Producing Or Treating Layered, Bonded, Welded, Or Mechanically Engaged Article Or Stock As A Final Product Patents (Class 148/516)
  • Patent number: 6676896
    Abstract: The invention relates to a method of a composite material from superposed layers of solid and frothable metallic materials. The structural component consists of at least one layer of a solid metallic material and at least one layer of frothable metallic material. The structural component may be structured as a composite sheet or as a hollow body. The fabrication method of the structural component insures a good bond between the solid metallic layer and the frothable layer and that the frothable layer is securely attached to the solid metallic layer.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: January 13, 2004
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angwandten Forschung e.V.
    Inventor: Joachim Baumeister
  • Patent number: 6645313
    Abstract: A method for forming an electronically active biaxially textured article includes the steps of providing a substrate having a single crystal metal or metal alloy surface, deforming the substrate to form an elongated substrate surface having biaxial texture and depositing an epitaxial electronically active layer on the biaxially textured surface. The method can include at least one annealing step after the deforming step to produce the biaxially textured substrate surface. The invention can be used to form improved biaxially textured articles, such as superconducting wire and tape articles having improved Jc values.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: November 11, 2003
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Donald M. Kroeger
  • Patent number: 6623376
    Abstract: A golf club head is provided with a residual compressive stress layer on the inside surface of the club face using a peening treatment. The peening treatment also may remove material from the club head, such as unwanted alpha case on a titanium club head. The body of the club head further may be subjected to a peen treatment.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: September 23, 2003
    Assignee: Acushnet Company
    Inventor: Raymond Poynor
  • Patent number: 6613165
    Abstract: Embodiments of the described method include (a) forming a core comprising a lead alloy, (b) applying copper or a copper alloy to at least a portion of an exterior surface of the core to form a jacketed bullet, (c) heating the jacketed bullet at a pre-selected temperature for a period of time sufficient to simultaneously harden the core and stress-relieve the copper jacket, and, optionally, (d) reworking a selected portion of the heat-treated bullet by mechanical reforming or annealing to lower the hardness of the reworked portion.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: September 2, 2003
    Inventor: Kenneth L. Alexander
  • Patent number: 6610416
    Abstract: The present invention provides for a method to reduce the strength of the honeycomb of a jet turbine stator, increasing its machinability, with a resultant reduction in measured peak tooth temperature, while maintaining or even improving its high temperature capability, so as not to limit its operating environment. The air seal functionality is unaffected, and even improved in some instances. The machinability of the honeycomb is increased by using a light element diffused into the honeycomb ribbon to produce the effect of reducing its strength and ductility while maintaining the environmental resistance needed. The present invention also includes the stator honeycomb produced by the foregoing method.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: August 26, 2003
    Assignee: General Electric Company
    Inventors: Thomas Tracy Wallace, Brent Ross Tholke
  • Publication number: 20030116236
    Abstract: A method of manufacturing a grain-oriented steel sheet including hot-rolling a slab prepared using molten steel containing, by mass %, C of not more than about 0.08%, Si of about 2.0 to about 8.0% and Mn of about 0.005 to about 3.0%; optionally annealing the hot-rolled steel sheet; performing cold rolling once, or twice or more with intermediate annealing therebetween; performing primary recrystallization annealing in a low- or non-oxidizative atmosphere and adjusting the C content in the steel sheet after primary recrystallization annealing to be held in the range of about 0.005 to about 0.025 mass %; performing secondary recrystallization annealing; decarburization annealing; and, preferably, performing additional high-temperature continuous or batch annealing. A grain-oriented electrical steel sheet having a sufficiently high magnetic flux density and a low iron loss can be advantageously obtained even when it is manufactured without using an inhibitor.
