Catalytic Patents (Class 208/134)
  • Patent number: 5879537
    Abstract: A multistage catalytic hydrocarbon conversion system is disclosed in which hydrocarbons flow serially through at least two reaction zones and through which catalyst particles move. Where three reaction zones are used, the effluent stream from the first reaction zone is split between the second and third reaction zones. One portion of the effluent stream is combined with hydrocarbons that bypassed the first reaction zone, and the combined stream is passed to the second reaction zone. The other portion of the first reaction zone effluent stream and at least a portion of the effluent stream of the second reaction zone are passed to the third reaction zone. This invention is applicable to processes where the first and second reaction zones are susceptible to pinning in that this invention decreases the mass flow through the first and second reaction zones while nevertheless maintaining high hydrocarbon conversion.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: March 9, 1999
    Assignee: UOP LLC
    Inventor: Kenneth D. Peters
  • Patent number: 5877379
    Abstract: A composition and an olefin conversion process are disclosed. The composition comprises a zeolite having incorporated therein a coke-suppressing amount of a coke suppressor selected from the group consisting of silicon oxides, phosphorus oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The olefin conversion process comprises contacting a first olefin with a catalyst composition under a condition effective to convert said first olefin to a second olefin wherein the catalyst composition is the same as the composition disclosed above. Also disclosed is a process for producing the composition.
    Type: Grant
    Filed: August 19, 1996
    Date of Patent: March 2, 1999
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 5873994
    Abstract: An aromatization process for converting a portion of a cracked gasoline feedstock to aromatics utilizing a catalyst comprising an acid leached zeolite and tin under process conditions suitable for converting a portion of the cracked gasoline feedstock to aromatics.
    Type: Grant
    Filed: July 15, 1997
    Date of Patent: February 23, 1999
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, An-hsiang Wu
  • Patent number: 5865986
    Abstract: This is a process for upgrading a petroleum naphtha fraction. The naphtha is subjected to reforming and the reformate is cascaded to a benzene and toluene synthesis zone over a benzene and toluene synthesis catalyst comprising a molecular sieve of low acid activity. The preferred molecular sieve is steamed ZSM-5. The benzene and toluene synthesis zone is operated under conditions compatible with the conditions of the reformer such as pressures of above about 50 psig (446 kPa) and temperatures above about 800.degree. F. (427.degree. C). In one aspect of the invention, the benzene and toluene synthesis catalyst includes a metal hydrogenation component such as cobalt, nickel, platinum or palladium. In one mode of operation, the benzene and toluene synthesis catalyst replaces at least a portion of the catalyst of the reformer. The process produces a product containing an increased proportion of benzene and toluene, and a reduced proportion of C8 aromatics, particularly ethylbenzenes, as compared to the reformate.
    Type: Grant
    Filed: November 3, 1995
    Date of Patent: February 2, 1999
    Assignee: Mobil Oil Corporation
    Inventors: John Scott Buchanan, Jane C. Cheng, David G. Freyman, Werner Otto Haag, Mohsen N. Harandi, Dominick N. Mazzone, Roger A. Morrison, Norman J. Rouleau, Charles M. Sorensen, Hye Kyung C. Timken, Robert Adams Ware
  • Patent number: 5865987
    Abstract: Low sulfur gasoline is produced from an olefinic, cracked, sulfur-containing naphtha by treatment over an acidic catalyst, preferably an intermediate pore size zeolite such as ZSM-5 to crack low octane paraffins and olefins under mild conditions with limited aromatization of olefins and naphthenes. A benzene-rich co-feed is co-processed with the naphtha to reduce the benzene levels in the co-feed by alkylation. This initial processing step is followed by hydrodesulfurization over a hydrotreating catalyst such as CoMo on alumina. In addition to reducing benzene levels in the combined feeds, the initial treatment over the acidic catalyst removes the olefins which would otherwise be saturated in the hydrodesulfurization, consuming hydrogen and lowering product octane, and converts them to compounds which make a positive contribution to octane. Overall liquid yield is high, typically at least 90 percent or higher.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: February 2, 1999
    Inventors: William S. Borghard, Nick A. Collins, Paul P. Durand, Timothy L. Hilbert, Jeffrey C. Trewella
  • Patent number: 5865988
