Catalytic Patents (Class 208/134)
  • Patent number: 6569389
    Abstract: A process and arrangement for contacting a moving bed of compact particulate material, usually catalyst, with a radial flow of fluid maintains an unconfined surface of catalyst particles in place by passing fluid axially into the upper surface of the bed and maintaining radial gas flow across an inlet screen at an elevation that is above the upper most elevation of perforations for withdrawing gas flow from the particulate bed. Two vertical screens confine the bed of catalyst. Perforations cover substantially the entire length of the inlet screen. The outlet portion of the screen has perforations that end below the top of the free surface of the catalyst bed and define an upper bed portion therebetween. The inlet screen directs gas flow radially across the inlet screen into an upper portion of the bed and causes at least partial axial flow of gas through the upper portion of the particle bed.
    Type: Grant
    Filed: November 11, 1999
    Date of Patent: May 27, 2003
    Assignee: UOP LLC
    Inventors: William J. Koves, Gary A. Schulz, Robert J. Sanger
  • Patent number: 6558532
    Abstract: While a substantially water-free hydrocarbon feed is being charged to a catalytic reformer reactor, an organic chloride is contacted with the reformer catalyst in an amount and for a time period that are effective to restore at least a portion of the activity of the reformer catalyst.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: May 6, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Fan-Nan Lin, John S. Parsons
  • Publication number: 20030070963
    Abstract: The cracking of hydrocarbon fractions, for example to obtain low olefins, in particular ethylene, is performed in reaction tubes that are at least partially coated with catalyst. The catalyst can promote gasification of coke with water vapor after the water-gas reaction in CO, CO2 and H2, and/or the cracking reactions. The catalyst coating can be placed directly on reaction tubes or on top of a previously applied adhesion promoter and/or auxiliary medium placed on the reaction tubes, in particular on a grid. Preferably, the catalyst coating is applied thermally, by cold-coating processes, in particular the slip process, by vapor deposition and/or,adhesion. The catalyst can promote, in particular, gasification of coke with water vapor after the water-gas reaction in CO, CO2 and H2 and make hydrogen, obtained during catalytic gasification, available for cracking hydrocarbons and/or as additional product.
    Type: Application
    Filed: October 22, 2002
    Publication date: April 17, 2003
    Applicant: LINDE AKTIENGESELLSCHAFT
    Inventors: Heinz Zimmermann, Dieter Kaufmann, Michael Wyrostek
  • Patent number: 6548040
    Abstract: The present invention concerns a process for synthesising a zeolite with structure type MTT comprising at least one element X selected from silicon and germanium and at least one element T selected from aluminium, iron gallium, boron, titanium, vanadium, zirconium, molybdenum, arsenic, antimony, chromium and manganese, comprising reacting an aqueous mixture comprising at least one source of at least one element X, at least one source of at least one element T, and at least one precursor of an organic compound comprising at least one alkylated polymethylene &agr;-&ohgr; diammonium derivative, characterized in that at least one precursor is selected from monoamines. The present invention also concerns the use of the zeolite obtained as a catalyst in a process for converting hydrocarbon-containing feeds, as an adsorbent to control pollution and as a molecular sieve for separation.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: April 15, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Loïc Rouleau, Frédéric Kolenda, Eric Benazzi
  • Patent number: 6544408
    Abstract: Process for the production of aromatic compounds, such as reforming, that uses at least one fixed catalyst bed with a base of platinum and 0.08% rhenium. In said process, before moving onto the bed, the feedstock undergoes a heat exchange with the effluent that is obtained from the process, whereby the exchange is carried out with a pressure drop that is less than 1 bar and a temperature difference that is less than 70° C. The beds are preferably radial and those that are located at the top of the reactor are covered by a cloth layer. The process preferably uses at least two fixed catalyst beds, whereby the first bed (in the direction of circulation of the feedstock) has an Re/Pt ratio by weight that is greater than that of the second bed, and whereby the second catalyst preferably contains at least 0.08% of Re.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: April 8, 2003
    Assignee: Institut Francais du Petrole
    Inventor: Jean de Bonneville
  • Patent number: 6540903
    Abstract: The present invention relates to new crystalline zeolite SSZ-47 prepared using a bicyclo ammonium cation templating agent.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: April 1, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Gregory S. Lee, Yumi Nakagawa, Stacey I. Zones
  • Publication number: 20030050523
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a sulfated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component of at least one lanthanide element or yttrium component, which is preferably ytterbium, and at least one platinum-group metal component which is preferably platinum.