    Type: Application
    Filed: July 23, 2002
    Publication date: June 26, 2003
    Applicant: KAWASAKI STEEL CORPORATION
    Inventors: Yasuyuki Hayakawa, Hideo Yamagami, Seiji Okabe, Takeshi Imamura, Minoru Takashima, Mitsumasa Kurosawa
  • Patent number: 6576355
    Abstract: Nanostructured non-stoichiometric materials are provided and electronic materials and their applications are discussed. More specifically, the uses of nanotechnology and nanostructured materials for electronic products.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: June 10, 2003
    Assignee: NanoProducts Corporation
    Inventors: Tapesh Yadav, John Freim, Yuval Avniel
  • Patent number: 6569518
    Abstract: Novel non-ionics and energy device materials made from non-stoichiometric nanomaterials and their applications are discussed. More specifically, the specifications teach the use of nanotechnology and nanostructured materials for developing novel energy related products.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: May 27, 2003
    Assignee: NanoProducts Corporation
    Inventors: Tapesh Yadav, Ming Au
  • Patent number: 6565931
    Abstract: The present invention provides for an etch and mar resistant low VOC clear coating composition most suitable for use as a top clear coat in multi-layered OEM or refinish automotive coatings. The coating composition includes isocyanate, carbonate and melamine components. The isocyanate component includes an aliphatic polyisocyanate. The composition may be formulated as a two-pack or one-pack coating composition, wherein the isocyanate functionalities are blocked with a blocker such as a mono-alcohol.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: May 20, 2003
    Assignee: Rolls-Royce plc
    Inventors: David S Rickerby, Richard AB McCall
  • Patent number: 6562495
    Abstract: Nanostructured non-stoichiometric materials are disclosed. Novel catalysts and their applications are discussed. More specifically, the specifications teach the use of nanotechnology and nanostructured materials for developing novel catalysts for petrochemical, polymers, plastics, specialty chemicals, environmental and pharmaceutical applications.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: May 13, 2003
    Assignee: NanoProducts Corporation
    Inventors: Tapesh Yadav, Bijan Miremadi
  • Patent number: 6554923
    Abstract: A system and method for providing via-hole filling for microelectronic interconnections, is disclosed. Gallium metal is melted and mixed with a measured amount of copper and nickel, thereby creating a gallium alloy. Via holes are drilled within a substrate and filled with the gallium alloy. Excess gallium alloy is removed from the substrate. The substrate, having the filled via-holes therein, is then cured within the temperature range of room temperature to approximately 200 degrees Celsius. The gallium alloy may also be used for printing interconnect lines on a board surface.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: April 29, 2003
    Assignee: Georgia Tech Research Corp.
    Inventors: Swapan K. Bhattacharya, Daniel F. Baldwin
  • Publication number: 20030051779
    Abstract: A method of corrosion protecting a tube having an end portion extending into a tube receiving hole of a mud drum of a boiler and the tube produced by that method. The end portion of the tube is provided with a corrosion resistant cladding layer which may contain chromium. Laser cladding is used to produce the corrosion resistant cladding layer, which advantageously tapers along a length of the end portion of the tube. The tube may be swaged before or after the cladding is applied and suitable heat treatments may be performed on the bare or clad tube to develop suitable properties in the tube, the cladding, or a tube-cladding interface.
    Type: Application
    Filed: October 31, 2002
    Publication date: March 20, 2003
    Inventor: George H. Harth
  • Patent number: 6534195
    Abstract: Sn—Zn alloy is plated on at least one of a first metallic member and a second metallic member, Sn—Ag alloy is used as a solder, the first metallic member and the second metallic member are connected by the solder, and a connection structure of metallic members is therefore produced. Heat degradation of plating and the contact corrosion between solder and plating can thereby be prevented, solderability can be improved, and qualities such as corrosion resistance and connecting strength at the connection structure can be improved.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: March 18, 2003
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Yachiyo Kogyo Kabushiki Kaisha
    Inventors: Kazunori Takikawa, Masayuki Narita
  • Publication number: 20030047253
    Abstract: Methods of texturizing medical implants are provided which involve embossing the surface of these implants to create a textured pattern. Preferred roll embossing techniques are disclosed for improving scratch resistant properties, minimizing glare, improving lubricant retention and/or creating random or uniform patterns on medical implants, such as the outer shield of pacemakers and defibrillators, as well as orthopedic implants.
    Type: Application
    Filed: August 23, 2002
    Publication date: March 13, 2003
    Inventors: Mark L. Robinson, Michael L. Staab
  • Patent number: 6531005
    Abstract: An article, made of a material such as a iron-nickel-base alloy, is weld repaired, and then heat treated. The heat treatment includes heating the weld-repaired portion to a first hold temperature of at least about 1775 degrees Fahrenheit, cooling the weld-repaired portion to a temperature of 1025 degrees Fahrenheit or less, heating the weld-repaired portion at a rate of at least about 10 degrees Fahrenheit per minute or greater, to a second hold temperature of at least about 1525 degrees Fahrenheit, cooling the weld-repaired portion to a third hold temperature of about 1425 degrees Fahrenheit or less, and cooling the weld-repaired portion to a fourth hold temperature of about 1225 degrees Fahrenheit or less.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: March 11, 2003
    Assignee: General Electric Co.