    Abstract: Low sulfur gasoline is produced from an olefinic, cracked, sulfur-containing naphtha by treatment over an acidic catalyst, preferably an intermediate pore size zeolite such as ZSM-5 to crack low octane paraffins and olefins under relatively mild conditions, with limited aromatization of olefins and naphthenes. This is followed by hydrodesulfurization over a hydrotreating catalyst such as CoMo on alumina. The initial treatment over the acidic catalyst removes the olefins which would otherwise be saturated in the hydrodesulfurization, consuming hydrogen and lowering product octane, and converts them to compounds which make a positive contribution to octane. Overall liquid yield is high, typically at least 90 percent of higher. Product aromatics are typically increased by no more than 25 weight percent relative to the feed and may be lower than the feed.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: February 2, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Nick A. Collins, Paul P. Durand, Timothy L. Hilbert, Gerald J. Teitman, Jeffrey C. Trewella
  • Patent number: 5853566
    Abstract: The present invention provides a catalyst composition, and a hydrocarbon conversion process in which it is used, comprising as first cracking component a zeolite beta having a silica to alumina molar ratio of at least 20 which is in the form of crystals less than 100 nm in size; a second cracking component selected from (i) crystalline molecular sieves having pores with diameters greater than 0.6 nm, (ii) crystalline, mesoporous aluminosilicates having pores with diameters of at least 1.3 nm, and (iii) clays; and at least one hydrogenation component.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: December 29, 1998
    Assignee: Shell Oil Company
    Inventors: Bettina Kraushaar-Czarnetzki, Johannes Wijnbelt
  • Patent number: 5851379
    Abstract: A catalytic reforming process is disclosed using a catalyst containing a Group VIII metal, low amounts of bismuth, and a zeolite L. The catalyst is a non-acidic, monofunctional reforming catalyst. Preferably, the catalyst contains one or more halogens. Preferably, the feed includes C.sub.8 hydrocarbons. The addition of small amounts of bismuth increase or substantially maintain catalyst stability. Unexpectedly low dealkylation rates are achieved using the catalyst while reforming to produce aromatics, especially to produce xylenes such as paraxylene.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: December 22, 1998
    Assignees: Chevron Chemical Company, Idemitsu Kosan Co., Ltd.
    Inventors: Robert A. Innes, Michio Sugimoto, Tetsuya Fukunaga
  • Patent number: 5849969
    Abstract: Carburization and metal-dusting while hydrodealkylating a hydrodealkylatable hydrocarbon are reduced even in the substantial absence of sulfur.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 15, 1998
    Assignee: Chevron Chemical Company
    Inventors: John V. Heyse, Bernard F. Mulaskey, Robert A. Innes, Daniel P. Hagewiesche, William J. Cannella, David C. Kramer
  • Patent number: 5846400
    Abstract: The present invention relates to new crystalline zeolite SSZ-42 prepared by processes for preparing crystalline molecular sieves, particularly large pore zeolites, using an organic templating agent selected from the group consisting of N-benzyl-1,4-diazabicyclo?2.2.2!octane cations and N-benzyl-1-azabicyclo?2.2.2!octane cations.
    Type: Grant
    Filed: April 8, 1997
    Date of Patent: December 8, 1998
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Andrew Rainis
  • Patent number: 5837128
    Abstract: A method is disclosed for optimizing the pressure drop in the catalytic conversion of a feed in a bed of catalyst particles in a vertically arranged reactor by grading the catalyst particles within the bed by pressure drop.
    Type: Grant
    Filed: May 24, 1996
    Date of Patent: November 17, 1998
    Assignee: Amoco Corporation
    Inventors: George A. Huff, Jr., Frederick T. Clark, James L. Taylor
  • Patent number: 5830345
    Abstract: A process for producing a debenzeneated gasoline blending stock from a benzene-containing refinery stream by using a dual function catalyst. The benzene-containing refinery stream contains at least 2 wt % of benzene is hydrogenated to cyclohexane and then isomerized to methylcyclopentane accompanied with C.sub.5 -C.sub.7 normal paraffins isomerized to isoparaffins, preferably in a single reactor or catalytic distillation reactor using dual function catalyst.
    Type: Grant
    Filed: February 28, 1996
    Date of Patent: November 3, 1998
    Assignee: Chinese Petroleum Corporation
    Inventors: Chung-Hur Lee, Chi-Hsing Tsai, Jingly Fung
  • Patent number: 5827422
    Abstract: A catalyst composition and a process for converting a hydrocarbon stream such as, for example, gasoline to olefins and C.sub.6 to C.sub.8 aromatic hydrocarbons such as toluene and xylenes are disclosed. The catalyst composition comprises an alumina and a silica wherein the weight ratio of aluminum to silicon is in the range of from about 0.002:1 to about 0.25:1. The process comprises contacting a hydrocarbon stream with the catalyst composition under a condition sufficient to effect the conversion of a hydrocarbon to an olefin and a C.sub.6 to C.sub.8 aromatic hydrocarbon.
