Products And Compositions Patents (Class 208/14)
  • Patent number: 6610634
    Abstract: A two-cycle oil is disclosed consisting of a polybutene polymer, solvent and mineral oil which passes the JASO engine test for gasoline fueled two-cycle engines.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: August 26, 2003
    Assignee: Exxon Chemical Patents Inc.
    Inventors: George Mortimer Tiffany, III, George Conrad L'Heureux, John Henry Smythe
  • Publication number: 20030146133
    Abstract: The process for desulfurizing a gas oil fraction according to the invention comprises a low-boiling gas oil fraction hydrodesulfurization step (I) wherein a low-boiling gas oil fraction is desulsurized under the condition of a H2/Oil ratio of 70 to 200 Nm3/kl to obtain a treated oil, a high-boiling gas oil fraction hydrodesulfurization step (II) wherein a high-boiling gas oil fraction is desulsurized under the condition of a H2Oil ratio of 200 to 800 Nm3/kl to obtain a treated oil, and a step (III) wherein the treated oil obtained in the step (I) is mixed with the treated oil obtained in the step (II), and in this process, at least a part of a gas containing unreacted hydrogen in the step (II) is used for the hydrodesulfurization of the step (I). According to the invention, there can be provided a process and an apparatus for desulfurizing a gas oil fraction, which are capable of using hydrogen and energy efficiently and capable of producing a highly desulfurized gas oil in a small catalytic amount.
    Type: Application
    Filed: October 31, 2002
    Publication date: August 7, 2003
    Inventors: Shigeki Nagamatsu, Jun Abe, Akira Sugimoto, Makoto Inomata, Tetsuya Watanabe
  • Publication number: 20030141219
    Abstract: A fuel for a fuel cell system comprises wherein said fuel has distillation properties, the initial boiling point (initial boiling point 0) in distillation of 24° C. or higher and 50° C. or lower, the 10 vol. % distillation temperature (T10) of 35° C. or higher and 70° C. or lower, the 90 vol. % distillation temperature (T90) of 100° C. or higher and 180° C. or lower, and the final boiling point in distillation of 130° C. or higher and 210° C. or lower.
    Type: Application
    Filed: October 10, 2002
    Publication date: July 31, 2003
    Inventors: Kenichirou Saitou, Iwao Anzai, Osamu Sadakane, Michiro Matsubara
  • Publication number: 20030132139
    Abstract: The invention describes a method for decreasing the viscosity of crude oils and residuum utilizing a combination of acid and sonic treatment.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 17, 2003
    Inventor: Ramesh Varadaraj
  • Publication number: 20030127355
    Abstract: A fuel for a fuel cell system comprising hydrocarbon compounds, wherein a content of saturates is 30 vol. % or more, a content of olefins is 35 vol. % or less and a content of aromatics is 50 vol. % or less. The fuel for a fuel cell system has a high power generation quantity per weight, a high power generation quantity per CO2 emission, a low fuel consumption, a small quantity of evaporative gas (evapo-emission), small deterioration of a fuel cell system comprising such as a reforming catalyst, a water gas shift reaction catalyst, a carbon monoxide removal catalyst, fuel cell stacks and the like to maintain the initial performances for a long duration, good handling properties in terms of storage stability and inflammability, and a low preheating energy.
    Type: Application
    Filed: October 10, 2002
    Publication date: July 10, 2003
    Inventors: Kenichirou Saitou, Iwao Anzai, Osamu Sadakane, Michiro Matsubara
  • Publication number: 20030094396
    Abstract: A fuel for a fuel cell system comprising hydrocarbon compounds, which fuel has distillation properties of the initial boiling point (initial boiling point 0) in distillation of 24° C. or higher and 40° C. or lower, the 10 vol. % distillation temperature (T10) of 25° C. or higher and 50° C. or lower, the 90 vol. % distillation temperature (T90) of 45° C. or higher and 130° C. or lower, and the final boiling point in distillation of 55° C. or higher and 150° C. or lower.
    Type: Application
    Filed: October 10, 2002
    Publication date: May 22, 2003
    Inventors: Kenichirou Saitou, Iwao Anzai, Osamu Sadakane, Michiro Matsubara
  • Publication number: 20030029777
    Abstract: Particulate sorbent compositions comprising a mixture of zinc oxide, silica, alumina and a substantially reduced valence cobalt are provided for the desulfurization of a feedstream of cracked-gasoline or diesel fuels in a desulfurization zone by a process which comprises the contacting of such feedstreams in a desulfurization zone followed by separation of the resulting low sulfur-containing stream and sulfurized-sorbent and thereafter regenerating and activating the separated sorbent before recycle of same to the desulfurization zone.
