radiated from the heater, and a supporting member for supporting the inner shield from below. The inner shield is supported at three or more supporting points contacting the supporting member, and a lower end of the inner shield except at the supporting points does not contact the supporting member.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: October 14, 2014
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Toshiro Shimada, Kosei Sugawara
  • Publication number: 20140299046
    Abstract: A method for producing a crystal, according to the present invention, where the lower surface of a seed crystal which is rotatably arranged and made of silicon carbide is brought into contact with a solution of silicon solvent containing carbon in a crucible which is rotatably arranged and the seed crystal is pulled up and a crystal of silicon carbide is grown from the solution on the lower surface of the seed crystal, comprising the steps of bringing the lower surface of the seed crystal into contact with the solution in a contact step, rotating the seed crystal in a seed crystal rotation step, rotating the crucible in a crucible rotation step, and stopping rotation of the crucible, while the seed crystal is rotated in the state in which the lower surface of the seed crystal is in contact with the solution, in a deceleration step.
    Type: Application
    Filed: October 29, 2012
    Publication date: October 9, 2014
    Applicant: KYOCERA Corporation
    Inventors: Chiaki Domoto, Katsuaki Masaki, Yutaka Kuba, Daisuke Ueyama, Kouji Miyamoto, Yuuichiro Hayashi
  • Patent number: 8852340
    Abstract: In consideration of influence of segregation, an evaporation area of a volatile dopant and influence of pulling-up speed at the time of manufacturing a monocrystal using a monocrystal pulling-up device, an evaporation speed formula for calculating evaporation speed of the dopant is derived. At predetermined timing during pulling-up, gas flow volume and inner pressure in a chamber are controlled such that a cumulative evaporation amount of the dopant, calculated based on the evaporation speed formula, becomes a predetermined amount. A difference between a resistivity profile of the monocrystal predicted based on the evaporation speed formula and an actual resistivity profile is made small. Since no volatile dopant is subsequently added, increase in workload on an operator, increase of manufacturing time, an increase in amorphous adhering to the inside of the chamber, and an increase in workload at the time of cleaning the inside of the chamber can be prevented.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: October 7, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Yasuhito Narushima, Fukuo Ogawa, Shinichi Kawazoe, Toshimichi Kubota
  • Patent number: 8840722
    Abstract: Implementations and techniques for producing graphene are generally disclosed.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: September 23, 2014
    Assignee: Empire Technology Development LLC
    Inventor: James Pierre Hauck
  • Patent number: 8840721
    Abstract: The present invention provides a method of producing low-resistivity silicon single crystal containing a dopant at a relatively high concentration by adding a large amount of the dopant to silicon melt when the silicon single crystal is pulled up, with suppressing occurrence of dislocation in the crystal. Specifically, the present invention provides a method of manufacturing silicon single crystal by bringing silicon seed crystal into contact with silicon melt and pulling up the silicon seed crystal while rotating the crystal to grow silicon single crystal whose straight body section has a diameter of ? mm below the silicon seed crystal, the method comprising: the dopant-adding step of adding a dopant to the silicon melt during growth of the straight body section of the silicon single crystal, while rotating the silicon single crystal at a rotational speed of ? rpm (where ??24?(?/25)).