    Type: Grant
    Filed: June 26, 1996
    Date of Patent: October 27, 1998
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, An-hsiang Wu
  • Patent number: 5824209
    Abstract: A process for the improvement of hydrocarbon fuels using a low temperature and pressure catalytic system is described. The reforming of these products occurs when the hydrocarbon fuel is passed over an alloy metal catalyst at low temperature (i.e., about -50.degree. F. to 250.degree. F.) and pressure (i.e., about 10 to 100 psia). The alloy metal catalyst is housed in a non-electrical conducting chamber and is operated with fluid Reynolds Numbers over the catalyst surface of about 2.times.10.sup.3 to 20.times.10.sup.4. The hydrocarbon fuel is recirculated over the alloy metal catalyst between 1 and approximately 100 times. This process results in reformed hydrocarbon fuels having superior performance qualities than the base hydrocarbon fuel. Vehicle road tests using such reformed fuels have shown substantial mileage improvements over the base fuels.
    Type: Grant
    Filed: February 28, 1995
    Date of Patent: October 20, 1998
    Assignee: Pac Rim Products, Inc.
    Inventors: Anthony J. Arand, John K. Arand, Jr.
  • Patent number: 5789640
    Abstract: Disclosed is a process for continuous alkylation of aromatics or their derivatives in the presence of a solid acid catalyst in a liquid-solid circulating fluidized bed system, said system comprising a liquid-solid cocurrent upflow reactor, a sedimentation washing tower for the used catalyst, a liquid-solid cocurrent upflow regenerator, a sedimentation washing tower for the regenerated catalyst, and two vortical liquid-solid separators. By regeneration of the used catalyst, continuous alkylation process is achieved in this system.
    Type: Grant
    Filed: April 29, 1996
    Date of Patent: August 4, 1998
    Assignees: China Petro-Chemical Corporation, Tsinghua University, Research Institute of Petroleum Processing Sinopec
    Inventors: Yong Jin, Wugeng Liang, Zhanwen Wang, Zhiging Yu, Enze Min, Mingyuan He, Zhijian Da
  • Patent number: 5770045
    Abstract: A catalytic reforming process uses a riser reactor with multiple catalyst injection points to obtain high aromatics yields from a naphtha feedstock. Product from the riser reactor typically is discharged into a fluidized-reforming reactor, in which the reforming reaction is completed and catalyst is separated from hydrogen and hydrocarbons. Hydrocarbons from the reactor are separated to recover an aromatized product. Catalyst is regenerated to remove coke and reduced for reuse in the reforming process.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: June 23, 1998
    Assignee: UOP
    Inventors: Christopher David Gosling, Scott Yu-Feng Zhang, Paula L. Bogdan
  • Patent number: 5767335
    Abstract: Disclosed is an alkylation process which utilizes a mixture of sulfone and hydrogen fluoride as an alkylation catalyst. The process provides for the removal of light ASO from the alkylation catalyst that accumulates therein as a result of the inability to remove the light ASO produced as a by-product of the alkylation reaction.
    Type: Grant
    Filed: December 18, 1995
    Date of Patent: June 16, 1998
    Assignee: Phillips Petroleum Company
    Inventors: Richard L. Anderson, Keith W. Hovis
  • Patent number: 5728913
    Abstract: A method of treating hydrocarbon fuels with a base metal catalyst is provided for improving the performance of hydrocarbon fuels used internal and external combustion engines The catalyst is a base metal alloy catalyst including tin antimony, lead and mercury. The catalyst operates at ambient temperatures and atmospheric pressure and in the presence of a small but effective quantity of water. The method of treating the fuel with the catalyst may be employed at any point after refining of the fuel and prior to combustion thereof.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: March 17, 1998
    Inventor: Anthony W. Finkl
  • Patent number: 5690810
    Abstract: Disclosed is a one-step process intended as an alternative to catalytic reforming which upgrades naphthas by simultaneously saturating aromatics, isomerizing paraffins and selectively cracking heavier hydrocarbons which comprises contacting heavy naphtha feedstock in a reforming zone with a catalyst comprising a solid acid, optionally with a binder of Group III and/or IV of the Periodic Table, having a metal from Group VIII of the Periodic Table deposited thereon, wherein the reaction conditions are much milder than those typically used in catalytic reforming.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: November 25, 1997
    Assignee: Texaco Inc.
