Utilizing Organic Compound-containing Bath Patents (Class 205/296)
  • Patent number: 7427344
    Abstract: The present invention relates to a method and apparatus for determining organic additive concentrations in a sample electrolytic solution, preferably a copper electroplating solution, by measuring the double layer capacitance of a measuring electrode in such sample solution. Specifically, the present invention utilizes the correlation between double layer capacitance and the organic additive concentration for concentration mapping, based on the double layer capacitance measured for the sample electrolytic solution.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: September 23, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jianwen Han, MacKenzie E. King
  • Publication number: 20080210569
    Abstract: The invention relates to a polyvinylammonium compound, to a method of manufacturing said compound, to an aqueous acidic solution containing at least said Polyvinylammonium compound for electrolytically depositing a copper deposit as well as to a method of electrolytically depositing a copper deposit using said aqueous acidic solution, said polyinylammonium compound corresponding to the general chemical formula (1): as well as to polyvinylammonium compounds of the general chemical formula (1), wherein one of the monomer units or both having indices l and m are present in the neutral form.
    Type: Application
    Filed: March 1, 2006
    Publication date: September 4, 2008
    Inventors: Wolfgang Dahms, Udo Grieser, Olanda Grieser, Christopher Grieser, Philip Hartmann
  • Publication number: 20080187675
    Abstract: Disclosed herein arc novel liposome compositions generally including a foreign inclusion (e.g., diamond) component, and a liposome (e.g., i paucilamellar liposome) component. Also disclosed are methods of using these composition for plating and plate obtained thereby. Novel liposome compositions including components such as diamonds, are also disclosed, which can be used in a variety of applications, such as in abrasive, cosmetic or medical applications.
    Type: Application
    Filed: September 10, 2007
    Publication date: August 7, 2008
    Applicant: Frank C. Scarpa
    Inventors: Frank C. Scarpa, Dennis Johnson
  • Publication number: 20080142370
    Abstract: The aqueous acidic solution for electrolytically depositing high polish, decorative bright, smooth and level copper coatings on large area metal or plastic parts contains a) at least one oxygen-containing, high molecular additive and b) at least one water soluble sulfur compound, wherein the solution additionally contains c) at least one aromatic halogen derivative having the general formula (I), wherein R1, R2, R3, R4, R5 and R6 are each independently radicals selected from the group comprising hydrogen, aldehyde, acetyl, hydroxyls, hydroxyalkyl having 1-4 carbon atoms, alkyl having 1-4 carbon atoms and halogen, with the proviso that the number of residues R1, R2, R3, R4, R5 and R6 which are halogen ranges from 1 to 5.
    Type: Application
    Filed: July 28, 2004
    Publication date: June 19, 2008
    Inventors: Wolfgang Dahms, Carl Christian Fels, Gunther Bauer
  • Patent number: 7374652
    Abstract: Copper plating baths containing a leveling agent that is a reaction product of a compound including a heteroatom chosen from nitrogen, sulfur and a mixture of nitrogen and sulfur, with a polyepoxide compound containing an ether linkage that deposit copper on the surface of an electronic device and in apertures on such substrate are provided. Such plating baths deposit a copper layer on the substrate surface that is substantially planar across a range of electrolyte concentrations. Methods of depositing copper layers using such copper plating baths are also disclosed.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: May 20, 2008
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Shinjiro Hayashi, Hideki Tsuchida, Masaru Kusaka, Koichi Yomogida
  • Patent number: 7371311
    Abstract: An embodiment of the invention provides a method for reducing within die thickness variations by modifying the concentration of components of a low-acid electroplating solution. For one embodiment, the leveler concentration is increased sufficiently to reduce within die thickness variations to a specified value. For one embodiment of the invention, the leveler and suppressor are increased to reduce within die thickness variations and substantially reduce a plurality of electroplating defects. In such an embodiment the combined concentration of leveler and suppressor is determined to maintain adequate gap fill.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: May 13, 2008
    Assignee: Intel Corporation
    Inventors: Daniel J Zierath, Vinay Chikarmane, Valery M Dubin
  • Patent number: 7338585
    Abstract: A method comprising forming an interconnection opening through a dielectric material to a contact point; and electroplating a interconnection comprising copper in the contact opening using an electroplating bath comprising an alkoxylated sulfopropylated alkylamine. A method comprising forming an interconnection opening through a dielectric material to a contact point; lining the interconnection opening with a barrier layer and a seed layer; and electroplating an interconnection comprising copper in the contact opening using an electroplating bath comprising an alkoxylated sulfopropylated alkylamine.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: March 4, 2008
    Assignee: Intel Corporation
    Inventors: Rohan N. Akolkar, Valery M. Dubin
  • Patent number: 7335288
    Abstract: Methods for electrodeposition of copper on a noble metal layer of a work piece are provided. An exemplary method includes exposing the noble metal layer to an electrodeposition composition. The electrodeposition composition comprises a copper salt, a suppressor, an accelerator and an electrolyte. The electrodeposition of copper on a surface of the noble metal layer is initiated by application of a predetermined current density to the work piece. The electrodeposition of copper is terminated upon the occurrence of a predetermined event.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: February 26, 2008
    Assignee: Novellus Systems, Inc.