    Type: Application
    Filed: September 26, 2002
    Publication date: February 13, 2003
    Applicant: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare
  • Publication number: 20030032847
    Abstract: A substantially hydrogenated and/or substantially dehalogenated polyalphaolefin homo- or copolymer is obtained by a hydrogenation/dehalogenation process employing hydrogen and a substantially amorphous catalyst containing a metal component on an inorganic material based support. The substantially hydrogenated/dehalogenated polyalphaolefin homo- or copolymers provided herein are useful for manufacturing a variety of products including lubricating oils in which the polyalphaolefin functions as a viscosity modifier.
    Type: Application
    Filed: June 4, 2001
    Publication date: February 13, 2003
    Applicant: CROMPTON CORPORATION
    Inventor: Michael P. Reynolds
  • Publication number: 20020143219
    Abstract: A process for the production of hydrocarbons and ammonia, and more particularly a process for optimizing the production of hydrocarbons and ammonia using a combined hydrocarbon synthesis plant and ammonia synthesis plant. Synthesis gas exiting a reforming section of the hydrocarbon synthesis process is sent to a hydrogen extraction unit, where it is divided into a hydrogen-rich stream and a hydrogen-poor stream. The hydrogen-rich stream is then fed into an ammonia synthesis process. The hydrogen-poor stream may be returned to the hydrocarbon synthesis process or may be used as a fuel gas. The process reduces emission of CO2 into the atmosphere, and requires only one reforming section and one air separation unit for both processes. Removal of hydrogen from the hydrocarbon synthesis process before the synthesis gas enters a Fischer-Tropsch reactor also lowers the H2/CO ratio of the synthesis gas, therefore resulting in better hydrocarbon selectively.
    Type: Application
    Filed: January 25, 2002
    Publication date: October 3, 2002
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Julian Graham Price, Barry Antony Tindall
  • Publication number: 20020100711
    Abstract: The present invention is directed to the upgrading of heavy hydrocarbon feedstock that utilizes a short residence pyrolytic reactor operating under conditions that cracks and chemically upgrades the feedstock. The process of the present invention provides for the preparation of a partially upgraded feedstock exhibiting reduced viscosity and increased API gravity. This process selectively removes metals, salts, water and nitrogen from the feedstock, while at the same time maximizes the yield of the liquid product, and minimizes coke and gas production. Furthermore, this process reduces the viscosity of the feedstock in order to permit pipeline transport, if desired, of the upgraded feedstock with little or no addition of diluents.
    Type: Application
    Filed: September 18, 2001
    Publication date: August 1, 2002
    Inventors: Barry Freel, Robert Graham
  • Publication number: 20020084211
    Abstract: The invention relates to a process for forming a low-sulfur motor gasoline and the product made therefrom. In one embodiment, process involves separating a catalytically cracked naphtha into at least a light fraction boiling below about 165° F. and a heavy fraction boiling above about 165° F. The light fraction is treated to remove sulfur by a non-hydrotreating method, and the heavy fraction is hydrotreated to remove sulfur to a level of less than about 100 ppm.
    Type: Application
    Filed: October 12, 2001
    Publication date: July 4, 2002
    Inventors: Gordon F. Stuntz, Robert C. W. Welch, Thomas R. Halbert
  • Publication number: 20020050466
    Abstract: Disclosed is a process for opening naphthenic rings of naphthenic ring-containing compounds, and catalysts which can be used in that process. The naphthene ring opening catalyst is a polymetallic catalyst comprising Group VIII metals. In a preferred embodiment the naphthene ring opening catalyst comprises Ir in combination with a Group VIII metal selected from at least one of Pt, Rh, and Ru, in an amount effective for opening a naphthene ring-containing compound at a tertiary carbon site.
    Type: Application
    Filed: July 2, 2001
    Publication date: May 2, 2002
    Inventors: William C. Baird, Darryl P. Klein, Michele S. Touvelle, Jingguang G. Chen
  • Publication number: 20020043481
    Abstract: Disclosed is a process for opening naphthenic rings of naphthenic ring-containing compounds, along with catalysts which can be used in that process. The naphthene ring opening catalyst is a catalyst comprising at least one Group VIII metal selected from Ir, Pt, Rh, and Ru, wherein these metals are supported on an alkali metal or alkaline-earth metal modified support in an amount effective for opening a naphthene ring-containing compound at a tertiary carbon site.