    Inventors: Richard Vance Lawrence, Pei-Shing Eugene Dai
  • Patent number: 5688975
    Abstract: Molecular sieve compositions have been synthesized which are resistant to the loss of framework atoms. Specifically, the molecular sieves of the invention have the empirical formulamA: (M.sub.w Al.sub.x Si.sub.y)O.sub.2where A is at least one rare earth metal, M is chromium or titanium and "m", "w", "x" and "y" are the mole fractions of A, M, Al and Si respectively. Applicants have discovered that the rare earth metals prevent loss of chromium and titanium from the framework and degradation of the molecular sieve. Along with the composition, a process for preparing the composition and processes using the composition are disclosed and claimed.
    Type: Grant
    Filed: April 10, 1996
    Date of Patent: November 18, 1997
    Assignee: UOP
    Inventors: Vinayan Nair, Deng-Yang Jan, Robert Lyle Patton, Ben A. Wilson, Donald F. Best
  • Patent number: 5689024
    Abstract: This invention relates to use of a new and improved form of crystalline material identified as having the structure of SUZ-9 as a sorbent or a catalyst for organic compound, e.g., hydrocarbon compound, conversion.
    Type: Grant
    Filed: December 1, 1994
    Date of Patent: November 18, 1997
    Assignee: Mobil Oil Corporation
    Inventor: Kirk D. Schmitt
  • Patent number: 5672264
    Abstract: A class of highly stable supergallery pillared clay compositions that have a basal spacing up to 55 .ANG. corresponding a gallery height of 35 .ANG. for samples dried at room temperature and a basal spacing up to 45 .ANG. corresponding a gallery height of 255 .ANG. for samples steamed at 800.degree. C. for 17 hours. Said compositions are prepared by special procedures including pillaring reaction in presence of poly (vinyl alcohol) as a pillaring precursor, an aging process at pH of around 4 to 9, and a calcinating or steaming treatment at high temperature. The new compositions exhibit catalytic properties and adsorption properties superior to prior art pillared clays. Said compositions are useful as catalysts for carbonium-ion reaction, and as adsorbents and catalyst carriers. They are especially suitable for preparing microspheric cracking catalysts for heavy oil or residual feedstock.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: September 30, 1997
    Assignee: Board of Trustees operating Michigan State University
    Inventors: Thomas J. Pinnavaia, Jingjie Guan
  • Patent number: 5656149
    Abstract: The present invention relates to new crystalline zeolite SSZ-41 which comprises oxides of (1) silicon or a mixture of silicon and germanium, and (2) zinc, said zinc being present in an amount from about 2 wt % to about 5 wt % of zinc metal based on the total weight of metals in said zeolite. Zeolite SSZ-41 may also optionally contain oxides of aluminum, iron, gallium or mixtures thereof. Zeolite SSZ-41 has the X-ray diffraction lines of Table I and has an argon adsorption capacity of at least about 0.06 cc/gm at 87.degree. K. Also disclosed are methods of making and using zeolite SSZ-41.
    Type: Grant
    Filed: May 21, 1996
    Date of Patent: August 12, 1997
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Donald S. Santilli
  • Patent number: 5648305
    Abstract: This invention relates to a process for improving the effectiveness of a refinery process catalyst. The process comprises treating the refinery process catalyst with an effective amount of reducing agent selected from the group consisting of hydrazine, oximes, hydroxylamines, carbohydrazide, erythorbic acid, and mixtures thereof.
    Type: Grant
    Filed: May 24, 1996
    Date of Patent: July 15, 1997
    Inventors: William D. Mansfield, Todd L. Foret, Hubert P. Vidrine
  • Patent number: 5645713
    Abstract: Acidic halides, especially chlorides, are removed from liquid hydrocarbons such as catalytic reformate by contact with solid caustic such as a bed of NaOH pellets covered with a thin film of brine. Hydration of reformate improves removal when large amounts of chlorides are present in reformate. Halides in liquid hydrocarbon are recovered as a brine phase, which can be only slightly alkaline. Hydration of reformate can be controlled based on pH of brine removed from the bed.