    Inventor: Vishwas V. Hardikar
  • Patent number: 7316772
    Abstract: A method for electroplating a copper deposit onto a semiconductor integrated circuit device substrate having submicron-sized features, and a concentrate for forming a corresponding electroplating bath. A substrate is immersed into an electroplating bath formed from the concentrate including ionic copper and an effective amount of a defect reducing agent, and electroplating the copper deposit from the bath onto the substrate to fill the submicron-sized reliefs. The occurrence of protrusion defects from superfilling, surface roughness, and voiding due to uneven growth are reduced, and macro-scale planarity across the wafer is improved.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: January 8, 2008
    Assignee: Enthone Inc.
    Inventors: John Commander, Richard Hurtubise, Vincent Paneccasio, Xuan Lin, Kshama Jirage
  • Patent number: 7232513
    Abstract: An electroplating solution contains a wetting agent in addition to a suppressor and an accelerator. In some embodiments, the solution has a cloud point temperature greater than 35° C. to avoid precipitation of wetting agent or other solute out of the plating solution. In some embodiments, the wetting agent decreases the air-liquid surface tension of the electroplating solution to 60 dyne/cm2 or less to increase the wetting ability of the solution with a substrate surface. In some embodiments of a method for plating metal onto substrate surface, the electroplating solution has a measured contact angle with the substrate surface less than 60 degrees.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: June 19, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Eric G. Webb, Jonathan D. Reid, John H. Sukamto, Yuichi Takada
  • Patent number: 7153408
    Abstract: The present invention is directed to an improved copper plating bath for depositing a copper layer onto a printing cylinder, the copper plating bath comprising: (a) a source of copper ions; (b) a source of methane sulphonate ions; (c) a source of chloride ions; (d) an organosulphur compound having the formula R—S—R?—SO3?X+ or X+—O3S—R?—S—R—S—R?—SO3—X+, wherein R is alkyl, hydroxyalkyl or alkyl ether, R? is a C2–C4 alkyl group, and X+ is a cation; and (e) a polyether compound and method of using the same. The copper plating bath produces a plating deposit that has a stable hardness and is free from self-annealing during high speed plating.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: December 26, 2006
    Inventors: Roderick D. Herdman, Trevor Pearson
  • Patent number: 7147767
    Abstract: The present invention provides plating solutions having either copper bis(perfluoroalkanesulfonyl) imides or copper tris(perfluoroalkanesulfonyl) methides and methods of electrochemically or chemically depositing copper interconnects using these plating solutions.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: December 12, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Steven D. Boyd, Susrut Kesari, William M. Lamanna, Michael J. Parent, Lawrence A. Zazzera, Haiyan Zhang
  • Patent number: 7144491
    Abstract: It is an object of the present invention to obtain a low-profile electrolytic copper foil with a small surface roughness on the side of the rough surface (the opposite side from the lustrous surface) in the manufacture of an electrolytic copper foil using a cathode drum, and more particularly to obtain an electrolytic copper foil which allows fine patterning, and which is superior in terms of elongation and tensile strength at ordinary temperatures and high temperatures. Furthermore, it is an object of the present invention to obtain a copper electrolytic solution for this purpose. This copper electrolytic solution contains as additives an organo-sulfur compound and a quaternary amine compound with a specific skeleton.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: December 5, 2006
    Assignee: Nikko Materials Co., Ltd.