    Type: Application
    Filed: August 29, 2001
    Publication date: March 13, 2003
    Inventors: Ralph D. Gillespie, Michelle J. Cohn
  • Publication number: 20030042173
    Abstract: A method for reforming a sulfur-containing carbonaceous fuel in which the sulfur-containing carbonaceous fuel is mixed with H2O and an oxidant, forming a fuel/H2O/oxidant mixture. The fuel H2O/oxidant mixture is brought into contact with a catalyst composition comprising a dehydrogenation portion, an oxidation portion and a hydrodesulfurization portion, resulting in formation of a hydrogen-containing gas stream.
    Type: Application
    Filed: May 18, 2001
    Publication date: March 6, 2003
    Inventors: Michael Krumpelt, John P. Kopasz, Shabbir Ahmed, Richard Li-chih Kao, Sarabjit Singh Randhava
  • Publication number: 20030019792
    Abstract: A catalytic hydrodealkylation/reforming process which comprises contacting a heavy hydrocarbon feedstream under catalytic hydrodealkylation/reforming conditions with a composition comprising borosilicate molecular sieves.
    Type: Application
    Filed: December 11, 2001
    Publication date: January 30, 2003
    Inventors: Cong-Yan Chen, Stacey I. Zones, Andrew Rainis, Dennis J. O'Rear
  • Patent number: 6504073
    Abstract: A method for converting benzene and aromatic hydrocarbon compounds having 9 or more carbon atoms contained in a material oil having a boiling point of 30˜210° C. into toluene and aromatic hydrocarbon compounds having 8 carbon atoms in the presence of hydrogen and the said catalyst. The catalyst can be obtained by carrying at least one metal or metal compound selected from Group VIII and Group VIA of the Periodic Table on a carrier containing zeolites in which maximum diameter among diameters of its micropores is 0.6-1.0 nm and a ratio of SiO2/Al2O3 is 50 or more.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: January 7, 2003
    Assignee: Nippon Mitsubishi Oil Corporation
    Inventors: Masaru Ushio, Eiji Yasui, Fumio Haga, Toshiyuki Enomoto
  • Patent number: 6500329
    Abstract: A two stage process useful for cetane upgrading of diesel fuels. More particularly, the invention relates to a process for selective naphthenic ring-opening utilizing an extremely low acidic distillate selective catalyst having highly dispersed Pt. The process is a two stage process wherein the first stage is a hydrotreating stage for removing sulfur from the feed and the second stage is the selective ring-opening stage.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: December 31, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Publication number: 20020195374
    Abstract: A reforming catalyst containing a Group VIII metal, or a Group VII B metal, or tin, or germanium, or copper, or selenium or combinations of any two or more metals or oxides thereof is activated by: a) continuously flowing a reducing gas over the catalyst for contact with the catalyst; (b) during step a), flowing a halogen-containing compound over the catalyst for contact with the catalyst for a first time period, wherein the first time period is greater than about 1 minute, and wherein the first time period is less than about 60 minutes; and (c) following step b), and during step a), substantially discontinuing the flow of the halogen-containing compound over the catalyst for a second time period, wherein the second time period is greater than about 1 minute.
    Type: Application
    Filed: June 20, 2002
    Publication date: December 26, 2002
    Inventors: Fan-Nan Lin, John S. Parsons, Donald H. Macahan, Brian H. Limoges
  • Publication number: 20020179489
    Abstract: The present invention relates to a method for gas-solid contacting in a bubbling fluidized bed reactor by:
    Type: Application
    Filed: March 26, 2001
    Publication date: December 5, 2002
    Applicant: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Vasant Ramchandra Choudhary, Tushar Vasant Choudhary
  • Publication number: 20020179495
    Abstract: Disclosed is a method for reforming hydrocarbons comprising contacting the hydrocarbons with a catalyst in a reactor system of improved resistance to carburization and metal dusting under conditions of low sulfur.