    Inventors: Patricia S. A. Bezerra, Thomas J. Kelly
  • Publication number: 20030041926
    Abstract: An article having a protective coating is fabricated by providing an article substrate having a substrate surface; and thereafter producing a flattened protective coating on the substrate surface. The step of producing the flattened protective coating includes the steps of depositing a protective coating on the substrate surface, the protective coating having a protective-coating surface, and processing the protective coating to achieve the flattened protective-coating surface. The protective coating is thereafter optionally controllably oxidized. The article substrate and protective coating have an average sulfur content of less than about 10 parts per million by weight at depths measured from the protective-coating surface to a depth of about 50 micrometers below the protective-coating surface.
    Type: Application
    Filed: August 31, 2001
    Publication date: March 6, 2003
    Inventors: Irene Spitsberg, Ramgopal Darolia
  • Publication number: 20030041927
    Abstract: An article protected by a protective coating system is fabricated by providing an article substrate having a substrate surface; and thereafter producing a protective coating having a flattened, pre-oxidized protective-coating surface on the substrate surface by depositing a protective coating on the substrate surface, the protective coating having a protective-coating surface, processing the protective coating to achieve a flattened protective-coating surface, and controllably oxidizing the protective-coating surface. A thermal barrier coating may be deposited overlying the flattened, pre-oxidized protective coating.
    Type: Application
    Filed: August 31, 2001
    Publication date: March 6, 2003
    Inventors: Irene Spitsberg, Ramgopal Darolia
  • Publication number: 20030041928
    Abstract: An article protected by a thermal barrier coating system is fabricated by providing an article substrate having a substrate surface, and thereafter producing on the substrate surface a protective coating having a polished, pre-oxidized protective coating surface. The protective coating is produced by depositing the protective coating on the substrate surface, the protective coating having a protective coating surface, thereafter polishing the protective-coating surface, and thereafter controllably oxidizing the protective-coating surface. The protective-coating surface may optionally be controllably roughened by grit blasting after polishing and before controllably oxidizing. A thermal barrier coating may be deposited overlying the polished, pre-oxidized protective-coating surface.
    Type: Application
    Filed: August 31, 2001
    Publication date: March 6, 2003
    Inventors: Irene Spitsberg, Ramgopal Darolia
  • Patent number: 6528177
    Abstract: An object of the present invention is to provide a cladding material, which has high joining strength and excellent productivity, and a manufacturing method therefor; in order to attain this object, the present invention provides a cladding material comprising: a first material to be joined which is made of aluminum or an aluminum alloy; a second material to be joined which is made of a single metal or an alloy and which is join the first material to be joined; and an intermediate layer which is provided between the first and second materials to be joined.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: March 4, 2003
    Assignees: Mitsubishi Heavy Industries, Ltd.
    Inventors: Takayuki Kawano, Yoshiaki Inoue, Katsuaki Inoue, Kawaichi Katsumi, Hiroshi Iwabuchi, Kazumasa Nishio, Shizuo Mukae, Masahiro Hirata
  • Patent number: 6528181
    Abstract: A plated steel sheet and a connection terminal material using the plated steel sheet have low contact resistance and excellent corrosion resistance. The coated film, which has excellent adhesion, is formed by coating a stainless steel base sheet which is coated with a nickel-tin alloy with a solution/suspension of carbon black or graphite, carboxymethyl cellulose, and a water-borne organic resin which is acrylic resin, polyester resin, urethane resin, or phenol resin.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: March 4, 2003
    Assignee: Toyo Kohan Co., Ltd.
