Etching Inorganic Substrate Patents (Class 216/96)
  • Publication number: 20020189639
    Abstract: A wafer is rotated while cleaning water is sprayed from a nozzle to the surface of this wafer. The cleaning water is an aqueous solution in which 1 to 2.5 ppm of hydrogen gas is dissolved in water with an additional, small amount of ammonium hydroxide. The cleaning water has a pH of 7.5 to 8.0, an oxidation-reduction potential of −0.6 to −0.45 V, and a resistivity of not greater than 1 M&OHgr;·cm. And the cleaning water is reducing water.
    Type: Application
    Filed: June 13, 2002
    Publication date: December 19, 2002
    Applicant: NEC CORPORATION
    Inventors: Hidemitsu Aoki, Hiroaki Tomimori
  • Patent number: 6492273
    Abstract: Methods and devices for mechanical and/or chemical-mechanical planarization of semiconductor wafers, field emission displays and other microelectronic substrate assemblies. One method of planarizing a microelectronic substrate assembly in accordance with the invention includes pressing a substrate assembly against a planarizing surface of a polishing pad at a pad/substrate interface defined by a surface area of the substrate assembly contacting the planarizing surface. The method continues by moving the substrate assembly and/or the polishing pad with respect to the other to rub at least one of the substrate assembly and the planarizing surface against the other at a relative velocity. As the substrate assembly and polishing pad rub against each other, a parameter indicative of drag force between the substrate assembly and the polishing pad is measured or sensed at periodic intervals.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: December 10, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Jim Hofmann, Gundu M. Sabde, Stephen J. Kramer, Scott E. Moore
  • Patent number: 6488729
    Abstract: To provide a polishing composition which enables maintenance of excellent properties and high quality of the surface of a hard disk without lowering polishing rate during polishing of the surface, and which can provide a polished surface in which the amount of dub-off is considerably reduced as compared with that of a conventional level, a polishing composition containing water, a polishing material (particularly alumina), a polishing accelerator, and at least one of hydroxypropyl cellulose and hydroxyalkyl alkyl cellulose is provided.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: December 3, 2002
    Assignees: Showa Denko K.K., Yamaguchi Seiken Kogyo K.K.
    Inventors: Ken Ishitobi, Masahiro Nozaki, Tadanori Nagao, Yoshiki Hayashi
  • Publication number: 20020162572
    Abstract: The present invention provides a method of removing residual particles from a polished surface. The method comprises the steps of: providing a substrate, forming a dielectric layer on the substrate, brush-cleaning and etching the dielectric layer on the substrate with a liquid when residual particles are trapped therein, whereby the residual particles are loosened and then relocated to the dielectric layer, and finally cleaning the dielectric layer to remove the relocated residual particles.
    Type: Application
    Filed: May 4, 2001
    Publication date: November 7, 2002
    Inventors: Hou-Hong Chou, Jiun-Fang Wang
  • Patent number: 6464842
    Abstract: There is provided controlled fabrication of a solid state structural feature on a solid state structure by exposing the structure to a fabrication process environment the conditions of which are selected to produce a prespecified feature in the structure. A physical detection species is directed toward a designated structure location during process environment exposure of the structure, and the detection species is detected in a trajectory from traversal of the designated structure location, to indicate changing physical dimensions of the prespecified feature. The fabrication process environment is then controlled in response to the physical species detection to fabricate the structural feature.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: October 15, 2002
    Assignee: President and Fellows of Harvard College
    Inventors: Jene A. Golovchenko, Daniel Branton, Derek M. Stein, Ciaran J. McMullan, Jiali Li
  • Patent number: 6464893
    Abstract: Controlled chemical etching of rotating metal substrates has been shown to be a feasible and economic method for the reproducible production of thin, reactive metallic foils such as copper foils. Foils thus prepared react readily with chemical substances, apparently by chemisorption. The organic-metal assemblies exhibit the same corrosion and wetting behavior as those prepared by other processes, and they readily undergo additional functional group transformations.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: October 15, 2002
    Assignee: Pace University
    Inventor: Karen R. Caldwell
  • Patent number: 6454953
    Abstract: An object of the present invention is to provide a solid electrolytic capacitor with excellent electrostatic capacitance and reduced dispersion of capabilities by treating the surface of a chemically formed aluminum film to form a dielectric film which is in contact an electrically conducting substance provided thereon with sufficiently high adhesion. Another object of the present invention is to provide a method for producing the solid electrolytic capacitor, which includes providing an organic electrically conducting polymer as a solid electrolyte on a chemically formed aluminum substrate having thereon an aluminum oxide dielectric film, where a chemically formed aluminum substrate, which was cut into a predetermined shape, is treated with an aqueous acid solution to dissolve a part of the dielectric film on the substrate surface.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: September 24, 2002
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Atsushi Sakai, Yuji Furuta, Katsuhiko Yamazaki
  • Patent number: 6454820
    Abstract: A polishing composition comprising silica particles, water, and Fe salt and/or Al salt of a polyaminocarboxylic acid; a polishing process comprising applying the polishing composition; a process for manufacturing a magnetic disk substrate, comprising the step of polishing a substrate with the polishing composition; a magnetic disk substrate manufactured by applying the polishing composition.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: September 24, 2002
    Assignee: Kao Corporation
    Inventors: Toshiya Hagihara, Koichi Naito, Shigeo Fujii
  • Patent number: 6451451
    Abstract: There are provided methods of making hardmask assemblies or other layered structures, and other masks, including providing an annular seal member between a first surface of layered structure, preferably a hardmask assembly, and a firs clamp element, the hardmask assembly comprising at least a hardmask layer; and applying a force between the first clamp element and a second clamp element to hold the hardmask assembly between the annular seal member and the second clamp element In addition, there are provided methods further comprising etching the first surface of the hardmask assembly within the bounds of an interior space defined by the annular seal member. Furthermore, there are provided methods further comprising etching the substrate layer through the hardmask layer and/or removing the hardmask layer after etching the substrate layer.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: September 17, 2002
    Assignee: Micron Technology, Inc.