    Type: Application
    Filed: September 10, 2001
    Publication date: December 5, 2002
    Inventors: John V. Heyse, Bernard F. Mulaskey, Robert A. Innes, Daniel P. Hagewiesche, Gale L. Hubred, Steven C. Moore, Paul F. Bryan, Robert L. Hise, Steven E. Trumbull, Randall J. Harris
  • Patent number: 6478952
    Abstract: Deactivation of a reformer catalyst is inhibited by charging a hydrocarbon feed having a concentration of an organic aluminum halide compound to a reformer reactor operating under reforming conditions and containing a reformer catalyst.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: November 12, 2002
    Assignee: Phillips Petroleum Company
    Inventor: Fan-Nan Lin
  • Patent number: 6475374
    Abstract: A process for preparing a lubricating oil basestock having good low temperature properties. The process includes a first amorphous isomerization catalyst having a pore volume less than 0.99 ml/gm (H2O), an alumina content in the range of 30-50 wt % based on isomerization catalyst and an isoelectric point in the range of 4.5 to 6.5. The isomerization step is followed by a catalytic dewaxing step using an intermediate pore crystalline molecular sieve.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: November 5, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Daniel Paul Leta, Stuart Leon Soled, Gary Brice McVicker, Sylvain Hantzer
  • Patent number: 6464857
    Abstract: Molecular sieves comprising (1) phosphorus oxide; (2) a first oxide comprising an oxide of silicon, germanium or mixtures thereof; and (3) a second oxide comprising an oxide of aluminum, boron or mixtures thereof, said molecular sieve having a mole ratio of the first oxide to the second oxide of greater than 1, containing at least about 10 weight percent phosphorus oxide in the crystal framework, and having pores greater than 5 Å in diameter are useful as catalysts in hydrocarbon conversion reactions.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: October 15, 2002
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Publication number: 20020139712
    Abstract: A method for the isomerization of a hydrocarbonic charge containing a substantial quantity of paraffin base hydrocarbons with 5 or 6 carbon atoms and a benzene content that is greater than or equal to 2% by weight, in which the charge to be treated passes, in the presence of hydrogen, at a total pressure greater than or equal to 10.105 Pa (10 bars) and at an average temperature ranging between 100 and 200° C., through at least one reactor (5) containing a catalyst. An adjunctive fluid is introduced in the upstream section of the reaction zone; a fluid that at 40° C. and under atmospheric pressure (1.0134.105 Pa), is in a gaseous phase and has a density that is less than or equal to that of the normal-pentane taken into account under the same conditions.
    Type: Application
    Filed: March 28, 2002
    Publication date: October 3, 2002
    Applicant: TOTAL RAFFINAGE DISTRIBUTION S.A.
    Inventors: Marc Fersing, Pedro Nascimento
  • Patent number: 6458266
    Abstract: A substantially water-free hydrocarbon feed is charged to a multiple-reactor reformer system being operated under reforming conditions and comprising at least two reformer reactors serially connected in fluid-flow communication and each containing a reformer catalyst; and, simultaneously with the charging step, a chloriding agent is sequentially introduced, without simultaneously introducing water, immediately upstream from the inlets of all the reformer reactors in an amount and for a period of time that are effective to inhibit the deactivation of the reformer catalyst.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: October 1, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Fan-Nan Lin, John S. Parsons
  • Patent number: 6451199
    Abstract: For transforming hydrocarbons into aromatic compounds, the reaction is conducted on a homogeneous bed of catalyst particles, said catalyst comprising at least one amorphous matrix, at least one noble metal, at least two additional metals M1 and M2 and at least one halogen, and in which, for a catalyst particle, Cpt is the local concentration of platinum; CM1 is the local concentration of additional metal M1; CM2 is the local concentration of additional metal M2; in which the standard deviation of the distribution of the local ratios of the concentrations of the additional metals, CM1/CM2, measured along the particle diameter, is better than 25% relative.