    Inventors: Keiji Yamane, Hitoshi Ohmura, Tatsuo Tomomori, Hideo Ohmura, Yuji Yamazaki
  • Patent number: 6528178
    Abstract: A high temperature resistant article with improved protective coating bonding and method of manufacturing the article is provided. In one embodiment, the high temperature resistant article comprises a base body having a surface at least partly coated with an oxidation and corrosion protective coating containing a carbide forming element, wherein said base body is made from a metallic alloy having a medium carbon content and wherein the carbon content in a depth of 50 &mgr;m or deeper from said coated surface is less than 0.3% of said medium carbon content.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: March 4, 2003
    Assignee: Siemens Westinghouse Power Corporation
    Inventor: Vasudevan Srinivasan
  • Publication number: 20030029530
    Abstract: The invention relates to a method for the production of thin-walled steel components and similar components, comprising an inner core layer (B) and an external boundary layer (A). Said layers are, at least partly, differently annealed. According to the invention, the disadvantages of conventional roll-cladding and case-hardening processes may be overcome by the following methodology: bonding core and boundary layers made from differently annealed steel alloys, in a casting process to give a combined material with flat alloy gradients on the boundary surfaces, moulding the composite material to the dimensions of the thin-walled components, annealing the components by heat treatment, whereby the layers made from the differently annealed steel alloys obtain different annealing properties.
    Type: Application
    Filed: September 13, 2002
    Publication date: February 13, 2003
    Inventor: Hans-Toni Junius
  • Patent number: 6514630
    Abstract: To provide a contact material suitable for a commutator of a micromotor which can improve wear resistance and prolong the life of the micromotor by improving an Au-based clad composite material provided at an outermost layer with Au or an Au alloy. The present invention provides the Au-based clad composite material including a surface of a contact substrate having an Ag—Cu—Si alloy layer cladded with Au or the Au alloy, wherein an intermetallic compound Cu—Si is dispersed and deposited in Au or the Au alloy.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: February 4, 2003
    Assignees: Sankyo Seiki Mfg. Co., Ltd., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Mii Matsuzawa, Hirotaka Sakamaki, Osamu Matsuzawa
  • Publication number: 20030017359
    Abstract: Methods of passivating a metal surface are described, the methods comprising the steps of i) exposing the metal surface to a silicon-containing passivation material; ii) evacuating the metal surface; iii) exposing the treated surface to a gas composition having a concentration of reactive gas that is greater than an intended reactive gas concentration of gas to be transported by the metal surface; iv) evacuating the metal surface to remove substantially all of the gas composition to enable maintenance of an increased shelf-life, low concentration reactive gas at an intended concentration; and v) exposing the metal surface to the reactive gas at the intended reactive gas concentration. Manufactured products, high stability fluids, and methods of making same are also described.
    Type: Application
    Filed: May 29, 2002
    Publication date: January 23, 2003
    Applicant: American Air Liquide, Inc.
    Inventors: Tracey J. Jacksier, Robert Benesch
  • Publication number: 20020197506
    Abstract: Disclosed is an Al alloy for a welded construction having excellent welding characteristics, which Al alloy comprises 1.5 to 5 wt % of Si (hereinafter, wt % is referred to as %), 0.2 to 1.5% of Mg, 0.2 to 1.5% of Zn, 0.2 to 2% of Cu, 0.1 to 1.5% of Fe, and at least one member selected from the group consisting of 0.01 to 1.0% of Mn, 0.01 to 0.2% of Cr, 0.01 to 0.2% of Ti, 0.01 to 0.2% of Zr, and 0.01 to 0.2% of V, with the balance being Al and inevitable impurities. Also disclosed is a welded joint having this Al alloy base metal welded with an Al—Mg— or Al—Si-series filler metal.
    Type: Application
    Filed: July 30, 2002
    Publication date: December 26, 2002
    Inventors: Seizo Ueno, Yoichiro Bekki, Noboru Hayashi
  • Publication number: 20020179201
    Abstract: A method of forming extruded structures from a polycrystalline material and structures formed thereby. The method generally entails forming a structure that comprises a polycrystalline material constrained by a second material in all but one direction, with the polycrystalline material having a patterned surface that is normal to the one direction. The polycrystalline material is then selectively heated, during which the second material restricts thermal expansion of the polycrystalline material in all but the one direction normal to the surface of the polycrystalline material. As a result, stresses are induced in the polycrystalline material that cause grain growth from the surface of the polycrystalline material in the one direction. The growth of an individual grain produces an extruded structure that projects above the surface of the polycrystalline material.
    Type: Application
    Filed: June 13, 2002
    Publication date: December 5, 2002
    Inventors: Munir D. Naeem, Lawrence A. Clevenger
  • Publication number: 20020170634
    Abstract: The creep strength of a welded joint portion is improved, and damage of the welded joint portion based on the generation or development of cracks is suppressed. A postweld heat treatment process, wherein a welded joint made of carbon steel and low alloy steel is held within austenite single-phase temperature range for a given time and subsequently the joint is cooled by air-cooling or by slow cooling at a cooling rate lower than that of the air-cooling.