    Type: Grant
    Filed: December 30, 1994
    Date of Patent: July 8, 1997
    Assignee: Mobil Oil Corporation
    Inventor: Tsoung Y. Yan
  • Patent number: 5625118
    Abstract: A method of treating hydrocarbon fuels with a base metal catalyst is provided for improving the performance of hydrocarbon fuels used in internal and external combustion engines. The catalyst is a base metal alloy catalyst including tin, antimony, lead and mercury. The catalyst operates at ambient temperatures and atmospheric pressure. The method of treating the fuel with the catalyst may be employed at any point after refining of the fuel and prior to combustion thereof.
    Type: Grant
    Filed: July 6, 1995
    Date of Patent: April 29, 1997
    Inventor: Anthony W. Finkl
  • Patent number: 5614082
    Abstract: A catalyst system comprises a physical mixture of a conversion catalyst and a sulfur sorbent to accommodate small quantities of sulfur from a hydrocarbon feedstock. Preferably, the physical mixture comprises a sulfur-sensitive reforming catalyst protected from sulfur deactivation by a manganese-oxide catalyst. The invention shows substantial benefits over prior-art processes in catalyst utilization.
    Type: Grant
    Filed: June 13, 1995
    Date of Patent: March 25, 1997
    Assignee: UOP
    Inventors: Michael B. Russ, Paul A. Sechrist
  • Patent number: 5601698
    Abstract: Provided is a process for catalytic reforming a hydrocarbon feedstock containing at least 20 ppbw sulfur. The process comprises passing the hydrocarbon feedstock through at least two serialy connected reforming zones, with each zone containing a highly sulfur sensitive reforming catalyst. The catalyst in the first reforming zone is more frequently regenerated than the catalyst in the second reforming zone. The result is a highly efficient and simplified process for reforming a sulfur contaminated hydrocarbon feedstock. The process basically employs a minor portion of the highly sulfur sensitive reforming catalyst as both the reforming catalyst and a sulfur removal agent.
    Type: Grant
    Filed: November 14, 1995
    Date of Patent: February 11, 1997
    Assignee: Chevron Chemical Company
    Inventor: Robert A. Innes
  • Patent number: 5599441
    Abstract: Sulfur species present in cracked naphthas are converted and removed by first passing the naphtha over an acid catalyst to alkylate the thiophenic compounds in the naphtha using the olefins, i.e., monoolefins and diolefins, present in the naphtha as alkylating agent. Alkylated thiophenes are concentrated in the heavy portion of the naphtha by distillation, reducing the amount of naphtha that needs to be hydrodesulfurized. Olefins in cracked naphthas are concentrated in the light portion of the naphtha which is not subsequently hydrotreated. Thus, octane and hydrogen consumption penalties associated with hydrotreating are minimized.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: February 4, 1997
    Assignee: Mobil Oil Corporation
    Inventors: Nick A. Collins, Jeffrey C. Trewella
  • Patent number: 5600053
    Abstract: A reactor arrangement and process for indirectly contacting a reactant stream with a heat exchange stream uses an arrangement of corrugated heat exchange plates to control temperature conditions by varying the number and/or the arrangement of the corrugations along the plates. The reactor arrangement and process of this invention may be used to operate a reactor under isothermal or other controlled temperature conditions. The variation in corrugation arrangements within a single heat exchange section is highly useful in maintaining a desired temperature profile in an arrangement having a cross-flow of heat exchange medium relative to reactants. The corrugations arrangement eliminates or minimizes the typical step-wise approach to isothermal conditions.
    Type: Grant
    Filed: June 8, 1995
    Date of Patent: February 4, 1997
    Assignee: UOP
    Inventors: Christine J. B. Girod, William W. Levy, Peter R. Pujado, Jacques J. L. Romatier, Dominique J. J. M. Sabin, Paul A. Sechrist
  • Patent number: 5593571
    Abstract: A method for reforming hydrocarbons comprising coating portions of a reactor system with a material more resistant to carburization, reacting the material with metal oxides existing in the portions of the reactor system prior to coating, fixating or removing at least a portion of the oxide in the metal oxides, and reforming hydrocarbons in the reactor system under conditions of low sulfur.