    Type: Grant
    Filed: February 8, 2000
    Date of Patent: September 17, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Hervé Cauffriez, Fabienne Le Peltier, Elisabeth Rosenberg
  • Publication number: 20020121461
    Abstract: The present invention concerns a fuel reformer for reforming a hydrocarbon base fuel in to a hydrogen rich gas and a manufacturing method thereof, and the fuel reformer of the present invention wherein a Cr oxide layer is formed on at least a part of the surface of steel material making the reformer produces no red scale through water vapor oxidation of the surface of steel material making the reformer, even when exposed to an atmosphere of low oxygen concentration and/or high water vapor concentration under a high temperature and has an extremely important industrial utility value because it is highly heat resistant, light, low cost and cheap, highly reliable and long life, and moreover a cheap, highly reliable and long life fuel reformer can be manufactured at a low cost and easily by the manufacturing method of the present invention.
    Type: Application
    Filed: February 27, 2002
    Publication date: September 5, 2002
    Inventors: Masatoshi Ueda, Masataka Kadowaki, Akira Fuju
  • Publication number: 20020121460
    Abstract: Compositions including carbide-containing nanorods and/or oxycarbide-containing nanorods and/or carbon nanotubes bearing carbides and oxycarbides and methods of making the same are provided. Rigid porous structures including oxycarbide-containing nanorods and/or carbide containing nanorods and/or carbon nanotubes bearing carbides and oxycarbides and methods of making the same are also provided. The compositions and rigid porous structures of the invention can be used either as catalyst and/or catalyst supports in fluid phase catalytic chemical reactions. Processes for making supported catalyst for selected fluid phase catalytic reactions are also provided.
    Type: Application
    Filed: December 18, 2001
    Publication date: September 5, 2002
    Inventors: David Moy, Chunming Niu, Jun Ma, Jason M. Willey
  • Patent number: 6428765
    Abstract: A new family of crystalline metal oxide compositions have been synthesized. These compositions are described by the empirical formula: AnTaMxM′yM″mOp where A is an alkali metal cation, ammonium ion and mixtures thereof, M is tungsten, molybdenum, or mixtures thereof. M′ is vanadium, antimony, tellurium, niobium and mixtures thereof, and M″ is titanium, tin, indium and gallium, aluminum, bismuth and mixtures thereof. M′ and M″ are optional metals. These compositions are characterized by having an x-ray diffraction pattern having at least one peak at a d spacing of about 3.9 Å. These materials can be used in various hydrocarbon conversion processes such as dehydrogenation.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: August 6, 2002
    Assignee: UOP LLC
    Inventors: Robert L. Bedard, Lisa M. King, Paula L. Bogdan, Susan C. Koster
  • Patent number: 6425998
    Abstract: A process for using a hydrogen sensor in a liquid metal heat exchange loop in a hydrocarbon conversion process with high hydrogen permeation. The hydrogen sensor of the present invention consists essentially of a hollow nickel membrane probe in intimate contact with liquid metal. A vacuum chamber in fluid communication with the hollow nickel membrane probe through which hydrogen permeates, wherein the vacuum chamber is initially evacuated to a vacuum pressure and is in equilibrium with the vacuum chamber. The hydrogen sensor is useful for measuring the partial pressure of the hydrogen in the liquid metal to provide advisory control for the removal of hydrogen from the liquid metal exchange loop to avoid the problem of metal hydride formation and associated plugging problems.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: July 30, 2002
    Assignee: UOP LLC
    Inventor: Donald Cholewa
  • Publication number: 20020092797
    Abstract: Disclosed are a process for producing aromatic hydrocarbon compounds and liquefied petroleum gas (LPG) from a hydrocarbon feedstock having boiling points of 30-250° C. and a catalyst useful therefor. In the presence of said catalyst, aromatic components in the hydrocarbon feedstock are converted to BTX-enriched components of liquid phase through hydrodealkylation and/or transalkylation, and non-aromatic components are converted to LPG-enriched gaseous materials through hydrocracking. The products of liquid phase may be separated as benzene, toluene, xylene, and C9 or higher aromatic compounds, respectively according to their different boiling points, while LPG is separated from the gaseous products, in a distillation tower.