    Inventors: Masashi Kumagai, Mikio Hanafusa
  • Patent number: 7128823
    Abstract: Embodiments of the invention provide a method for plating copper into features formed on a semiconductor substrate. The method includes positioning the substrate in a plating cell, wherein the plating cell includes a catholyte volume containing a catholyte solution, an anolyte volume containing an anolyte solution, an ionic membrane positioned to separate the anolyte volume from the catholyte volume, and an anode positioned in the anolyte volume. The method further includes applying a plating bias between the anode and the substrate, plating copper ions onto the substrate from the catholyte solution, and replenishing the copper ions plated onto the substrate from the catholyte solution with copper ions transported from the anolyte solution via the ionic membrane, wherein the catholyte solution has a copper concentration of greater than about 51 g/L.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: October 31, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Michael X. Yang, Nicolay Y. Kovarsky
  • Patent number: 7128822
    Abstract: Compounds that function to provide level or uniform metal deposits are provided. These compounds are particularly useful in providing level copper deposits. Copper plating baths and methods of copper plating using these compounds are also provided. These baths and methods are useful for providing a planarized layer of copper on a substrate having small apertures. The compositions and methods provide complete fill of small apertures with reduced void formation.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: October 31, 2006
    Assignee: Shipley Company, L.L.C.
    Inventors: Deyan Wang, Chunyi Wu, Robert D. Mikkola
  • Patent number: 7105082
    Abstract: A composition for electrodeposition of a metal on a work piece, which electrodeposition is conducted at an electrodeposition temperature, is provided. The composition comprises a metal salt, a polymer suppressor having a cloud point, an accelerator and an electrolyte. If the cloud point is greater than the electrodeposition temperature, an anion is also present in an amount sufficient to lower the cloud point of the polymer suppressor to a temperature approximately no greater than the electrodeposition temperature.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: September 12, 2006
    Assignee: Novellus Systems, Inc.
    Inventor: Vishwas Hardikar
  • Patent number: 7074315
    Abstract: In the production of printed circuit boards it is required that organic protective coatings adhere tightly on the copper surfaces. Accordingly, matt layers of copper are to be preferred over lustrous coatings. The bath in accordance with the invention serves to deposit matt layers of copper and has the additional advantageous property that the layers may also be deposited with sufficient coating thickness in very narrow bore holes at average cathode current density. For this purpose the bath contains at least one polyglycerin compound selected from the group comprising poly(1,2,3-propantriol), poly(2,3-epoxy-1-propanol) and derivatives thereof.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: July 11, 2006
    Assignee: Atotech Deutschland GmbH
    Inventors: Gonzalo Urrutia Desmaison, Stefan Kretschmer, Gerd Senge, Thorsten Ross, Torsten Küssner
  • Patent number: 7005055
    Abstract: The invention has an object of obtaining a low-profile electrolytic copper foil made by electrolytic copper foil manufacturing using a cathode drum such that the surface roughness on the rough surface side (the opposite side to the lustrous surface) is low. In particular, the invention has an object of obtaining an electrolytic copper foil that can be finely patterned and have an excellent elongation and tensile strength at normal and high temperatures. This object is attained by using a copper electrolytic solution containing, as additives, an organosulfur compound, and an amine compound having a specific skeleton represented by undermentioned general formula (1) obtained by additively reacting an amine compound and a compound having one or more epoxy groups in a molecule thereof to an addition reaction.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: February 28, 2006
    Assignee: Nikko Materials Co., Ltd.