    Type: Grant
    Filed: December 19, 1994
    Date of Patent: January 14, 1997
    Assignee: Chevron Chemical Company
    Inventors: John V. Heyse, Bernard F. Mulaskey
  • Patent number: 5565090
    Abstract: A catalytic reforming process uses a riser reactor with multiple catalyst injection points to obtain high aromatics yields from a naphtha feedstock. Product from the riser reactor typically is discharged into a fluidized-reforming reactor, in which the reforming reaction is completed and catalyst is separated from hydrogen and hydrocarbons. Hydrocarbons from the reactor are separated to recover an aromatized product. Catalyst is regenerated to remove coke and reduced for reuse in the reforming process.
    Type: Grant
    Filed: November 25, 1994
    Date of Patent: October 15, 1996
    Assignee: UOP
    Inventors: Christopher D. Gosling, Scott Y. Zhang, Paula L. Bogdan
  • Patent number: 5565086
    Abstract: The present invention is directed to an improved isomerization process employing a catalyst wherein the catalyst comprises a pair of catalyst particles of different acidity utilized either as distinct beds of such discrete particles or as a mixture of such discrete particles. The isomerization process utilizing such a catalyst produces a product which exhibits higher VI as compared to products produced using either catalyst component separately or using a single catalyst having the average acidity of the two discrete catalysts.
    Type: Grant
    Filed: November 1, 1994
    Date of Patent: October 15, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, Alberto Ravella
  • Patent number: 5552033
    Abstract: An integrated process for increasing C.sub.6 to C.sub.8 aromatics content in reformate prepared from C.sub.9.sup.+ aromatics-containing feed comprises:1) pretreating a raw naphtha feedstream containing C.sub.9.sup.+ aromatics and sulfur by contacting with a) a hydrodesulfurization catalyst under hydrodesulfurization conditions to produce a hydrodesulfurized feedstream and thereafter b) cascading said hydrodesulfurized feedstream over a noble metal- and/or Group VIA metal-containing porous crystalline inorganic oxide catalyst comprising pores having openings of 12-member rings under conditions sufficient to effect conversion of C.sub.9.sup.+ aromatics, thereby providing a pretreated effluent stream of enhanced C.sub.8.sup.- aromatics content relative to that obtained in the absence of said cascading; and2) reforming at least a portion of said pretreated effluent stream to provide a reformate stream.
    Type: Grant
    Filed: December 1, 1994
    Date of Patent: September 3, 1996
    Assignee: Mobil Oil Corporation
    Inventor: Stuart S. Shih
  • Patent number: 5540833
    Abstract: New compositions of matter comprise a metal from the group consisting of platinum, rhodium and palladium, a metal from the first row of Group VIII of the Periodic Table and a nonacidic L-zeolite. A preferred composition is Pt--Ni/KL-zeolite. Such catalysts are prepared by coimpregnation of the zeolite with the metals. Methods of using the catalysts in reforming, aromatization or dehydrogenation are provided.
    Type: Grant
    Filed: January 31, 1994
    Date of Patent: July 30, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Gustavo Larsen, Gary L. Haller, Daniel E. Resasco, Vincent A. Durante
  • Patent number: 5516964
    Abstract: An isomerization process is provided which process utilizes a sulfated solid catalyst comprising (1) oxide or hydroxide of Group III or Group IV element, e.g. zirconium, and (2) a first metal comprising a metal or combination of metals selected from the group consisting of platinum, palladium, nickel, platinum and rhenium, and platinum and tin. The sulfated support is calcined prior to incorporation of the first metal and subsequent to said incorporation. The catalyst may further comprise (3) a second metal selected from the group consisting of Group VIII elements, e.g. iron. One embodiment of the invention further comprises (4) a third metal selected from the group consisting of Group V, VI and VII elements, e.g. manganese. Said second and third metals are added prior to the first calcination.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: May 14, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Benjamin S. Umansky, Manoj V. Bhinde, Chao-Yang Hsu
  • Patent number: 5512166
    Abstract: A process for the simultaneous replacement of a first catalyst by a second catalyst which first catalyst is circulating as a moving bed of solid particles in a hydrocarbon treating unit, which unit comprises at least one processing reactor. The first catalyst is withdrawn downstream of the reactor, or of each reactor, in the direction of catalyst circulation. The second catalyst is simultaneously injected upstream of the reactor or of each reactor. The bulk density of the material withdrawn downstream of the reactor, or of each reactor, is measured continuously. The withdrawal of the first catalyst and the injection of the second catalyst into the reactor concerned are interrupted when the bulk density so measured is equal to that of the second catalyst.