    Type: Application
    Filed: November 20, 2001
    Publication date: July 18, 2002
    Inventors: Sun Choi, Seung-Hoon Oh, Yong-Seung Kim, Beung-Soo Lim, Kyeong-Hak Seong
  • Patent number: 6419820
    Abstract: A novel catalyst and the use thereof in a reforming process is disclosed. The catalyst comprises a refractory inorganic oxide, platinum-group metal, uniform Group IVA(IUPAC 14) metal and surface-layer lanthanide-series metal. The catalyst is particularly suitable for the reforming of a hydrocarbon feedstock to obtain an aromatics-rich product.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: July 16, 2002
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, Maureen L. Bricker
  • Patent number: 6416654
    Abstract: Nitrogenous compounds especially bases such as ammonia vapor are used to control the operation of a hydrocracker or catalytic dewaxer. Catalyst activity and selectivity may be controlled by addition of the base to the feed, for example, to control the balance between isomerization and hydrocracking in an operation using a zeolite beta catalyst. Runaway conditions may be controlled by the addition of nitrogenous compounds to regulate the temperature profile within the reactor.
    Type: Grant
    Filed: December 30, 1994
    Date of Patent: July 9, 2002
    Assignee: Mobil Oil Corporation
    Inventors: Tai-Sheng Chou, Nai Yuen Chen, Grant G. Karsner, Clinton R. Kennedy, Rene B. LaPierre, Melcon G. Melconian, Richard J. Quann, Stephen S. Wong
  • Patent number: 6416657
    Abstract: A method for the isomerization of a hydrocarbonic charge containing a substantial quantity of paraffin base hydrocarbons with 5 or 6 carbon atoms and a benzene content that is greater than or equal to 2% by weight, in which the charge to be treated passes, in the presence of hydrogen, at a total pressure greater than or equal to 10.105 Pa (10 bars) and at an average temperature ranging between 100 and 200° C., through at least one reactor (5) containing a catalyst. An adjunctive fluid is introduced in the upstream section of the reaction zone; a fluid that at 40° C. and under atmospheric pressure (1.0134.105 Pa), is in a gaseous phase and has a density that is less than or equal to that of the normal-pentane taken into account under the same conditions.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: July 9, 2002
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Marc Fersing, Pedro Nascimento
  • Publication number: 20020074263
    Abstract: A catalytic material includes a microporous zeolite supported on a mesoporous inorganic oxide support. The microporous zeolite can include zeolite beta, zeolite Y or ZSM-5. The mesoporous inorganic oxide can be, e.g., silica or alumina, and can optionally include other metals. Methods for making and using the catalytic material are described herein.
    Type: Application
    Filed: November 27, 2001
    Publication date: June 20, 2002
    Inventors: Zhiping Shan, Jacobus Cornelius Jansen, Chuen Y. Yeh, Johannes Hendrik Koegler, Thomas Maschmeyer
  • Patent number: 6407301
    Abstract: An adsorptive separation process for preparing the separate feed streams charged to naphtha reforming unit and a steam cracking unit is presented. The feed stream to the overall unit is fractionated to yield a C5 stream and a second stream containing the rest of the feed, which is passed into the adsorptive separation unit. The C5 stream is utilized as the desorbent in the adsorptive separation. The adsorptive separation separates the C6-plus components of the feed stream into a normal paraffin stream, which is charged to the steam cracking process, and non-normal hydrocarbons which are passed into a reforming zone. The invention improves the yields from both downstream units.
    Type: Grant
    Filed: October 30, 2000
    Date of Patent: June 18, 2002
    Assignee: UOP LLC
    Inventors: Timothy D. Foley, Stephen W. Sohn
  • Patent number: 6398947
    Abstract: The patent application discloses an integrated process for reformate upgrading. Such a process enables production of a high value product slate, by incorporating the step of reforming along with reaction/diffusion with a zeolite.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: June 4, 2002
    Assignee: Exxon Mobil Oil Corporation
    Inventors: Jeffrey S. Beck, Robert A. Crane, Jr., Vinaya A. Kapoor, David L. Stern, John H. Thurtell
  • Publication number: 20020063082
    Abstract: Disclosed is a method for treating naphtha. The method comprises providing naphtha feed, and the naphtha feed comprises naphthene ring-containing compounds. The naphtha feed is contacted with a ring opening catalyst containing a Group VIII metal under conditions effective to ring open the naphthene rings to form a ring opened product. The ring open product can then be contacted with a catalytic cracking catalyst under effective cracking conditions to form an olefin product. The olefin product will be particularly high in ethylene and propylene content.