    Inventors: Masashi Kumagai, Mikio Hanafusa
  • Patent number: 6984299
    Abstract: The present invention relates to a method and apparatus for determining organic additive concentrations in a sample electrolytic solution, preferably a copper electroplating solution, by measuring the double layer capacitance of a measuring electrode in such sample solution. Specifically, the present invention utilizes the correlation between double layer capacitance and the organic additive concentration for concentration mapping, based on the double layer capacitance measured for the sample electrolytic solution.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: January 10, 2006
    Assignee: Advanced Technology Material, Inc.
    Inventors: Jianwen Han, Mackenzie E. King
  • Patent number: 6977035
    Abstract: A method for electrolytic copper plating using an electrolytic copper plating solution including a compound containing a structure of —X—S—Y—, wherein X and Y are independently chosen from hydrogen atom, carbon atom, sulfur atom, nitrogen atom, and oxygen atom, and X and Y may be the same only when they are a carbon atom, and by contacting the electrolytic copper plating solution with ozone is disclosed.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: December 20, 2005
    Assignee: Shipley Company, L.L.C.
    Inventors: Hideki Tsuchida, Masaru Kusaka, Shinjiro Hayashi
  • Patent number: 6911068
    Abstract: A metal plating bath containing organic compounds that inhibit or retard the consumption of plating bath additives. The additives are chemical compounds that improve the brightness of the plated metal, the physical properties of the plated metal especially with respect to ductility and the micro-throwing power as well as the macro-throwing power of the plating bath. The organic compounds that inhibit or retard the consumption of additives increases the life of the plating bath and improves the efficiency of the plating process. The plating baths containing the organic compounds that inhibit or retard additive consumption can be employed to copper, gold, silver, palladium, platinum, cobalt, cadmium, chromium, bismuth, indium, rhodium, ruthenium, and iridium.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: June 28, 2005
    Assignee: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Patent number: 6897152
    Abstract: The present invention is directed to a copper bath composition and a process for the electroless and/or electrolytic plating of copper to fill vias and trenches during the manufacture of integrated circuits. Specifically, the copper bath composition comprises water, copper ions, hydroxide ions, a complexing agent to inhibit the formation of copper oxides, copper hydroxides and copper salts, a stabilizer to control the rate of electroless copper plating, a reducing agent to promote the electroless reduction of the copper ions to copper metal, and a catalyst to promote the electrolytic reduction copper ions to copper metal.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: May 24, 2005
    Assignee: Enthone Inc.
    Inventor: Han Verbunt
  • Patent number: 6893550
    Abstract: The present invention relates to a copper electroplating bath composition and method of using it for microelectronic device fabrication. In particular, the present invention relates to copper electroplating in the fabrication of interconnect structures in semiconductor devices. By use of the inventive copper electroplating bath composition, the incidence of voids in the interconnect structures is reduced.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: May 17, 2005
    Assignee: Intel Corporation
    Inventors: Valery Dubin, Kimin Hong, Nate Baxter
  • Patent number: 6890416
    Abstract: An electroplating apparatus prevents anode-mediated degradation of electrolyte additives by creating a mechanism for maintaining separate anolyte and catholyte and preventing mixing thereof within a plating chamber. The separation is accomplished by interposing a porous chemical transport barrier between the anode and cathode. The transport barrier limits the chemical transport (via diffusion and/or convection) of all species but allows migration of ionic species (and hence passage of current) during application of sufficiently large electric fields within electrolyte.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: May 10, 2005
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Evan E. Patton, Robert L. Jackson, Jonathan D. Reid
  • Patent number: 6881319
    Abstract: Disclosed are an electrolytic copper plating solution containing a specific sulfur-containing compound and a thiol-reactive compound, and an electrolytic copper plating process using such an electrolytic copper plating solution. The present invention can prevent the copper layer on the resulting composite material from forming aggregation and, when the plating is intended to fill vias, make it possible to achieve the via-filling without voids. The present invention also relates to a method for controlling the electrolytic copper plating solution by using an amount of a specific decomposition product of the sulfur-containing compound as an index.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: April 19, 2005
    Assignee: Shipley Company, L.L.C.