    Type: Grant
    Filed: July 10, 1992
    Date of Patent: April 30, 1996
    Assignee: Total Raffinage Distribution, S.A.
    Inventors: Patrice Herrenschmidt, Fran.cedilla.ois-Xavier Cormerais, Thierry Patureaux
  • Patent number: 5510557
    Abstract: Catalytic dehydrogenation wherein feed is passed in one direction through the bed in a first cycle and heating gas is passed in an opposite direction in a second cycle to provide the endothermic heat of reaction and regenerate catalyst. The operation is controlled to balance properly heat absorbed during dehydrogenation and heat input during regeneration; e.g., by having catalyst of different activities over the length of the bed.
    Type: Grant
    Filed: February 28, 1994
    Date of Patent: April 23, 1996
    Assignee: ABB Lummus Crest Inc.
    Inventors: Robert J. Gartside, Cemal Ercan, Kandasamy M. Sundaram
  • Patent number: 5507939
    Abstract: A hydrocarbon feedstock is catalytically reformed to effect dehydrocyclization of paraffins in a process combination comprising a first reforming zone, a sulfur-removal zone containing a mixed reforming catalyst and sulfur sorbent comprising a manganese component to preclude sulfur from the feed to a second reforming zone. The process combination shows substantial benefits over prior art processes in achieving reforming-catalyst stability.
    Type: Grant
    Filed: September 8, 1994
    Date of Patent: April 16, 1996
    Assignee: UOP
    Inventors: Michael B. Russ, Frank R. Whitsura, Roger L. Peer, Joseph Zmich, Chi-Chu D. Low
  • Patent number: 5500110
    Abstract: A controlled method of changing the transport rate of particles between two zones is disclosed. Changes are made in a computed value of the pressure difference of the conduit between the two zones through which the particles are transported. The changes are of a predetermined magnitude and are performed at predetermined time intervals, until the desired final value of the pressure difference is reached. The method minimizes fluctuations in the pressures of the two zones without over-sized vessels or additional equipment that would otherwise be needed to accommodate pressure changes. This results in a savings in construction costs. This invention is adaptable to a multitude of processes for the catalytic conversion of hydrocarbons in which deactivated catalyst particles are regenerated.
    Type: Grant
    Filed: May 6, 1994
    Date of Patent: March 19, 1996
    Assignee: UOP
    Inventors: Paul A. Sechrist, Roger R. Lawrence, Frank T. Micklich, Larry D. Richardson, David M. Kazell
  • Patent number: 5484577
    Abstract: A catalytic hydrocarbon reformer operates at lower temperature and pressure relative to conventional reformers. Convective heat transfer between the hot combustion gas stream and the reactor tube is enhanced through use of a narrow gap heat transfer area, which induces turbulent flow of the combustion gas stream across the reactor tube. The reactor tube includes a catalyst fines collection tube to accumulate and retain catalyst particles or fines entrained in the reformate gas stream.
    Type: Grant
    Filed: May 27, 1994
    Date of Patent: January 16, 1996
    Assignee: Ballard Power System Inc.
    Inventors: Richard F. Buswell, Ronald Cohen, Joseph V. Clausi, Stanley L. Leavitt, David S. Watkins
  • Patent number: 5468370
    Abstract: A catalyst for chemical and petrochemical reactions and a process for its production. The catalyst comprises an oxide of one of the transition metals, rare earth elements, or actinide elements, e.g., molybdenum, having on its surface carbides and oxycarbides, the core being the metal or the metal oxide. In the process for catalyst production, the reaction gas mixture containing carbon products is passed onto the oxide, leading to a progressive carburization of the surface of the oxide and to a progressive increase in the efficiency of the catalyst.
    Type: Grant
    Filed: December 7, 1993
    Date of Patent: November 21, 1995
    Assignee: Pechiney Recherche
    Inventors: Marc-Jacques Ledoux, Jean-Louis Guille, Cuong Pham Huu, Hugh Dunlop, Marie Prin
  • Patent number: 5451391
    Abstract: Process for the preparation of a crystalline aluminosilicate enriched in silica, having the structure of mazzite, by hydrothermal crystallization of a gel containing sources of silicon, aluminum and alkali metal ions, in the presence of an organic structuring agent, characterized in that the source of aluminum is a zeolite Y in the form of spheres. The mazzite obtained does not contain any silicoalumina debris out of the lattice. It is employed as catalyst for the conversion of hydrocarbons or as molecular sieve.