    Type: Application
    Filed: July 2, 2001
    Publication date: May 30, 2002
    Inventors: Michele S. Touvelle, Darryl P. Klein, Tan-Jen Chen, Luc R. Martens, Edward S. Ellis
  • Patent number: 6383366
    Abstract: Waxy feeds are treated under hydroisomerization conditions to produce good yields of an isomerate product of high VI by using a silica-alumina based catalyst in which the silica-alumina has a pore volume less of 0.99 ml/gm (H2O), an alumina content in the range of 35 to 55 wt % and an isoelectric point in the range of 4.5 to 6.5. A lube fraction of the isomerate is dewaxed to provide a lube basestock of high VI. The silica-alumina may be modified with a rare earth oxide or yttria or boria or magnesia in which instance the modified catalyst has an isoelectric point greater than but no more than 2 points greater than base the silica-alumina.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: May 7, 2002
    Assignee: Exxon Research and Engineering Company
    Inventors: Kenneth Lloyd Riley, William John Murphy, Ian Alfred Cody, Stuart Leon Soled, Gary Brice McVicker, Sabato Miseo
  • Patent number: 6375832
    Abstract: A method of transforming a normally gaseous composition containing at least one hydrogen source, at least one oxygen source and at least one carbon source into a normally liquid fuel, wherein said gaseous composition consists at least in part of carbon dioxide as said carbon source and said oxygen source, and of methane as said hydrogen source and as a second carbon source; the method comprising the steps of feeding the composition into a reactor including a first electrode means, a second electrode means and at least one layer of a normally solid dielectric material positioned between the first and the second electrode means; submitting the composition within the reactor in the presence of a normally solid catalyst to a dielectric barrier discharge, wherein said normally solid catalyst is a member selected from the group of zeolites, aluminophosphates, silicoaluminophosphates, metalloaluminophosphates and metal oxides containing OH groups; and controlling the dielectric barrier discharge to convert the gaseo
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: April 23, 2002
    Assignee: ABB Research Ltd.
    Inventors: Baldur Eliasson, Eric Killer, Chang-Jun Liu
  • Patent number: 6375830
    Abstract: A high VI and low pour point lubricant base stock is made by hydroisomerizing a high purity, waxy, paraffinic Fischer-Tropsch synthesized hydrocarbon fraction having an initial boiling point in the range of 650-750° F., followed by catalytically dewaxing the hydroisomerate using a dewaxing catalyst comprising a catalytic platinum component and an H-mordenite component. The hydrocarbon fraction is preferably synthesized by a slurry Fischer-Tropsch using a catalyst containing a catalytic cobalt component. This combination of the process, high purity, waxy paraffinic feed and the Pt/H-mordenite dewaxing catalyst, produce a relatively high yield of premium lubricant base stock.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: April 23, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Janet R. Clark, Robert J. Wittenbrink, Daniel F. Ryan, Albert E. Schweizer
  • Publication number: 20020043480
    Abstract: A process for producing a gasoline stock with a high octane number comprises at least one hydroisomerisation section and at least one section for separating multibranched paraffins contained in a feed constituted by a C5 to C8 cut. The separation section functions by adsorption and contains at least one zeolitic adsorbent with a mixed structure with principal channels with openings defined by a ring containing 10 oxygen atoms and secondary channels with openings defined by a ring of at least 12 oxygen atoms, the secondary channels only being accessible to the feed to be separated via the principal channels.
    Type: Application
    Filed: August 24, 2001
    Publication date: April 18, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Olivier Ducreux, Elsa Jolimaitre
  • Patent number: 6358400
    Abstract: A reforming process, selective for the dehydrocyclization of paraffins to aromatics, is effected using a large-pore molecular-sieve catalyst containing a uniformly distributed platinum-group metal component, and a tin component incorporated into the large-pore molecular sieve by secondary synthesis. The use of this catalyst results in greater selectivity of conversion of paraffins to aromatics and in improved catalyst stability.