    Type: Application
    Filed: July 2, 2001
    Publication date: April 18, 2002
    Inventors: William C. Baird, Darryl P. Klein, Michele S. Touvelle, Jingguang G. Chen, Gary B. McVicker
  • Patent number: 6355850
    Abstract: Electrical oils having improved uninhibited oxidation and electrical resistance are derived by blending a substantially nitrogen and sulfur free paraffinic or naphthenic base oil with a hydrofined light gas oil having a sulfur to nitrogen weight ratio of greater than 100:1 wherein the hydrofined light gas oil is added to the base oil in an amount sufficient to provide a blend having greater than about 0.03 wt % sulfur.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: March 12, 2002
    Assignee: Exxon Research and Engineering Company
    Inventors: Jacob Ben Angelo, Thomas Lynn Bays
  • Patent number: 6355159
    Abstract: A heavy hydrocarbon is rendered pipelineable by hydroconverting the heavy hydrocarbon under conditions sufficient to obtain a product oil of lowered viscosity and an API gravity suitable for pipelining and thereafter adding a diluent modified hydrocarbon to the product oil in an amount sufficient to stabilize the product oil against asphaltene phase separation and when phase separated asphaltene is present to dissolve the phase separated asphaltenes.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: March 12, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ronald Damian Myers, Mainak Ghosh, Michelle A. Young, Tapan Chakrabarty, Bruce M. Sankey, Irwin Andrew Wiehe
  • Patent number: 6340745
    Abstract: Phthalocyanines of the formula where Me is twice hydrogen, twice lithium, magnesium, zinc, copper, nickel, VO, TiO, AlCl, AlOH, AlOCOCH3, AlOCOCF3, SiCl2 or Si(OH)2, at least four of the radicals R1 to R16 are each independently of the others a five- or six-membered saturated nitrogen-containing heterocyclic radical which is bonded to the phthalocyanine structure via a ring nitrogen atom and which can additionally contain further hetero atoms, and any remaining radicals R1 to R16 are each hydrogen, halogen, hydroxysulfonyl or C1-C4-dialkylsulfamoyl, subject to the proviso that tetrakispiperidinylphthalocyanine shall be excluded, and heterocyclyl-substituted phthalocyanines are useful for marking liquids, in particular mineral oils.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: January 22, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Frank Meyer, Christos Vamvakaris, Karin Heidrun Beck, Gerhard Wagenblast, Bernhard Albert
  • Patent number: 6296757
    Abstract: Diesel fuels or blending stocks having excellent lubricity, oxidative stability and high cetane number are produced from non-shifting Fischer-Tropsch processes by separating the Fischer-Tropsch product into a lighter and heavier fractions, e.g., at about 700° F., subjecting the 700° F.+fraction to hydro-treating, and combining the 700° F.− portion of the hydrotreated product with the lighter fraction that has not been hydrotreated.
    Type: Grant
    Filed: October 17, 1995
    Date of Patent: October 2, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Robert Jay Wittenbrink, Richard Frank Bauman, Paul Joseph Berlowitz, Bruce Randall Cook
  • Patent number: 6264826
    Abstract: A process is provided for preparing high quality Group II and Group III lubricating base oils from a sulfur containing feedstock using mild hydrotreating followed by isomerization/dewaxing followed by hydrogenation over a sulfur resistant hydrogenation catalyst.
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: July 24, 2001
    Assignee: Chevron U.S.A Inc.
    Inventors: Jirong Xiao, Phil Winslow, James N. Ziemer
  • Patent number: 6242395
    Abstract: A composition including polyalphaolefins that function as drag reducing agents and a process for the preparation of polyalphaolefins that function as drag reducing agents are disclosed. The process includes contacting alpha olefin monomers with a catalyst system, which includes a catalyst and an activator (co-catalyst) in a reactant mixture. The catalyst is a transition metal catalyst, preferably titanium trichloride, and the co-catalyst may include an alkylaluminoxane, alone or in combination, with a dialkylaluminum halide or a halohydrocarbon. The polymerization of the alpha olefin monomers produces a non-crystalline, ultra-high molecular weight polyalphaolefin having an inherent viscosity of at least 10 dL/g.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: June 5, 2001
    Assignee: Energy & Environmental International, L.C.
    Inventors: Gerald B. Eaton, Michael J. Monahan, Robert J. Tipton
  • Publication number: 20010002389
    Abstract: A composition including polyalphaolefins that function as drag reducing agents and a process for the preparation of polyalphaolefins that function as drag reducing agents are disclosed. The process includes contacting alpha olefin monomers with a catalyst system. which includes a catalyst and an activator (co-catalyst) in a reactant mixture. The catalyst is a transition metal catalyst, preferably titanium trichloride, and the co-catalyst may include an alkylaluminoxane, alone or in combination, with a dialkylaluminum halide or a halohydrocarbon. The polymerization of the alpha olefin monomers produces a non-crystalline, ultra-high molecular weight polyalphaolefin having an inherent viscosity of at least 10 dL/g.