    Inventors: Masaru Seita, Hideki Tsuchida, Shinjiro Hayashi
  • Patent number: 6866765
    Abstract: An R-T-B magnet (R is at least one kind of rare-earth elements including Y, and T is Fe or Fe and Co) has an electrolytic copper-plating film where the ratio [I(200)/I(111)] of the X-ray diffraction peak intensity I(200) from the (200) plane to the X-ray diffraction peak intensity I(111) from the (111) plane is 0.1-0.45 in the X-ray diffraction by CuKal rays. This electrolytic copper-plating film is formed by an electrolytic copper-plating method using an electrolytic copper-plating solution which contains 20-150 g/L of copper sulphate and 30-250 g/L of chelating agent and contains no agent for reducing copper ions and has a pH adjusted to 10.5-13.5.
    Type: Grant
    Filed: July 4, 2001
    Date of Patent: March 15, 2005
    Assignee: Hitachi Metals, Ltd.
    Inventors: Setsuo Ando, Minoru Endoh, Tsutomu Nakamura, Toru Fukushi
  • Patent number: 6835294
    Abstract: Electrolytic copper plating methods are provided, wherein copper is electrolytically deposited on a substrate, and the electrolytic copper plating solution supplied to the electrolytic copper plating is subjected to dummy electrolysis using an insoluble anode. The method described above can maintain and restore the electrolytic copper plating solution so as to maintain satisfactory appearance of plated copper, fineness of deposited copper film, and via-filling.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: December 28, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Hideki Tsuchida, Masaru Kusaka, Shinjiro Hayashi
  • Publication number: 20040249177
    Abstract: Compounds that function to provide level or uniform metal deposits are provided. These compounds are particularly useful in providing level copper deposits. Copper plating baths and methods of copper plating using these compounds are also provided. These baths and methods are useful for providing a planarized layer of copper on a substrate having small apertures. The compositions and methods provide complete fill of small apertures with reduced void formation.
    Type: Application
    Filed: June 4, 2003
    Publication date: December 9, 2004
    Applicant: Shipley Company, L.L.C.
    Inventors: Deyan Wang, Chunyi Wu, Robert D. Mikkola
  • Publication number: 20040217009
    Abstract: Copper electroplating baths containing one or more suppressor compounds capable of providing copper filled sub-micron sized apertures free of pits and voids are provided. Such copper electroplating baths are useful in the manufacture of electronic devices, such as printed wiring boards and integrated circuits.
    Type: Application
    Filed: November 20, 2003
    Publication date: November 4, 2004
    Applicant: Shipley Company, L.L.C.
    Inventors: Robert D. Mikkola, Deyan Wang, Chunyi Wu
  • Patent number: 6800188
    Abstract: A copper plating bath comprising a reaction condensate of an amine compound and glycidyl ether and/or a quaternary ammonium derivative of this reaction condensate, and a plating method using this copper plating bath are disclosed. A copper plating bath capable of providing highly reliable copper plating on a substrate such as a silicone wafer semiconductor substrate or printed board having minute circuit patterns and small holes such as blind via-holes, through-holes, and the like, and a method of copper plating using the copper plating bath can be provided.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: October 5, 2004
    Assignees: Ebara-Udylite Co., Ltd., Ebara Corporation
    Inventors: Hideki Hagiwara, Ryoichi Kimizuka, Yoshitaka Terashima, Megumi Maruyama, Takashi Miyake, Hiroshi Nagasawa, Tsuyoshi Sahoda, Seiji Iimura
  • Publication number: 20040168928
    Abstract: A composition for electrodeposition of a metal on a work piece, which electrodeposition is conducted at an electrodeposition temperature, is provided. The composition comprises a metal salt, a polymer suppressor having a cloud point, an accelerator and an electrolyte. If the cloud point is greater than the electrodeposition temperature, an anion is also present in an amount sufficient to lower the cloud point of the polymer suppressor to a temperature approximately no greater than the electrodeposition temperature.