    Type: Application
    Filed: March 1, 2002
    Publication date: November 21, 2002
    Inventors: Kazuhiro Kimura, Masayoshi Yamazaki, Hiromichi Hongo, Junichi Kinugawa, Takashi Watanabe
  • Patent number: 6475642
    Abstract: An oxidation-resistant coating is described, formed of an alloy containing: about 40 to about 50 atom % aluminum and about 0.5 atom % to about 3 atom % tantalum; with a balance of nickel; cobalt, iron, or combinations thereof. The coating may also include chromium and a precious metal, as well as other components, such as zirconium or molybdenum. A method for applying the oxidation-resistant coating to a substrate is also described. The substrate can be formed of superalloy material, e.g., a turbine engine component. Related articles are also disclosed.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: November 5, 2002
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Ramgopal Darolia
  • Publication number: 20020134470
    Abstract: The superplastic forming of suitable metal alloy sheets into strong components, such as automobile body structures or panels, is improved and accomplished faster by simultaneously forming two or more substantially identical, relatively thin sheets, preferably about 2 mm or less in thickness, rather than a single sheet of the same overall thickness. For example, two or more layers of thin AA5083 sheets can be stretched formed together at about 500° C. with greater deformation and elongation than a single sheet of comparable thickness.
    Type: Application
    Filed: January 25, 2001
    Publication date: September 26, 2002
    Inventors: John Robert Bradley, John E. Carsley, Jacob Lyjak
  • Patent number: 6455172
    Abstract: A method for producing a laminated metal ribbon comprises the steps of (a) vapor-depositing a third metal layer on at least one welding surface of a first metal ribbon 4 and a second metal ribbon 5 in a vacuum chamber 1, the third metal being the same as or different from a metal or an alloy of the first and second metal ribbons 4, 5; (b) pressure-welding the first metal ribbon 4 to the second metal ribbon 5; and (c) subjecting the resultant laminate 9 to a heat treatment for thermal diffusion.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: September 24, 2002
    Assignee: Hitachi Metals, Ltd.
    Inventors: Kentaro Yano, Noboru Hanai
  • Patent number: 6451453
    Abstract: Strip or drawn tube for the manufacture of a brazed heat exchanger, formed from an aluminum alloy containing Si, Cu and Mn, with optional amounts of Mg, Fe, Zn and Ti, where Fe≦Si, and Cu+Mg>0.4. In the form of a strip, the alloy may be coated on one or both surfaces with an aluminum brazing alloy.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: September 17, 2002
    Assignee: Pechiney Rhenalu
    Inventors: Jean-Claude Kucza, Ravi Shahani, Bruce Morere, Jean-Luc Hoffmann
  • Patent number: 6440583
    Abstract: Disclosed is an Al alloy for a welded construction having excellent welding characteristics, which Al alloy comprises 1.5 to 5 wt % of Si (hereinafter, wt % is referred to as %), 0.2 to 1.5% of Mg, 0.2 to 1.5% of Zn, 0.2 to 2% of Cu, 0.1 to 1.5% of Fe, and at least one member selected from the group consisting of 0.01 to 1.0% of Mn, 0.01 to 0.2% of Cr, 0.01 to 0.2% of Ti, 0.01 to 0.2% of Zr, and 0.01 to 0.2% of V, with the balance being Al and inevitable impurities. Also disclosed is a welded joint having this Al alloy base metal welded with an Al—Mg- or Al—Si-series filler metal.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: August 27, 2002
    Assignees: The Furukawa Electric Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Seizo Ueno, Yoichiro Bekki, Noboru Hayashi
  • Patent number: 6436556
    Abstract: The invention relates to a method and a device for the production of a strip-like metallic composite material by the high-temperature dip coating of a metallic carrier strip, consisting of a metallurgic vessel for receiving the liquid depositing material, through which the carrier strip is capable of being led in a preferably vertical run-through direction by means of pairs of rollers arranged on the entry and the exit side, and of a preheating device for the carrier strip, said preheating device being located upstream of the metallurgic vessel. At the same time, the preheating device (41) is arranged in a housing (61) which is arranged in the entry region upstream of the metallurgic vessel (11) and surrounds the carrier strip (21) and into which the medium coming from a media supply (52) is capable of being introduced via at least one feed (51) led into the housing.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: August 20, 2002
    Assignees: SMS Demag AG, Thyssen Krupp Stahl AG
    Inventors: Wolfgang Bleck, Rolf Bünten, Frank Friedel, Oliver Picht, Wolfgang Reichelt, Wilhelm Schmitz, Dieter Senk, Paul Splinter, Ulrich Urlau
  • Patent number: 6413654
    Abstract: Disclosed is a multi-layered plain bearing which comprises a steel back, an intermediate layer made of an aluminum alloy and an aluminum-base bearing alloy layer comprising one or more elements selected from the group consisting of Cu, Zn, Mg and Si. The aluminum-base bearing alloy layer is bonded to the steel back via the intermediate layer and subsequently subjected to a solid solution treatment at a temperature of not lower than 400° C. The adjacent region of the intermediate layer to the steel back consists of, by mass, 2% to 8% of Si, and the balance of Al and incidental impurities.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: July 2, 2002
    Assignee: Daido Metal Company Ltd.