    Type: Grant
    Filed: May 25, 1999
    Date of Patent: March 19, 2002
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, Qianjun Chen, Jaime G. Moscoso, Jeffery C. Bricker
  • Patent number: 6350371
    Abstract: An improved process and process train for catalytic reforming of hydrocarbons. In its most simple form, the invention includes four unit operations or steps: the reforming itself usually carried out in a series of reactors; one or more steps to separate the reformate liquid product from overhead gases, predominantly C1-C6 hydrocarbons and hydrogen; one or more treatment steps to recover hydrogen from the overhead gases, and one or more treatment steps, including a membrane gas separation step, for the waste gas from the hydrogen recovery step. The process provides improved recovery of hydrogen and LPG, and reduces the amount of gas sent to the fuel line.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: February 26, 2002
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Kaaeid A. Lokhandwala, Richard W. Baker
  • Patent number: 6350428
    Abstract: This invention relates to a process for producing zeolite-bound FAU structure type zeolite having excellent mechanical strength and containing reduced amounts of zeolite P and the use of the zeolite-bound FAU structure type zeolites produced by the process. The zeolite-bound FAU structure type zeolite is prepared by converting the silica of a silica-bound FAU structure type aggregate in an aqueous mixture containing an effective amount of crown ether, e.g., 15-crown-5 and 18-crown-6, to suppress the formation of zeolite P and sufficient hydroxy ions to cause the silica to be converted to the zeolite. The zeolite-bound FAU structure type zeolite finds particular application in adsorption processes and hydrocarbon conversion processes such as catalytic cracking, hydrocracking, and reforming.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: February 26, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Johannes Petrus Verduijn, by Jannetje Maatje van den Berge, Machteld Mertens
  • Publication number: 20020016258
    Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, and a coke suppressor selected from the group consisting of silicon oxides, phosphorus oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.
    Type: Application
    Filed: February 23, 1999
    Publication date: February 7, 2002
    Applicant: Phillips Petroleum Company
    Inventors: AN-HSIANG WU, CHARLES A. DRAKE
  • Patent number: 6335474
    Abstract: Process for the catalytic steam reforming of a hydrocarbon feed stock with a content of higher hydrocarbons and oxygen comprising the steps of catalytic pre-reforming the feed stock and steam reforming the pre-reformed feed stock, the pre-reforming step is carried out in presence of a fixed bed catalyst comprising at least a portion of a noble metal catalyst being active in oxidation of hydrocarbons to carbon oxides and conversion of higher hydrocarbons to methane, wherein the noble metal catalyst is supported on a carrier of MgO and/or MgAl2O4 spinel.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: January 1, 2002
    Assignee: Haldor Topsoe A/S
    Inventors: Martin Østberg, Jens-Henrik Bak Hansen, Poul Crik Iløjlund Nielsen, Kim Aasberg-Petersen
  • Patent number: 6329434
    Abstract: The instant invention is directed to a catalytic partial oxidation (CPO) process with improved ignition comprising; (a) igniting an ignition feed comprising hydrogen, diluent and oxygen in a catalytic partial oxidation catalyst bed wherein said ignition feed has a predetermined adiabatic reaction temperature sufficient to cause said catalyst bed to ignite in a manner which prevents said catalyst bed from undergoing thermal shock, (b) modifying said ignition feed following said ignition of said catalyst bed to obtain a reaction feed comprising oxygen and hydrocarbon-reactant in a molar ratio capable of producing partial oxidation products in said catalyst bed under partial oxidation conditions, wherein said modification of said ignition feed is conducted to accomplish a predetermined heatup rate of said catalyst bed, and wherein the amount of diluent present during said modification is sufficient to control the adiabatic reaction temperature.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: December 11, 2001
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Yu-Hsin Wen, Frank Hershkowitz, Robert Patrick Reynolds, Jr.