    Type: Application
    Filed: January 16, 2001
    Publication date: May 31, 2001
    Inventors: Gerald B. Eaton, Michael J. Monahan, Robert J. Tipton
  • Patent number: 6214213
    Abstract: A paraffinic solvent is mixed with bitumen froth containing water and solids. Sufficient solvent is added to induce inversion when the mixture is subjected to gravity or centrifugal forces. The emulsion reports to the water phase and a dry bitumen product virtually free of inorganic solids, is obtained.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: April 10, 2001
    Assignees: AEC Oil Sands, L.P., AEC Oil Sands Limited Partnership, Athabasca Oil Sands Investments Inc., Canadian Occidental Petroleum Ltd., Canadian Oil Sands Investments Inc., Gulf Canada Resources Limited, Imperial Oil Resources, Mocal Energy Limited, Murphy Oil Company Ltd., Petro-Canada
    Inventors: Robert Tipman, Yi-Cheng Long, William Edward Shelfantook
  • Patent number: 6207044
    Abstract: A process for the solvent separation of hydrocarbons from tar sand or contaminated soils comprises extracting the hydrocarbons from the sand or soil in a solvent extraction means to form a hydrocarbon rich solvent solution. The rich solvent is separated from the hydrocarbon in a process that utilizes flashing of the solvent in a heated flashing column at ambient pressure. The hydrocarbon is withdrawn from the bottom of the column and the flashed solvent vapors are strategicly withdrawn and passed into a condensation column from which the condensed solvent may be recycled. The flashing column is divided by a series of horizontal, vertically aligned apertured trays. The solution is introduced into the top of the column and the flashing operation is facilitated by the increase in the surface area of the solution as it flows by gravity from tray to tray. The column is maintained at a temperature, preferably above the boiling temperature of the solvent.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: March 27, 2001
    Inventor: Gary C. Brimhall
  • Patent number: 6162773
    Abstract: A composition including polyalphaolefins that function as drag reducing agents and a process for the preparation of polyalphaolefins that function as drag reducing agents are disclosed. The process includes contacting alpha olefin monomers with a catalyst system, which includes a catalyst and an activator (co-catalyst) in a reactant mixture. The catalyst is a transition metal catalyst, preferably titanium trichloride, and the co-catalyst may include an alkylaluminoxane, alone or in combination, with a dialkylaluminum halide or a halohydrocarbon. The polymerization of the alpha olefin monomers produces a non-crystalline, ultra-high molecular weight polyalphaolefin having an inherent viscosity of at least 10 dL/g.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: December 19, 2000
    Assignee: Energy & Environmental International, L.C.
    Inventors: Gerald B. Eaton, Michael J. Monahan, Robert J. Tipton
  • Patent number: 6117305
    Abstract: Disclosed is a method of producing water slurry of SDA asphaltene by dispersing residue resulting from solvent deasphalting of petroleum vacuum residue produced in refineries, which has low viscosity even at a high solid concentration and is stable for a long period of time, in industrial scale under stable operation. The method comprises a grinding step of grinding the SDA asphaltene with water in a grinding apparatus in the presence of a dispersing agent, followed by a stabilizing step of stirring the resulting slurry to stabilize it. In the grinding step a suitable amount of a thickener such as carboxymethyl cellulose is added. Grinding is preferably carried out at a temperature not higher than 80.degree. C. Jacketed ball mills are conveniently used. In the stabilizing step a stabilizer such as Attapulgus clay is added after stirring the slurry to decrease viscosity thereof and stirring is continued.