    Inventors: Yukihiko Kagohara, Masahito Fujita, Koichi Yamamoto, Takayuki Shibayama
  • Patent number: 6398883
    Abstract: The present invention provides an improved structural assembly constructed of a plurality of structural members secured together. At least one of the plurality of structural members defines a first region characterized by comparatively high operational stress and a second region having a locally refined grain structure positioned such that the second region at least partially encompasses the first region to thereby enhance the strength, toughness and fatigue resistance of the at least one structural member in the first region. The present invention also provides a method for selectively improving the strength, toughness and fatigue resistance of a structural member in a region of high operational stress including the steps of casting the structural member in a pre-selected configuration. Regions of the structural member having comparatively high operational stress are identified. The structural member is secured to prevent movement.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: June 4, 2002
    Assignee: The Boeing Company
    Inventors: R. Scott Forrest, Douglas J. Waldron
  • Publication number: 20020046783
    Abstract: Methods of fabricating a free standing thin film of shape memory alloy material, and products made by the methods. A sacrificial layer of a metallic material is deposited onto the surface of a substrate. Then an amorphous shape memory alloy is sputter deposited onto the outer surface of the sacrificial layer. The sacrificial layer is etched away, leaving the thin film free standing, that is separated from the substrate. The thin film is annealed by heating into a crystalline state, with the annealing step carried out either after the film has been separated from the substrate, or while remaining attached to it.
    Type: Application
    Filed: July 10, 2001
    Publication date: April 25, 2002
    Inventors: A. David Johnson, Vikas Galhotra, Vikas Gupta
  • Patent number: 6365866
    Abstract: The invention concerns a method for beam welding of hardenable steels using a short-time heat treatment. A preferred area of application of the invention is motor vehicle and mechanical engineering. In the method according to the invention, the short-time heat treatment occurs first as the sole preheating in a defined manner, and then the beam welding begins after a defined cooling time, at the latest.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: April 2, 2002
    Assignees: Fraunhofer-Gesellschaft zur Föderung der angewandten Forschung e.V., Arnold Maschinenfabrik GmbH & Co.
    Inventors: Berndt Brenner, Rüdiger Arnold Gnann, Dietmar Naunapper, Carsten Duschek
  • Patent number: 6355364
    Abstract: Processes for preparing copper-INVAR-copper (CIC) for use in making chip packaging and the CIC created. One process comprises annealing a CIC section at a temperature in a range of 1475° F. to 1625° F. for a time in a range of 40 to 120 seconds. Another process includes heat treating a CIC section at a temperature in a range of 1275° F. to 1425° F. for a time in a range of 40 to 120 seconds. The above processes can be combined. The CIC section created exhibits unique electrical, physical, and mechanical properties.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: March 12, 2002
    Assignee: International Business Machines Corporation
    Inventors: Robert M. Japp, Lisa J. Jimarez, Bonnie S. McClure
  • Patent number: 6352600
    Abstract: One embodiment of the present process, which is particularly useful for forming bullets from two dissimilar metals and/or alloys that have been bonded together, comprises heat-treating such bullets to simultaneously harden the core and soften the jacket. The process comprises: (a) forming a core comprising a lead alloy; (b) applying a copper or a copper alloy to at least a portion of an exterior surface of the core to form a jacketed bullet; (c) heating the jacketed bullet at a pre-selected temperature for a period of time sufficient to simultaneously harden the core and stress-relieve and perhaps anneal the copper jacket. The process also can include quenching the bullet after heating, such as by immersing it in a suitable quenching fluid. The process also can include aging the bullet after quenching, where aging is continued for a period sufficient to further harden the bullet, such as for about 25 minutes or more.