  • Patent number: 6325919
    Abstract: A catalyst carrier composed of a refractory inorganic oxide has a rotationally symmetrical shape having a hollow portion, such as a doughnut shape. An outer peripheral surface and the inner peripheral surface separating the hollow portion are linked by curved surfaces, and the height h of the carrier along the rotational symmetry axis is less than the outer diameter Do of the carrier. Using a catalyst having this carrier shape for a fixed bed makes it possible to prevent granular substances from causing catalyst plugging, and catalyst life can be extended because the catalyst-induced differential pressure increase is low even when granular substances accumulate on the catalyst. It is also possible to prevent the reaction fluid from undergoing channeling. Also provided is a hydrogenation reactor whose fixed bed is packed with the catalyst.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: December 4, 2001
    Assignee: Japan Energy Corportion
    Inventors: Hiroki Koyama, Kenji Nakamura, Masayuki Kawaguchi, Yasuyuki Mashimo
  • Patent number: 6315892
    Abstract: A process of hydroreforming in the presence of a catalyst containing at least one refractory inorganic carrier, platinum, possibly at least one metal from Group VIII (palladium, nickel, and ruthenium), a halogen or compound thereof, and at least one additional metal M selected from among germanium, tin, lead, gallium, indium, and thallium, process in which said metal M, in the form of at least one organic compound, is introduced in situ into the reactor where the hydrocarbon charge will then be treated or into a prereactor that is connected to said reactor.
    Type: Grant
    Filed: October 16, 2000
    Date of Patent: November 13, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Fabienne Le Peltier, Blaise Didillon, Patrick Sarrazin, Jean-Paul Boitiaux
  • Patent number: 6303022
    Abstract: A process for recovering a hydrogen-rich gas and for increasing the recovery of liquid hydrocarbon products from a hydrocarbon conversion zone effluent by adsorption of the liquifiable products from a chilled gaseous stream with a chilled liquid stream is improved by an arrangement that uses a single refrigeration shell to provide independent temperature control of the chilled gaseous and the chilled liquid stream.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: October 16, 2001
    Assignee: UOP LLC
    Inventor: Frank S. Rosser, Jr.
  • Publication number: 20010027937
    Abstract: A process, preferably in a counter-current configuration, for selectively cracking carbon-carbon bonds of naphthenic species using a low acidic catalyst, preferably having a crystalline molecular sieve component and carrying a Group VIII noble metal. The diesel fuel products are higher in cetane number and diesel yield.
    Type: Application
    Filed: May 16, 2001
    Publication date: October 11, 2001
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Patent number: 6300537
    Abstract: Disclosed are silicoaluminates (SAPOs) having unique silicon distributions, a method for their preparation and their use as naphtha cracking catalysts. More particularly, the new SAPOs have a high silica:alumina ratio and favorable Si atom distribution.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: October 9, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Karl G. Strohmaier, David E. W. Vaughan, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis
  • Patent number: 6288298
    Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the catalytic cracking of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from microemulsions containing surfactants.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: September 11, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Javier Agundez Rodriguez, Joaquin Perez Pariente, Antonio Chica Lara, Avelino Corma Canos, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis
  • Patent number: 6255548
    Abstract: A process for selective hydrogenation of unsaturated compounds such as acetylenic compounds or diolefins is carried out in the presence of a catalyst comprising at least one support, at least one metal from group VIII of the periodic table and at least one additional element M selected from the group formed by germanium, tin, lead, rhenium, gallium, indium, gold, silver and thallium. The process is characterized in that the catalyst is prepared using a process in which said metal M is introduced in an aqueous solvent, in the form of at least one organometallic compound comprising at least one carbon-M bond.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: July 3, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Blaise Didillon, Fabienne Le Peltier
  • Patent number: 6245219
    Abstract: A process for reforming naphtha-containing hydrocarbon feedstreams is disclosed wherein a naphtha stream containing at least about 25 wt % of C5 to C9 aliphatic and cycloaliphatic hydrocarbons is contacted with a modified reforming catalyst, e.g. ZSM-5, containing a dehydrogenation metal, e.g. zinc, which has been modified by contact with Group IIA alkaline earth metal, e.g. barium, or with an organosilicon compound in an amount sufficient to neutralize at least a portion of the surface acidic sites present on the catalyst. The resulting reformate contains a reduced content of C1 to C4 gas and a C8 aromatic fraction having an enhanced content of para-xyelene.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: June 12, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Jar-Lin Kao