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: September 23, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Yasuhito Narushima, Fukuo Ogawa, Toshimichi Kubota
  • Patent number: 8835284
    Abstract: Annealed wafers having reduced residual voids after annealing and reduced deterioration of TDDB characteristics of an oxide film formed on the annealed wafer, while extending the range of nitrogen concentration contained in a silicon single crystal, are prepared by a method wherein crystal pulling conditions are controlled such that a ratio V/G between a crystal pulling rate V and an average axial temperature gradient G is ?0.9×(V/G)crit and ?2.5×(V/G)crit, and hydrogen partial pressure is ?3 Pa and ?40 Pa. The silicon single crystal has a nitrogen concentration of >5×1014 atoms/cm3 and ?6×1015atoms/cm3, a carbon concentration of ?1×1015 atoms/cm3 and ?9×1015 atoms/cm3, and heat treatment is performed in a noble gas atmosphere having an impurity concentration of ?5 ppma, or in a non-oxidizing atmosphere.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: September 16, 2014
    Assignee: Siltronic AG
    Inventors: Katsuhiko Nakai, Masamichi Ohkubo
  • Patent number: 8828139
    Abstract: Methods of manufacturing a sapphire seed for growing a crystal having reduced dislocation density. The present invention provides a method of manufacturing a sapphire seed formed by a sapphire single crystal and used for growing another sapphire single crystal on a (0001) face as a crystal growing surface, the method comprising: preparing a sapphire seed whose side face forms a crystal face within a {1-100} face±10 °, and whose shape is processed so as to include a hexagonal prism or a triangle prism; and applying a predetermined thermal treatment to said sapphire seed.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 9, 2014
    Assignee: Sumco Corporation
    Inventors: Masato Imai, Kouzou Nakamura
  • Patent number: 8821636
    Abstract: The present invention is a single-crystal manufacturing apparatus based on the Czochralski method having a main chamber configured to accommodate hot zone components including a crucible, and a pull chamber configured to accommodate and take out a single crystal pulled from a raw material melt, the apparatus further comprising a multipurpose chamber interchangeable with the pull chamber, wherein a heating means for heating a raw material charged into the crucible and a cooling means for cooling the hot zone components after pulling the single crystal are placeable in the multipurpose chamber respectively. As a result, there is provided a single-crystal manufacturing apparatus that enables, in manufacture of a single crystal of a large diameter, e.g., approximately 200 mm or more, an operating rate of the single-crystal manufacturing apparatus and productivity of the single crystal to be improved.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: September 2, 2014
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Takao Abe, Kouzou Yokota, Kouji Mizuishi
  • Patent number: 8815010
    Abstract: A method for producing a low-dislocation InP single crystal suitably used for an optical device such as a semiconductor laser, and the low-dislocation InP single crystal wafer are provided. In a liquid-encapsulated Czochralski method in which a semiconductor raw material and an encapsulant are contained in a raw material melt containing part comprising a cylindrical crucible having a bottom, the raw material containing part is heated to melt the raw material, and a seed crystal is brought into contact with a surface of a melt of the raw material in a state of being covered with the encapsulant to grow a crystal while the seed crystal is raised; a crystal shoulder part is grown from the seed crystal by setting a temperature gradient in a crystal growth direction to 25° C./cm or less and setting a temperature-fall amount to 0.25° C./hr or more. Thus, an iron-doped or undoped InP single crystal wafer in which an area having a dislocation density of 500/cm2 or less occupies 70% or more is realized.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: August 26, 2014
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Akira Noda, Ryuichi Hirano
  • Patent number: 8801854
    Abstract: A method for evaluating metal contamination of a silicon single crystal grown by the Czochralski method using a pulling apparatus in which a voltage can be applied between a crystal suspending member and a crucible comprises the steps of: setting the crystal suspending member as a negative electrode while setting the crucible as a positive electrode in a process for growing a non-convertible portion of the silicon single crystal; applying the voltage; collecting a sample from the non-convertible portion grown in association with the voltage application; and evaluating the metal contamination of the sample by an analysis in which Surface Photo Voltage method is adopted. In a process for growing an end-product convertible portion of the silicon single crystal, the voltage is applied such that the crystal suspending member is set as the positive electrode while the crucible is set as the negative electrode, or the voltage is not applied.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: August 12, 2014
    Assignee: Sumco Corporation
    Inventor: Shunji Kuragaki
  • Patent number: 8801855
    Abstract: Embodiments of the present invention relate to a process for obtaining silicon crystals from silicon. The method includes contacting silicon powder with a solvent metal to provide a mixture containing silicon, melting the silicon under submersion to provide a first molten liquid, contacting the first molten liquid with a first gas to provide dross and a second molten liquid, separating the dross and the second molten liquid, cooling the second molten liquid to form first silicon crystals and a first mother liquid and separating the first silicon crystals and the first mother liquid.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: August 12, 2014
    Assignee: Silicor Materials Inc.