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: March 5, 2002
    Assignee: Blount, Inc.
    Inventor: Kenneth L. Alexander
  • Publication number: 20020009542
    Abstract: Provided is a ceramic coated product and a coating for it, making it possible to improve corrosion resistance, wear resistance and the like of a material to be treated, and heighten aesthetically commercial value by a thin film forming or producing method using low-priced equipment. An ejection powder and a reactive ejecting gas are ejected onto a surface of a material to be treated comprising a metal product, a ceramic, or a mixture thereof. The ejection powder is heated on the surface of the material to be treated and then is reacted with the reactive ejecting gas. The resultant product is activation-adsorbed onto the surface of the material to be treated and caused to diffuse and penetrate thereinto. Thus, a layer made of a nitride or other compounds is formed.
    Type: Application
    Filed: November 23, 1998
    Publication date: January 24, 2002
    Inventor: YOSHIO MIYASAKA
  • Publication number: 20010052375
    Abstract: Abradable coatings for turbine engine shrouds are formed from biscuits formed of silicon-diffused powdered alloy compositions which are processed with an HF precursor to strip oxides from the coating during processing, the alloy blends comprising MCrAl(Y)n alloys in which n is 0, 1 or more.
    Type: Application
    Filed: November 18, 1998
    Publication date: December 20, 2001
    Inventors: GEORGE K. SIEVERS, EUGENE V. CLARK
  • Publication number: 20010048019
    Abstract: Described is a method for producing a diffusion bonded sputtering target assembly which is thermally treated to precipitation harden the backing plate without compromising the diffusion bond integrity. The method includes heat treating and quenching to alloy solution and artificially age the backing plate material after diffusion bonding to a target. Thermal treatment of the diffusion bonded sputtering target assembly includes quenching by partial-immersion in a quenchant and is performed after diffusion bonding and allows for various tempers in the backing plate.
    Type: Application
    Filed: July 9, 2001
    Publication date: December 6, 2001
    Inventors: Anthony F. Beier, Janine K. Kardokus, Susan D. Strothers
  • Patent number: 6316122
    Abstract: A metal fiber of titanium or titanium alloy has given equivalent area diameter and specific surface area and is produced by a bundle drawing method wherein mild steel is used as a material for covering layer and outer housing and a composite wire is subjected to a heat treatment at a given temperature.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: November 13, 2001
    Assignee: Bridgestone Metalpha Corporation
    Inventor: Shuji Amamoto
  • Patent number: 6312834
    Abstract: The present invention, which is aimed at providing a method for manufacturing a clad material that can be used for the anode cases and cathode cases of button-type microbatteries and other miniature electronic devices requiring the use of comparatively thin, drawable sheets, allows the difference between r values, or Lankford values (which characterize the plastic anisotropy between the rolling/bonding direction of a clad material and a direction at a prescribed angle to the rolling/bonding direction) to be reduced by preforming cold rolling at a reduction of 30% or lower in addition to performing a conventional method for manufacturing a clad material, making it possible to substantially enhance the mechanical strength of the clad material and to mass-produce clad materials that have low reduction anisotropy.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: November 6, 2001
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Masaaki Ishio, Yoshiki Takai
  • Patent number: 6284389
    Abstract: Composite materials are composed of a primary metallic base material, such as a titanium metallic material, metallurgically bonded to one or more secondary materials having desirable thermal conductivity properties and having a coefficient of thermal expansion (“CTE”) that generally matches the CTE of the primary metallic material. An exemplary composite material is composed of a titanium primary material metallurgically bonded to a secondary metal matrix composite material having a high thermal conductivity, such as aluminum silicon carbide. Methods for manufacturing such composite materials are disclosed.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: September 4, 2001
    Assignee: Pacific Aerospace & Electronics, Inc.