    Type: Grant
    Filed: December 6, 1993
    Date of Patent: September 19, 1995
    Assignee: Societe Nationale Elf Aquitaine
    Inventors: Francesco Di Renzo, Francois Fajula, Nisso Barbouth, Fredj Fitoussi, Philippe Schulz, Thierry des Courrieres
  • Patent number: 5449450
    Abstract: Hydrocarbon conversion processes are described which use novel microporous compositions. These compositions have a three-dimensional microporous framework structure of ZnO.sub.2, PO.sub.2 and M'O.sub.2 tetrahedral units, and an intracrystalline pore system. The M' metal is selected from the group consisting of magnesium, copper, gallium, aluminum, germanium, cobalt, chromium, iron, manganese, titanium and mixtures thereof. Examples of the hydrocarbon conversion processes include hydrocracking, hydrotreating and hydrogenation.
    Type: Grant
    Filed: December 15, 1993
    Date of Patent: September 12, 1995
    Assignee: UOP
    Inventor: Robert L. Bedard
  • Patent number: 5433841
    Abstract: Hydrocarbons are allowed to come into contact with reforming catalysts in which surfaces of inorganic substrates and/or metallic substrates are treated with silver-containing coating agents, whereby formation of polymers of hydrocarbons such as edible oils and engine oil can be inhibited under conditions under which thermal polymerization rapidly proceeds, resulting in prevention of an increase in kinematic viscosity of the hydrocarbons to substantially prevent fats and oils and petroleum products from deteriorating, and further coagulated molecules of gasoline, kerosine, oil fuel, jet fuel and crude oil can be subdivided, resulting in improved atomization and combustion efficiency.
    Type: Grant
    Filed: April 5, 1994
    Date of Patent: July 18, 1995
    Assignee: Kabushiki Kaisha Nippankenkyusho
    Inventor: Yoshio Ichikawa
  • Patent number: 5421992
    Abstract: A crystalline zeolite SSZ-25 is prepared using an adamantane quaternary ammonium ion as a template.
    Type: Grant
    Filed: June 11, 1992
    Date of Patent: June 6, 1995
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Dennis L. Holtermann, Robert A. Innes, Theresa A. Pecoraro, Donald S. Santilli, James N. Ziemer
  • Patent number: 5413700
    Abstract: A method for reforming hydrocarbons comprising coating portions of a reactor system with a material more resistant to carburization, reacting the material with metal oxides existing in the portions of the reactor system prior to coating, fixating or removing at least a portion of the oxide in the metal oxides, and reforming hydrocarbons in the reactor system under conditions of low sulfur.
    Type: Grant
    Filed: January 4, 1993
    Date of Patent: May 9, 1995
    Assignee: Chevron Research and Technology Company
    Inventors: John V. Heyse, Bernard F. Mulasky
  • Patent number: 5409597
    Abstract: Hydrocarbon conversion processes are disclosed which are catalyzed by novel pillared clay compositions. The clay contains pillars which are at least partially fluorided. These pillars are metal fluoro hydroxy cations where the metal can be Al, Zr, Si/Al, Ti or Cr. The clays which can be pillared with these pillars are the smectite clays which include hectorite and beidellite along with synthetically prepared smectite clays. These clays are prepared by pillaring the clay, followed by calcination and then treatment with a fluoride salt such as ammonium bifluoride.
    Type: Grant
    Filed: August 17, 1994
    Date of Patent: April 25, 1995
    Assignee: UOP
    Inventor: Jennifer S. Holmgren
  • Patent number: 5405525
    Abstract: A method for reforming hydrocarbons comprising coating portions of a reactor system with a material more resistant to carburization, reacting the material with metal sulfides existing in the portions of the reactor system prior to coating, fixating and removing at least a portion of the sulfur in the metal sulfides, and reforming hydrocarbons in the reactor system under conditions of low sulfur.
    Type: Grant
    Filed: January 4, 1993
    Date of Patent: April 11, 1995
    Assignee: Chevron Research and Technology Company
    Inventors: John V. Heyse, Bernard F. Mulaskey
  • Patent number: 5393407
    Abstract: A crystalline low-aluminum boron beta zeolite is prepared using a diquaternary ion as a template.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: February 28, 1995
    Assignee: Chevron Research Company
    Inventors: Stacey I. Zones, Dennis L. Holtermann, Lawrence W. Jossens, Donald S. Santilli, Andrew Rainis