    Inventor: Scott Nichol
  • Patent number: 8784559
    Abstract: A Czochralski (“CZ”) single-crystal growth process system continuously grows crystal boules in a chamber furnace during a single thermal cycle. Finished boules are transferred from the furnace chamber, without need to cool the furnace, to an adjoining cooling chamber for controlled cooling. Controlled cooling is preferably accomplished by transporting boules along a path having an incrementally decreasing temperature. In order to maximize crystal boule yield in a single furnace thermal cycle, the crucible assembly may be recharged with crystal growth aggregate and/or slag may be discharged during the crystal boule growth process without opening the furnace.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: July 22, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: James L. Corbeil, Troy Marlar, Piotr Szupryczynski
  • Patent number: 8771415
    Abstract: By determining a control direction of a pulling-up velocity without using a position or a width of an OSF region as an index, a subsequent pulling-up velocity profile is fed back and adjusted. A silicon single crystal ingot that does not include a COP and a dislocation cluster is grown by a CZ method, a silicon wafer is sliced from the silicon single crystal ingot, reactive ion etching is performed on the silicon wafer in an as-grown state, and a grown-in defect including silicon oxide is exposed as a protrusion on an etching surface. A growing condition in subsequent growing is fed back and adjusted on the basis of an exposed protrusion generation region. As a result, feedback with respect to a nearest batch can be performed without performing heat treatment to expose a defect.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: July 8, 2014
    Assignee: Sumco Corporation
    Inventors: Shigeru Umeno, Keiichiro Hiraki, Hiroaki Taguchi
  • Patent number: 8764901
    Abstract: Embodiments related to sheet production are disclosed. A melt of a material is cooled to form a sheet of the material on the melt. The sheet is formed in a first region at a first sheet height. The sheet is translated to a second region such that it has a second sheet height higher than the first sheet height. The sheet is then separated from the melt. A seed wafer may be used to form the sheet.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: July 1, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter L. Kellerman, Dawei Sun, Brian Helenbrook, David S. Harvey
  • Patent number: 8764900
    Abstract: The present invention provides an apparatus for producing single crystals according to the Czochralski method, the apparatus including a chamber that can be divided into a plurality of chambers; at least one of the plurality of divided chambers having a circulating coolant passage in which a circulating coolant for cooling the chamber circulates; and measuring means that respectively measure an inlet temperature, an outlet temperature, and a circulating coolant flow rate of the circulating coolant in the circulating coolant passage; the apparatus further including a calculating means that calculates a quantity of heat removed from the chamber and/or a proportion of the quantity of removed heat, from the measured values of the inlet temperature, outlet temperature, and circulating coolant flow rate; and a pulling rate control means that controls a pulling rate of the single crystal based on the resulting quantity of removed heat and/or the resulting proportion of the quantity of removed heat.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: July 1, 2014
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Kiyotaka Takano, Masahiko Urano, Ryoji Hoshi
  • Patent number: 8758507
    Abstract: Techniques for the formation of silicon ingots and crystals using silicon feedstock of various grades are described. A common feature is adding a predetermined amount of germanium to the melt and performing a crystallization to incorporate germanium into the silicon lattice of respective crystalline silicon materials. Such incorporated germanium results in improvements of respective silicon material characteristics, including increased material strength and improved electrical properties. This leads to positive effects at applying such materials in solar cell manufacturing and at making modules from those solar cells.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: June 24, 2014
    Assignee: Silicor Materials Inc.