    Inventors: Herman L. Jones, Edward A. Taylor
  • Publication number: 20010016268
    Abstract: The present invention provides a hot-dip Al-plated steel sheet for fuel tanks excellent in air-tightness after welding and corrosion resistance subsequent to forming. The present invention provides, as concrete means, a hot-dip Al-plated steel sheet comprising a steel sheet comprising up to 0.003% of C, up to 0.03% of Si, up to 0.3% of Mn, up to 0.02% of P, up to 0.006% of N, up to 0.1% of Ti, Ti and Nb in a total amount of at least the atomic equivalent of (C+N) and up to 0.2%, 1 to 30 ppm of B, and the balance Fe and unavoidable impurities, and a plating layer comprising 2 to 13% of Si, and the balance Al and unavoidable impurities on the surface of the steel sheet, the steel sheet showing a total elongation of at least 45% after plating. Alternately, the hot-dip Al-plated steel sheet may have a chromate coating in an amount of 5 to 100 mg/m2 on the surface, and it may also have a resin coating on the top surface. As a result, the Al-plated steel sheet is excellent in elongation after Al plating.
    Type: Application
    Filed: February 26, 1998
    Publication date: August 23, 2001
    Inventors: JUN MAKI, TERUAKI IZAKI, MASAHIRO FUDA, TETSUROU TAKESHITA, NOBYOSHI OKADA, TAKAYUKI OHMORI
  • Patent number: 6277218
    Abstract: A probe card treatment method, which is applicable on a probe card comprising multiple probe needles, is described. A thermal treatment is conducted on the probe card by placing the probe card in a closed heating device, wherein the temperature of the thermal treatment is enough to restore the elasticity and the planarity of the probe needles without softening the probe card. The probe card and the probe needles thereon are then rapidly cooled by cool air such that the elasticity of the probe needles is retained and the lifetime of the probe needles is extended.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: August 21, 2001
    Assignees: Promos Technologies Inc., Mosel Vitelic Inc., Siemens Aktiengesellschaft
    Inventors: Chin-Fa Tai, Cindy Chen, Kelly Liao
  • Patent number: 6242113
    Abstract: A nickel, chromium, iron alloy for use in producing weld deposits. The alloy comprises, in weight percent, about 27 to 31.5 chromium; about 7 to 11 iron; about 0.005 to 0.05 carbon; less than about 1.0 manganese, preferably 0.30 to 0.95 manganese; about 0.60 to 0.95 niobium; less than 0.50 silicon, preferably 0.10 to 0.30 silicon; 0.01 to 0.35 titanium; 0.01 to 0.25 aluminum; less than 0.20 copper; less than 1.0 tungsten; less than 1.0 molybdenum; less than 0.12 cobalt; less than 0.10 tantalum; less than about 0.10 zirconium, preferably 0.002 to 0.10 zirconium; less than about 0.01 sulfur; less than about 0.01 boron, preferably 0.001 to 0.01 boron; less than about 0.02 phosphorous; and balance nickel and incidental impurities.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: June 5, 2001
    Assignee: Inco Alloys International, Inc.
    Inventor: Samuel D. Kiser
  • Patent number: 6230957
    Abstract: A method of using friction stir welding to repair weld defects and to help avoid weld defects in intersecting welds and crack-sensitive material, such as 2195 Al—Cu—Li. Intersecting fusion welds in 2195 Al—Cu—Li have shown a propensity to crack both during welding and during proof testing. These cracks have generally been associated with a particular metallurgical structure present in the fusion zone ofVPPA/SPA weldments. HYBRID Friction Stir Overwelding of the initial VPPA/SPA weld from the penetration side is shown to convert the cast microstructure of these VPPA/SPA weldments into a fine grained, dynamically recrystallized microstructure showing higher strength, ductility, toughness, and resistance to intersection weld cracking.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: May 15, 2001
    Assignee: Lockheed Martin Corporation
    Inventors: William J. Arbegast, Paula J. Hartley
  • Patent number: 6214134
    Abstract: A method to produce high temperature oxidation resistant metal matrix composites by fiber diameter grading, which comprises the steps of (a) laying up an alloy/fiber preform consisting of a plurality of alternating layers of metal alloy and fibers and (b) consolidating the preform under suitable conditions, wherein the layers of fibers in the preform are graduated so that fiber density is lower nearer what will become the exposed surface of the composite and higher toward the interior of the composite. The difference in fiber density is achieved by spacing the near-surface fibers further apart than the interior fibers.
    Type: Grant
    Filed: July 24, 1995
    Date of Patent: April 10, 2001
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Daniel Eylon, Stephen W. Schwenker