    Type: Application
    Filed: February 27, 2003
    Publication date: September 2, 2004
    Inventor: Vishwas Hardikar
  • Patent number: 6776893
    Abstract: A copper electroplating bath and a method to plate substrates with the bath are provided. The bath and method are particularly effective to plate electronic components such as semiconductive wafer VLSI and ULSI interconnects with void-free fill copper plating for circuitry forming vias and trenches and other small features less than 0.2 microns with high aspect ratios. The copper bath contains a bath soluble organic divalent sulfur compound, and a bath soluble polyether compound such as a block copolymer of polyoxyethylene and polyoxypropylene, a polyoxyethylene or polyoxypropylene derivative of a polyhydric alcohol and a mixed polyoxyethylene and polyoxypropylene derivative of a polyhydric alcohol. A preferred polyether compound is a mixed polyoxyethylene and polyoxypropylene derivative of glycerine. A preferred copper bath also contains a pyridine compound derivative.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: August 17, 2004
    Assignee: Enthone Inc.
    Inventors: Elena H. Too, Paul R. Gerst, Vincent Paneccasio, Jr., Richard W. Hurtubise
  • Publication number: 20040154930
    Abstract: An electrodeposited copper foil having a rough surface having knob-like projections and a surface roughness of 2 to 4 &mgr;m at part of a surface thereof produced by electrolysis using an electrolyte containing copper as a main component and a compound having mercapto groups, at least one type of another organic compound, and chloride ions and an electrodeposited copper foil obtained by roughening treating an untreated copper foil having a matte side, for bonding with a resin substrate, having knob-like projections and a surface roughness of 2 to 4 &mgr;m by running a predetermined current through it for a predetermined time in an electroforming bath.
    Type: Application
    Filed: February 11, 2004
    Publication date: August 12, 2004
    Applicant: FURUKAWA CIRCUIT FOIL CO., LTD.
    Inventor: Kensaku Shinozaki
  • Patent number: 6773573
    Abstract: A metal plating bath containing alcohol compounds that inhibit or retard the consumption of plating bath additives. The additives are chemical compounds that improve the brightness of the plated metal, the physical properties of the plated metal especially with respect to ductility and the micro-throwing power as well as the macro-throwing power of the plating bath. The alcohol compounds that inhibit or retard the consumption of additives increases the life of the plating bath and improves the efficiency of the plating process. The plating baths containing the alcohol compounds that inhibit or retard additive consumption can be employed to plate copper, gold, silver, palladium, platinum, cobalt, cadmium, chromium, bismuth, indium, rhodium, ruthenium, and iridium.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: August 10, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: David R. Gabe, Andrew J. Cobley, Leon R. Barstad, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Thomas Buckley
  • Patent number: 6753254
    Abstract: A method for forming a metallization layer. A first layer is formed outwardly from a semiconductor substrate. Contact vias are formed through the first layer to the semiconductor substrate. A second layer is formed outwardly from the first layer. Portions of the second layer are selectively removed such that the remaining portion of the second layer defines the layout of the metallization layer and the contact vias. The first and second layers are electroplated by applying a bi-polar modulated voltage having a positive duty cycle and a negative duty cycle to the layers in a solution containing metal ions. The voltage and surface potentials are selected such that the metal ions are deposited on the remaining portions of the second layer. Further, metal ions deposited on the first layer during a positive duty cycle are removed from the first layer during a negative duty cycle. Finally, exposed portions of the first layer are selectively removed.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: June 22, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Singh Sandhu, Chris Chang Yu
  • Publication number: 20040104124
    Abstract: A metal plating bath and method of plating a metal on a substrate where the metal plating bath contains heteroatom organic compounds that prevent or inhibit the consumption of metal plating bath additives. The metal plating bath additives improve the brightness of plated metal as well as ductility, micro-throwing power and micro-throwing power of the plating bath. The addition of the additive consumption inhibiting heteroatom organic compounds improves the physical properties of the plated metal as well as the efficiency of the plating process. The heteroatom organic compounds may contain sulfur, oxygen or nitrogen heteroatoms.
    Type: Application
    Filed: November 24, 2003
    Publication date: June 3, 2004
    Applicant: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Patent number: 6740221
    Abstract: A method of forming a copper layer with increased electromigration resistance. A doped copper layer is formed by controlling the incorporation of a non-metallic dopant during copper electroplating.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: May 25, 2004
    Assignee: Applied Materials Inc.