    Type: Grant
    Filed: July 10, 1997
    Date of Patent: September 12, 2000
    Assignee: JGC Corporation
    Inventors: Shoichi Bando, Takao Takinami, Makoto Inomata
  • Patent number: 6096690
    Abstract: Discloses environmentally friendly, low temperature base oils and drilling fluids, or drilling mud compositions useful in the production of oil and gas. The drilling fluid is constituted of one or more of weighting agents, emulsifiers, wetting agents, viscosifiers, fluid loss control agents, proppants, and other particulates such as used in a gravel pack, emulsified with a paraffinic solvent composition which forms a continuous oil phase, or water-in-oil invert phase. The solvent composition is constituted of a mixture of C.sub.10- C.sub.24 n-paraffins and isoparaffins having an isoparaffin:n-paraffin molar ratio ranging from about 0.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: August 1, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: Robert Jay Wittenbrink, Charles John Mart, Daniel Francis Ryan, Bruce Randall Cook
  • Patent number: 6080302
    Abstract: A method for producing a process oil is provided in which an aromatic extract oil is added to a paraffinic rich feed to provide a blended feed. The blended feed is then extracted with an aromatic extraction solvent to yield a raffinate which subsequently is hydrotreated to provide a process oil.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: June 27, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: Keith K. Aldous, Jacob Ben Angelo, Joseph Philip Boyle
  • Patent number: 6043182
    Abstract: A method for preparing an oil soluble catalytic precursor includes the steps of: providing a mixture of a catalytic metal salt in water, wherein the catalytic metal salt contains a catalytic metal selected from the group consisting of alkali metals, alkaline earth metals, transition metals, and mixtures thereof; providing a heavy hydrocarbon phase; forming a water in oil emulsion of the mixture in the heavy hydrocarbon phase; and heating the emulsion at a temperature sufficient to dehydrate the emulsion so as to provide a hydrocarbon containing an oil soluble compound containing the catalytic metal.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: March 28, 2000
    Assignee: Intevep, S.A.
    Inventors: Jose Cordova, Pedro Pereira, Jose Guitian, Antida Andriollo, Alfredo Cirilo, Francisco Granadillo
  • Patent number: 6015779
    Abstract: A composition including polyalphaolefins that function as drag reducing agents and a process for the preparation of polyalphaolefins that function as drag reducing agents are disclosed. The process includes contacting alpha olefin monomers with a catalyst system, which includes a catalyst and an activator (co-catalyst) in a reactant mixture. The catalyst is a transition metal catalyst, preferably titanium trichloride, and the co-catalyst may include an alkylaluminoxane, alone or in combination, with a dialkylaluminum halide or a halohydrocarbon. The polymerization of the alpha olefin monomers produces a non-crystalline, ultra-high molecular weight polyalphaolefin having an inherent viscosity of at least 10 dL/g.
    Type: Grant
    Filed: May 20, 1998
    Date of Patent: January 18, 2000
    Assignee: Energy & Environmental International, L.C.
    Inventors: Gerald B. Eaton, Michael J. Monahan, Robert J. Tipton
  • Patent number: 5997724
    Abstract: A shale oil modifier is made of a crude shale oil dehydrogenated sufficiently to attain a viscosity of between about 1200-1800 poise at 60.degree. C. The crude shale oil has sufficient basic nitrogen content so that the dehydrogenated crude shale oil exhibits non-Newtonian properties when mixed with asphalt cements. Preferably, the basic nitrogen content is about 2%-2.5% by weight. The shale oil modifier is made by a process which includes providing a crude shale oil and subjecting the crude shale oil to a two stage distillation followed by a vacuum distillation and collecting the residual fraction. The residual fraction is dehydrogenated with air until a select viscosity, preferably between about 1200-1800 poise at 60.degree. C. is obtained.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: December 7, 1999
    Assignee: The New Paraho Corporation
    Inventor: Larry A Lukens
  • Patent number: 5976202
    Abstract: Reaction products of polyolefins having predominantly a terminal double bond and a number average molecular weight of from 250 to 10,000, which possess an aliphatic hydrocarbon skeleton which is straight-chain or carries C.sub.1 -C.sub.4 -alkyl side chains, with from 1 to 10 mol, per equivalent of double bond, of one or more vinyl esters I ##STR1## are obtainable by reacting the stated polyolefins with the vinyl esters I in the presence of a free radical initiator at from 80 to 200.degree. C., it being possible for these reaction products subsequently to have been hydrolyzed to the corresponding alcohols or converted into the corresponding amines by reductive amination with amines II ##STR2## .
    Type: Grant
    Filed: July 20, 1995
    Date of Patent: November 2, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans Peter Rath, Helmut Mach, Harald Schwahn, Hans-Joachim Muller, Wolfgang Reif, Thomas Ruhl
  • Patent number: 5951847
    Abstract: A process for catalytically dehazing lubricating base oils is disclosed, which comprises contacting the lubricating base oil in the presence of hydrogen with a catalyst comprising naturally occurring and/or synthetic ferrierite which ferrierite has been modified to reduce the mole percentage of alumina and a low acidity refractory oxide binder material which is essentially free of alumina.