    Inventors: Fritz G. Kirscht, Matthias Heuer, Martin Kaes, Kamel Ounadjela
  • Patent number: 8758506
    Abstract: The invention relates to a method for pulling a silicon single crystal from a melt which is contained in a crucible, comprising immersion of a seed crystal into the melt; crystallization of the single crystal on the seed crystal by raising the seed crystal from the melt with a crystal pull speed; widening the diameter of the single crystal to a setpoint diameter in a conical section, comprising control of the crystal pull speed in such a way as to induce a curvature inversion of a growth front of the single crystal in the conical section.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: June 24, 2014
    Assignee: Siltronic AG
    Inventor: Markus Baer
  • Patent number: 8753445
    Abstract: The invention relates to an apparatus and method for growing a high quality Si single crystal ingot and a Si single crystal ingot and wafer produced thereby. The growth apparatus controls the oxygen concentration of the Si single crystal ingot to various values thereby producing the Si single crystal ingot with high productivity and extremely controlled growth defects.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: June 17, 2014
    Assignee: Siltron, Inc.
    Inventor: Hyon-Jong Cho
  • Patent number: 8747551
    Abstract: After adding phosphorus (P) and germanium (Ge) into a silicon melt or adding phosphorus into a silicon/germanium melt, a silicon monocrystal is grown from the silicon melt by a Czochralski method, where a phosphorus concentration [P]L(atoms/cm3) in the silicon melt, a Ge concentration in the silicon monocrystal, an average temperature gradient Gave (K/mm) and a pull speed V (mm/min) are controlled to satisfy a formula (1) as follows, a phosphorus concentration [P](atoms/cm3) and the Ge concentration [Ge](atoms/cm3) in the silicon monocrystal satisfy a relationship according to a formula (2) as follows while growing the silicon monocrystal, where dSi(?) represents a lattice constant of silicon, rSi(?) represents a covalent radius of silicon, rP(?) represents a covalent radius of phosphorus, and rGe(?) represents a covalent radius of Ge: [ P ] L + ( 0.3151 × [ Ge ] + 3.806 × 10 18 ) / 1.5 < 0.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: June 10, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Shinichi Kawazoe, Yasuhito Narushima, Toshimichi Kubota, Fukuo Ogawa
  • Publication number: 20140144372
    Abstract: An apparatus for growing ingots by the Czochralski method includes a growth chamber defining an enclosure configured to circulate a purge gas about the growing ingot and a crucible provided in the growth chamber configured to hold the molten silicon. A weir is supported in the crucible and is configured to separate the molten silicon into an inner growth region surrounding the melt/crystal interface from an outer region configured to receive the crystalline feedstock. The weir comprises at least one sidewall extending vertically and a cap extending substantially perpendicularly to the sidewall.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Applicant: SOLAICX, INC.
    Inventor: Tirumani N. Swaminathan
  • Publication number: 20140144371
    Abstract: An apparatus for growing ingots by the Czochralski method is described. The ingots are drawn from a melt/crystal interface in a quantity of molten silicon replenished by crystalline feedstock. The apparatus includes a crucible configured to hold the molten silicon and a weir supported in the crucible. The weir is configured to separate the molten silicon into an inner growth region from an outer region configured to receive the crystalline feedstock. The weir includes a sidewall extending vertically and a top wall. An annular heat shield is disposed on the top wall of the weir that covers at least about 70% of the outer region.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Applicant: SOLAICX, INC.
    Inventor: Tirumani N. Swaminathan
  • Patent number: 8728232
    Abstract: A single crystal heat treatment method having a step of heating a single crystal of a specific cerium-doped silicate compound in an oxygen-poor atmosphere at a temperature T1 (units: ° C.) that satisfies the conditions represented by formula (3) below 800?T1<(Tm1?550)??(3) (wherein Tm1 (units: ° C.) represents the melting point of the single crystal).