    Inventors: Robin Cheung, Liang-Yuh Chen
  • Publication number: 20040074775
    Abstract: Pulse reverse electrolysis of acid copper solutions is used for applying copper to decorative articles, such as aluminium alloy automotive wheels and plastic parts for automotive use. The benefits include an improved thickness distribution of the copper electrodeposited on the plated article, reduced metal waste, reduced plating times and increased production capacity.
    Type: Application
    Filed: October 21, 2002
    Publication date: April 22, 2004
    Inventors: Roderick Dennis Herdman, Michael Ray Crary, Ernest Long
  • Patent number: 6723219
    Abstract: A method of electroplating metal onto a low conductivity layer combines a potential or current reversal waveform with variation in the amplitude and duration of the applied potential or current pulse. The method includes, over time, varying the duration of the pulse and continuously decreasing the amplitude of both the cathodic and anodic portions of the waveform across the surface of the low conductivity layer as the deposition zone moves from the center of the surface of the low conductivity layer to the outside edge. By virtue of the ability to vary the amplitude and duration of the pulse, the method facilitates the filling of structures in the center of the low conductivity layer without overdepositing on the outside edge, thus ensuring a controlled deposition of material across the surface of the low conductivity layer.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: April 20, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Dale W. Collins
  • Patent number: 6709562
    Abstract: A process is described for the fabrication of submicron interconnect structures for integrated circuit chips. Void-free and seamless conductors are obtained by electroplating Cu from baths that contain additives and are conventionally used to deposit level, bright, ductile, and low-stress Cu metal. The capability of this method to superfill features without leaving voids or seams is unique and superior to that of other deposition approaches. The electromigration resistance of structures making use of Cu electroplated in this manner is superior to the electromigration resistance of AlCu structures or structures fabricated using Cu deposited by methods other than electroplating.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: March 23, 2004
    Assignee: International Business Machines Corporation
    Inventors: Panayotis Constantinou Andricacos, Hariklia Deligianni, John Owen Dukovic, Daniel Charles Edelstein, Wilma Jean Horkans, Chao-Kun Hu, Jeffrey Louis Hurd, Kenneth Parker Rodbell, Cyprian Emeka Uzoh, Kwong-Hon Wong
  • Patent number: 6709564
    Abstract: The acid copper sulfate solutions used for electroplating copper circuitry in trenches and vias in IC dielectric material in the Damascene process are replaced with a type of plating system based on the use of highly complexing anions (e.g., pyrophosphate, cyanide, sulfamate, etc.) to provide an inherently high overvoltage that effectively suppresses runaway copper deposition. Such systems, requiring only one easily-controlled organic additive species to provide outstanding leveling, are more efficacous for bottom-up filling of Damascene trenches and vias than acid copper sulfate baths, which require a minimum of two organic additive species. The highly complexed baths produce fine-grained copper deposits that are typically much harder than large-grained acid sulfate copper deposits, and which exhibit stable mechanical properties that do not change with time, thereby minimizing “dishing” and giving more consistent CMP results.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: March 23, 2004
    Assignee: Rockwell Scientific Licensing, LLC
    Inventors: D. Morgan Tench, John T. White, Dieter Dornisch, Maureen Brongo
  • Patent number: 6709563
    Abstract: There is provided a copper-plating liquid free from an alkali metal and a cyanide which, when used in plating of a substrate having an outer seed layer and fine recesses of a high aspect ratio, can reinforce the thin portion of the seed layer and can embed copper completely into the depth of the fine recesses. The plating liquid contains divalent copper ions and a completing agent, and an optional pH adjusting agent.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: March 23, 2004
    Assignee: Ebara Corporation
    Inventors: Mizuki Nagai, Shuichi Okuyama, Ryoichi Kimizuka, Takeshi Kobayashi
  • Publication number: 20040050706
    Abstract: The present invention provides a copper electroplating method using an insoluble anode, including: using an insoluble anode and a copper electroplating solution which contains a compound having a —X—S—Y— structure (where X and Y are each independently selected from the group consisting of a hydrogen atom, a carbon atom, a sulfur atom, a nitrogen atom, and an oxygen atom, and X and Y can be the same only where they are carbon atoms); and using direct current to plate a substrate. By this method, even a certain time period after the initial make-up of the electrolytic bath, stable deposition of the plated metal and formation of a filled via can be achieved, and an MVH can be filled up with the metal with no void left.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 18, 2004
    Inventors: Masaru Seita, Hideki Tsuchida, Masaru Kusaka
  • Publication number: 20040045832
    Abstract: Disclosed are copper electroplating solutions, methods for using the solutions and products formed by using such methods and solutions in which the solutions contain copper alkanesulfonate salts and free alkanesulfonic acids, wherein the free acid has a concentration from about 0.05 to about 2.50 M, and which are intended for the metallization of micron-sized dimensioned trenches or vias, through-holes and microvias.