    Type: Grant
    Filed: October 31, 1996
    Date of Patent: September 14, 1999
    Assignee: Shell Oil Company
    Inventors: Pierre Grandvallet, Laurent Georges Huve
  • Patent number: 5908548
    Abstract: An aromatic solvent together with methods for its preparation are described. A composition includes a paraffin fraction in an amount of from approximately 9 LV % to approximately 15 LV %; a naphthene fraction in an amount of from approximately 35 LV % to approximately 55 LV %; and an alkylbenzene fraction in an amount of from approximately 8 LV % to approximately 16 LV %. The solvent provides advantages in that the high solvency that is typical of an aromatic solvent is combined with a narrow distillation range, a high flash point and higher boiling range that is typical of an aliphatic solvent.
    Type: Grant
    Filed: March 21, 1997
    Date of Patent: June 1, 1999
    Assignee: Ergon, Incorporated
    Inventors: Christopher S. Rucker, Steven J. Wantling, H. Don Davis, Jimmy Rasco
  • Patent number: 5906727
    Abstract: Discloses high purity solvent compositions constituted of n-paraffins and isoparaffins, with the isoparaffins containing predominantly methyl branches, and having an isoparaffin:n-paraffin ratio sufficient to provide superior low temperature properties and low viscosities. The solvent compositions are made by a process wherein a waxy, or long chain paraffinic feed, especially a Fischer-Tropsch wax, is reacted over a dual function catalyst to produce hydroisomerization and hydrocracking reactions at 700.degree. F.+ conversion levels ranging from about 20 to 90 wt.% to provide a C.sub.5 -1050.degree. F. crude fraction. The C.sub.5 -1050.degree. F. crude fraction is then topped via atmospheric distillation to produce a low boiling fraction with an upper end point boiling between about 650.degree. F. and 750.degree. F. The low boiling fraction is fractionated and a narrow boiling range solvent obtained therefrom; one which can be further divided into solvent grades of various boiling ranges.
    Type: Grant
    Filed: May 19, 1998
    Date of Patent: May 25, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Robert Jay Wittenbrink, Steven Earl Silverberg, Daniel Francis Ryan
  • Patent number: 5837126
    Abstract: By controlling one or more properties of a gasoline fuel suitable for combustion in automobiles, the emissions of NOx, CO and/or hydrocarbons can be reduced. The preferred fuel for reducing all three such emissions has a Reid Vapor Pressure no greater than 7.5 psi (0.51 atm), essentially zero olefins, and a 50% D-86 Distillation Point greater than about 180.degree. F. (82.degree. C.) but less than 205.degree. F. (96.1.degree. C.
    Type: Grant
    Filed: August 1, 1997
    Date of Patent: November 17, 1998
    Assignee: Union Oil Company of California
    Inventors: Peter J. Jessup, Michael C. Croudace
  • Patent number: 5779774
    Abstract: Mixtures of alkylaromatic secondary phosphate and tertiary phosphate esters prepared by reaction of phosphonyl chloride and primary phosphonyl chlorides with alkylaromatic phenols are disclosed as rust inhibiting additives for hydrocarbon based fluids.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: July 14, 1998
    Inventors: Kazimiera J. L. Paciorek, Steven R. Masuda
  • Patent number: 5772866
    Abstract: Compositions of an non-alkkoxylated alkylphenol-formaldehyde resin and poly(alkylene glycol) are effective at breaking water-in-oil emulsions in a liquid hydrocarbon. Preferably, the composition is employed in a crude oil desalting system.
    Type: Grant
    Filed: August 6, 1997
    Date of Patent: June 30, 1998
    Assignee: BetzDearborn Inc.
    Inventor: Paul R. Hart
  • Patent number: 5749947
    Abstract: A method for the temporary protection of metal surfaces from corrosion is provided in which the metal surface to be temporarily protected from corrosion is coated with a guanidinium salt of an unsaturated fatty acid containing 6 to 44 carbon atoms.