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: May 20, 2014
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Tatsuya Usui, Naoaki Shimura, Yasushi Kurata, Kazuhisa Kurashige
  • Patent number: 8721786
    Abstract: A Czochralski process (“CZ”) crystal growth method and furnace having a heater capable of generating a heating zone, a crucible within the heating zone and capable of retaining a volume of molten crystal growth material forming a melt line oriented in a designated position within the heating zone, a seed growth rod retractable from the crucible with a rod retraction mechanism, for forming a crystal boule thereon proximal the melt line from the molten crystal growth material. The furnace causes relative movement between the crucible and heating zone as the crystal boule is retracted, so that the melt line is maintained in the designated position within the heating zone. In some embodiments relative movement is based at least in part on sensed weight of the growing crystal boule. In other embodiments the crucible growth rod retraction mechanism are fixed relative to each other by a gantry.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: May 13, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mark S. Andreaco, Troy Marlar, Brant Quinton, Piotr Szupryczynski
  • Patent number: 8721787
    Abstract: A method for manufacturing a silicon single crystal is provided including producing a silicon melt in a chamber by melting a silicon raw material loaded into a silica glass crucible under a reduced pressure and high temperature, removing gas bubbles from within the silicon melt by rapidly changing at least the pressure or temperature within the chamber, and pulling up the silicon single crystal from the silicon melt after the gas bubbles are removed. When the pressure is rapidly changed, the pressure within the chamber is rapidly changed at a predetermined change ratio. In addition, when the temperature is rapidly changed, the temperature within the chamber is rapidly changed at a predetermined change ratio. In this way, Ar gas attached to an inner surface of the crucible and h is the cause of the generation of SiO gas is removed.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: May 13, 2014
    Assignee: Japan Super Quartz Corporation
    Inventors: Yukinaga Azuma, Masaki Morikawa
  • Patent number: 8715416
    Abstract: A doping device includes a first dopant accommodating portion including an opening on an upper portion to accommodate a first dopant that is evaporated near a surface of a semiconductor melt; a second dopant accommodating portion including a dopant holder that holds a second dopant that is liquefied near the surface of the semiconductor melt while including a communicating hole for delivering the liquefied dopant downwardly, and a conduit tube provided on a lower portion of the dopant holder for delivering the liquefied dopant flowed from the communicating hole to the surface of the semiconductor melt; and a guide provided by a cylinder body of which a lower end is opened and an upper end is closed for guiding dopant gas generated by evaporation of the first dopant to the surface of the semiconductor melt.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: May 6, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Yasuhito Narushima, Shinichi Kawazoe, Fukuo Ogawa, Toshimichi Kubota
  • Patent number: 8715415
    Abstract: Provided is a vitreous silica crucible for pulling silicon single crystals, which can melt a silicon raw material in a short time and improve production yield of silicon single crystals by temporal change of an opaque vitreous silica layer. The vitreous silica crucible includes an opaque vitreous silica layer(11) provided on an outer surface thereof and containing plural bubbles, and a transparent vitreous silica layer(12) provided on an inner surface and not containing bubbles substantially. The opaque vitreous silica layer(11) has a bubble diameter distribution in which the content of bubbles having a diameter of less than 40 ?m is 10% or more and less than 30%, the content of bubbles having a diameter of 40 ?m or more and less than 90 ?m is 40% or more and less than 80%, and the content of bubbles having a diameter equal to or more than 90 ?m is 10% or more and less than 30%.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: May 6, 2014
    Assignee: Japan Super Quartz Corporation
    Inventors: Makiko Kodama, Hiroshi Kishi, Minoru Kanda
  • Publication number: 20140116324
    Abstract: An apparatus for producing an SiC single crystal includes a crucible for accommodating an Si—C solution and a seed shaft having a lower end surface where an SiC seed crystal (36) would be attached. The seed shaft includes an inner pipe that extends in a height direction of the crucible and has a first passage. An outer pipe accommodates the inner pipe and constitutes a second passage between itself and the inner pipe and has a bottom portion whose lower end surface covers a lower end opening of the outer pipe. One passage of the first and second passages serves as an introduction passage where coolant gas flows downward, and the other passage serves as a discharge passage where coolant gas flows upward. A region inside the pipe that constitutes the introduction passage is to be overlapped by a region of not less than 60% of the SiC seed crystal.