    Type: Application
    Filed: July 15, 2003
    Publication date: March 11, 2004
    Inventor: Nicholas Martyak
  • Publication number: 20040020783
    Abstract: In the production of printed circuit boards it is required that organic protective coatings adhere tightly on the copper surfaces. Accordingly, matt layers of copper are to be preferred over lustrous coatings. The bath in accordance with the invention serves to deposit matt layers of copper and has the additional advantageous property that the layers may also be deposited with sufficient coating thickness in very narrow bore holes at average cathode current density. For this purpose the bath contains at least one polyglycerin compound selected from the group comprising poly(1,2,3-propantriol), poly(2,3-epoxy-1-propanol) and derivatives thereof.
    Type: Application
    Filed: April 7, 2003
    Publication date: February 5, 2004
    Inventors: Gonzalo Urrutia Desmaison, Stefan Kretschmer, Gerd Senge, Thorsten Ross, Torsten Kussner
  • Patent number: 6682642
    Abstract: Disclosed are compositions useful for repair and electroplating of seed layers. Also disclosed are methods of repairing and electroplating such seed layers.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: January 27, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Robert A. Mikkola, Jeffrey M. Calvert
  • Patent number: 6679983
    Abstract: Disclosed are electrolytes for copper electroplating that provide enhanced fill of small features with less overplate. Also disclosed are methods of plating substrates, such as electronic devices, using such electrolytes.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: January 20, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Denis Morrissey, Robert D. Mikkola, Jeffrey M. Calvert
  • Patent number: 6676823
    Abstract: One aspect of the invention relates to an aqueous copper plating bath containing sulfuric acid with a specific ratio to at least one supplemental acid selected from the group consisting of fluoboric acid, alkane sulfonic acids, and alkanol sulfonic acids; a copper salt; chloride ions; and at least one sulfate bath brightener. Another aspect of the invention relates to aqueous copper plating bath containing fluoboric acid and/or an alkane sulfonic acid but no sulfuric acid, copper sulfate, chloride ions, and at least one sulfate bath brightener. Yet another aspect of the invention relates to methods of plating copper from the aforementioned copper plating baths. Still yet another aspect of the invention relates to methods of plating copper at high speed using relatively high current densities.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: January 13, 2004
    Assignee: Taskem, Inc.
    Inventor: George Bokisa
  • Patent number: 6652731
    Abstract: A metal plating bath and metal plating process that contains aldehyde compounds that prevent or reduce the consumption of metal plating bath additives. The metal plating baths provide for an efficient plating method because the plating process need not be interrupted to replenish the plating bath with additives. The Metal plating baths may be employed to plate metals such as copper, gold, silver, palladium, cobalt, chromium, cadmium, bismuth, indium, rhodium, iridium, and ruthenium.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: November 25, 2003
    Assignee: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Patent number: 6649038
    Abstract: Disclosed is a method of electroplating substrate such that small recessed features are completely filled with minimum thickness of the deposited metal over fields.
    Type: Grant
    Filed: October 13, 2001
    Date of Patent: November 18, 2003
    Assignee: Shipley Company, L.L.C.
    Inventors: Robert D. Mikkola, Jeffrey M. Calvert, Denis Morrissey