    Type: Grant
    Filed: April 14, 1997
    Date of Patent: May 12, 1998
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Juergen Geke, Horst-Dieter Speckmann, Bernd Stedry, Alfred Westfechtel
  • Patent number: 5726056
    Abstract: The invention relates to a method of removing metals from a fossil fuel comprising the steps of contacting the fossil fuel with a biocatalyst selected from the group consisting of an enzyme which degrades porphyrin molecules under conditions suitable for the removal of the metals from the fossil fuel; and separating the metals from the fossil fuel. Preferred embodiments of the biocatalyst include heme oxygenase and cytochrome C reductase, such as cytochrome C reductase from Bacillus megaterium, Catharanthus roseuse, Escherichia coli, animal cells, plant cells or yeast cells. The cytochrome C reductase can be contacted with the fossil fuel in an aqueous medium as a substantially cell-free preparation or cell preparation. In one embodiment of the invention, the metals are recovered from the resulting metal containing stream.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: March 10, 1998
    Assignee: Energy BioSystems Corporation
    Inventors: Guo-Wei Xu, Kenneth W. Mitchell, Daniel J. Monticello
  • Patent number: 5718820
    Abstract: A fuel for internal combustion engines having an improved cetane index and lower sulfur content is obtained from a hydrocarbon charge, by a process comprising a step (a) for distillation (D1) in which a bottom product (Q1) is obtained via a line 3 and in which a top product (T1) is obtained via a line 2, a step (b) of liquid/liquid extraction (LE) using a solvent (S1) to obtain a raffinate (R1), (line 5) an extract from which product (Q1) is obtained (line 6), a step c) separating (D2) the raffinate (R1) enabling a product (Q2) to be obtained via line 7, which product has a low solvent (S1) content, and a step (d) of hydrotreatment (HDS) in which the mixture of the products (T1) and (Q2) are subjected to hydrotreatment with a hydrogen partial pressure of less than 10 megapascals, to obtain a product (P) (line 9) which has improved qualities and which contains less than 500 ppm by weight sulphur.
    Type: Grant
    Filed: April 25, 1996
    Date of Patent: February 17, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Frederic Morel, Marc Boulet, Massimo Zuliani, Jean Claude Company, Paul Mikitenko, Roben Loutaty
  • Patent number: 5653866
    Abstract: By controlling one or more properties of a gasoline fuel suitable for combustion in automobiles, the emissions of NOx, CO and/or hydrocarbons can be reduced. The preferred fuel for reducing all three such emissions has a Reid Vapor Pressure no greater than 7.5 psi (0.51 atm), essentially zero olefins, and a 50% D-86 Distillation Point greater than about 180.degree. F. (82.degree. C.) but less than 205.degree. F. (96.1.degree. C.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: August 5, 1997
    Assignee: Union Oil Company of California
    Inventors: Peter J. Jessup, Michael C. Croudace
  • Patent number: 5593567
    Abstract: By controlling one or more properties of a gasoline fuel suitable for combustion in automobiles, the emissions of NOx, CO and/or hydrocarbons can be reduced. The preferred fuel for reducing all three such emissions has a Reid Vapor Pressure no greater than 7.5 psi (0.51 atm), essentially zero olefins, and a 50% D-86 Distillation Point greater than about 180.degree. F. (82.degree. C.) but less than 205.degree. F. (96.1.degree. C.
    Type: Grant
    Filed: March 22, 1995
    Date of Patent: January 14, 1997
    Inventors: Peter J. Jessup, Michael C. Croudace
  • Patent number: 5464851
    Abstract: A composition which contains a 2-halo-2-halomethyl glutaronitrile and a 4,5-polymethylene-4-isothiazolin-3-one. The compositions exhibit anti-microbial activity and certain combinations of isothiazolinones together with the glutaronitrile are surprisingly effective against both bacteria and fungi.
    Type: Grant
    Filed: July 29, 1994
    Date of Patent: November 7, 1995
    Assignee: Zeneca Limited
    Inventor: Fraser F. Morpeth
  • Patent number: 5453176
    Abstract: A process is disclosed for producing an isoparaffin white oil by contacting a refinery stream, in the presence of hydrogen, with a catalyst comprising an intermediate pore size silicoaluminophosphate molecular sieve and a hydrogenation component to form a dewaxed oil product. The dewaxed oil product is then contacted with a hydrogenation catalyst to produce a hydrogenated oil product which is then treated to remove aromatics to produce an isoparaffin white oil.
    Type: Grant
    Filed: October 13, 1993
    Date of Patent: September 26, 1995
    Inventors: Bruce A. Narloch, Michael A. Shippey, Malcolm W. Wilson
  • Patent number: 5372703
    Abstract: Lubricant base oils are made up essentially of 2-15% by weight of a total aromatics content, greater than 60% by weight of isoparaffins and monocyclic naphthenes in total, more than 30% by weight of alkylbenzenes in the total aromatics content and smaller than 4% by weight of tricyclic and tetracyclic aromatics in the total aromatics content. The base oil has great viscosity index, small pour point, high oxidative stability and heat stability and sufficient capability to dissolve sludge.