    Type: Application
    Filed: June 15, 2012
    Publication date: May 1, 2014
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kazuhiko Kusunoki, Kazuhito Kamei, Nobuyoshi Yashiro, Nobuhiro Okada, Hironori Daikoku, Motohisa Kado, Hidemitsu Sakamoto
  • Publication number: 20140116325
    Abstract: A region of an SiC solution in the vicinity of an SiC seed crystal is cooled while suppressing the temperature variation in a peripheral region of the SiC solution. An apparatus includes a seed shaft and a crucible for an SiC solution. The seed shaft has a lower end surface for attachment to an SiC seed crystal. The crucible comprises a main body, an intermediate cover, and a top cover. The main body includes a first cylindrical portion and a bottom portion at a lower end portion of the first cylindrical portion. The intermediate cover is within the first cylindrical portion and above the liquid level of the SiC solution in the main body. The intermediate cover has a first through hole for the seed shaft. The top cover is disposed above the intermediate cover and has a second through hole for the seed shaft to pass through.
    Type: Application
    Filed: June 11, 2012
    Publication date: May 1, 2014
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kazuhito Kamei, Kazuhiko Kusunoki, Nobuyoshi Yashiro, Nobuhiro Okada, Hironori Daikoku, Motohisa Kado, Hidamisu Kasamoto
  • Publication number: 20140102357
    Abstract: A method for growing a single crystal in a chamber. The method includes heating raw material to form a melt for forming the single crystal. A crystal seed is then inserted into the melt and pulled from the melt to form a partial ingot, wherein the partial ingot radiates heat. An amount of gas is then introduced into the chamber which corresponds to a size of the partial ingot so as to provide a constant crystallization rate.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventor: Keith Ritter
  • Publication number: 20140102356
    Abstract: Solid silicon is deposited onto electrically heated deposition plates by the reduction reaction of gaseous trichlorosilane and hydrogen which are mixed and pumped across the surfaces of the plates. The plates can have a number of high-surface area geometries such as concentric cylinders, spirals, or repeating S-shapes. Once the desired amount of silicon has been deposited, the deposition plates are heated to above the melting point of silicon causing the deposited silicon to slide off the plates in the form of a crust due to gravitational force. The plates are left coated with a thin film of liquid silicon which contains any impurities leached from the plates. This film is melted off separately from the main silicon crust to avoid contamination of the latter and the plates are then ready for the next deposition cycle.
    Type: Application
    Filed: May 28, 2013
    Publication date: April 17, 2014
    Inventor: Kagan Ceran
  • Patent number: 8696809
    Abstract: A manufacturing method of an epitaxial silicon wafer is provided. The epitaxial silicon wafer includes: a substrate cut out from a silicon monocrystal that has been manufactured, doped with nitrogen and pulled up in accordance with Czochralski method; and an epitaxial layer formed on the substrate. The manufacturing method includes: cleaning a surface of the substrate with fluorinated acid by spraying onto the surface of the substrate fluorinated acid vaporized by a bubbling tank of a substrate cleaning apparatus; and forming an epitaxial layer on the cleaned surface of the substrate.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: April 15, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Kazuaki Kozasa, Kosuke Miyoshi
  • Patent number: 8696811
    Abstract: A feed assembly and method of use thereof of the present invention is used for the addition of a high pressure dopant such as arsenic into a silicon melt for CZ growth of semiconductor silicon crystals. The feed assembly includes a vessel-and-valve assembly for holding dopant, and a feed tube assembly, attached to the vessel-and-valve assembly for delivering dopant to a silicon melt. An actuator is connected to the feed tube assembly and a receiving tube for advancing and retracting the feed tube assembly to and from the surface of the silicon melt. A brake assembly is attached to the actuator and the receiving tube for restricting movement of the feed tube assembly and locking the feed tube assembly at a selected position.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: April 15, 2014
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Massoud Javidi, Steve Garner