    Type: Grant
    Filed: April 12, 1993
    Date of Patent: December 13, 1994
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Kouzou Kamiya, Isao Honjo, Toshio Yoshida, Masaru Ushio, Jinichi Igarashi, Masakuni Hirata, Mitsuo Okada, Yuji Ikemoto, Kouichi Oshima, Hiroyuki Takashima
  • Patent number: 5308470
    Abstract: Non-carcinogenic asphalts and asphalt blending stocks are produced from reduced hydrocarbon feedstocks. Such non-carcinogenic products are produced by establishing a functional relationship between mutagenicity index and a physical property correlative of hydrocarbon type for the asphalt or asphalt blending stock and determining a critical physical property level which, when achieved, results in a product having a mutagenicity index of less than about 1.0. Process conditions are established so that a product stream achieving the desired physical property level can be produced. Non-carcinogenic asphalts and asphalt blending stocks are then processed utilizing the conditions so established.
    Type: Grant
    Filed: December 23, 1992
    Date of Patent: May 3, 1994
    Assignee: Mobil Oil Corp.
    Inventors: Gary R. Blackburn, Carl R. Mackerer, Timothy A. Roy
  • Patent number: 5288393
    Abstract: By controlling one or more properties of a gasoline fuel suitable for combustion in automobiles, the emissions of NOx, CO and/or hydrocarbons can be reduced. The preferred fuel for reducing all three such emissions has a Reid Vapor Pressure no greater than 7.5 psi (0.51 atm), essentially zero olefins, and a 50% D-86 Distillation Point greater than about 180.degree. F. (82.degree. C.) but less than 205.degree. F. (96.1.degree. C.
    Type: Grant
    Filed: December 13, 1990
    Date of Patent: February 22, 1994
    Assignee: Union Oil Company of California
    Inventors: Peter J. Jessup, Michael C. Croudace
  • Patent number: 5281329
    Abstract: Crude oils, vacuum gas oils, and residual oils containing long chain polyalkyl (meth)acrylates as flow improvers, wherein the long chain polyalkyl (meth)acrylates are a mixture of(A) a polyalkyl (meth)acrylate P1 having an onset of crystallization at temperatures above 15.degree. C. (measured as the cloud point of a 0.1 % solution in isooctane) and(B) a polyalkyl (meth)acrylate P2 having an onset of crystallization at temperatures at or below 15.degree. C.,with the proviso that there is a temperature difference of at least 5 Centigrade degrees between the onset of the crystallization of polyalkyl (meth)acrylates P1 and the onset of crystallization of polyalkyl (meth)acrylates P2.
    Type: Grant
    Filed: March 30, 1992
    Date of Patent: January 25, 1994
    Assignee: Rohm GmbH
    Inventors: Michael Mueller, Heinz Gruenig
  • Patent number: 5266185
    Abstract: Hydrogen sulfide evolution in a heavy hydrocarbon (such as a residual fuel oil) derived from a heavy crude oil (such as a API 8 gravity crude) is suppressed by contacting the hydrocarbon with a compound corresponding to the reaction product of a heterocyclic aldehyde (such as furfural) and an organic primary amine.
    Type: Grant
    Filed: September 10, 1990
    Date of Patent: November 30, 1993
    Assignee: Petrolite Corporation
    Inventors: Jerry J. Weers, Timothy J. O'Brien, Catherine E. Thomasson
  • Patent number: 5215647
    Abstract: Hydrocarbon oil compositions of improved low temperature properties comprise intimate mixtures of hydrocarbon oil and a linear alternating polymer of carbon monoxide and at least one straight-chain .alpha.-olefin of relatively high carbon number.
    Type: Grant
    Filed: July 11, 1991
    Date of Patent: June 1, 1993
    Assignee: Shell Oil Company
    Inventors: Eit Drent, Marinus J. Reynhout, Henricus P. M. Tomassen
  • Patent number: 5178747
    Abstract: Non-carcinogenic bright stock extracts and/or deasphalted oils are produced from reduced hydrocarbon feedstocks. Such non-carcinogenic products are produced by establishing a functional relationship between mutagenicity index and a physical property correlative of hydrocarbon type for the bright stock extract or deasphalted oil and determining a critical physical property level which, when achieved, results in a product having a mutagenicity index of less than about 1.0. Process conditions are established so that a product stream achieving the desired physical property level can be produced. Non-carcinogenic bright stock extracts and/or deasphalted oils are then processed utilizing the conditions so established. A bright stock extract and a deasphalted oil substantially free from mutagenic activity, as well as processes for their production are also provided herein.
    Type: Grant
    Filed: July 22, 1991
    Date of Patent: January 12, 1993
    Assignee: Mobil Oil Corporation
    Inventors: Gary R. Blackburn, Carl R. Mackerer, Nigel Searle, Arshavir E. Mekitarian, Edward N. Ladov