    Inventor: J. Brett Rolfson
  • Patent number: 6444140
    Abstract: Metal surfaces, particularly copper surfaces, which are oxidatively micro-etched to increase surface area through the use of molybdenum. The micro-etch solutions contain a proton source, e.g., a mineral acid, an oxidizer agent, e.g., hydrogen peroxide, an azole compound, and a molybdenum source. These micro-etched surfaces can further be rendered acid-resistant by exposure to a thiazole compound and/or a thiocarbamide compound. The thiazole compound and/or thiocarbamide compound may be provided either in the oxidative micro-etching solution or provided in a post-micro-etching solution.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: September 3, 2002
    Assignee: Morton International Inc.
    Inventors: John Schemenaur, Todd Johnson, Michael Marsaglia
  • Patent number: 6444083
    Abstract: A corrosion resistant component of semiconductor processing equipment such as a plasma chamber includes a metal surface such as aluminum or aluminum alloy, stainless steel, or refractory metal coated with a phosphorus nickel plating and an outer ceramic coating such as alumina, silicon carbide, silicon nitride, boron carbide or aluminum nitride. The phosphorus nickel plating can be deposited by electroless plating and the ceramic coating can be deposited by thermal spraying. To promote adhesion of the ceramic coating, the phosphorus nickel plating can be subjected to a surface roughening treatment prior to depositing the ceramic coating.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: September 3, 2002
    Assignee: Lam Research Corporation
    Inventors: Robert Steger, Chris Chang
  • Patent number: 6436612
    Abstract: A method for forming a protection device with slope laterals is provided. Firstly, providing a semiconductor substrate having a plurality of alternative first sacrificial layers and second sacrificial layers formed thereon. A first etching step is performed to remove one portion of each of the first sacrificial layers and thereby expose one portion of each lateral of each of the second sacrificial layers. Subsequently, performing a second etching step to remove one portion of the lateral of the second sacrificial layer. Then, repeatedly and alternately performing the first etching step and the second etching step until completely removing the first sacrificial layers and then obtaining a plurality of protection devices formed of the second sacrificial layers each of which having slope laterals.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: August 20, 2002
    Assignee: Macronix International Co., Ltd.
    Inventor: Ching-Yu Chang
  • Publication number: 20020084248
    Abstract: A composition and method for etching a polymer substrate in particular for forming micro vias includes a dihydric alcohol having from two to five carbon atoms, a hydroxide compound selected from the group of lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide and mixtures thereof, and water. In one embodiment the composition includes glycol, potassium hydroxide and deionized water, wherein the glycol and the water are present in a ratio of from about 0.5:1 to about 8.5:1 and the potassium hydroxide is present in an amount of from about 40 to about 80 grams per 100 ml of glycol and water solution.
    Type: Application
    Filed: August 1, 2001
    Publication date: July 4, 2002
    Inventors: Bobwen Zhont Kong, Masud Beroz
  • Patent number: 6413437
    Abstract: The invention is a method of forming the art work for chemically etching that produces uniform through-etch and lateral-etch. The artwork that defines the pattern to be etched utilizes lines equal to the narrowest feature that is to be etched. Rather than etch away large areas, section are removed by etching by cutting them out of the material that is being etched. The artwork or pattern is designed with the same compensation factors throughout the entire pattern and the etch rate will be completely uniform for the entire pattern.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: July 2, 2002
    Assignee: Texas Instruments Incorporated
    Inventor: Robert M. Fritzsche
  • Publication number: 20020060202
    Abstract: There is provided a method and apparatus for etching a ruthenium film which can sufficiently etch away a ruthenium film formed on or adhering to the peripheral region, especially the no device formed region, backside or other portions of a substrate. The method comprises etching a ruthenium film formed on a substrate with a chemical liquid having a pH of not less than 12 or and an oxidation-reduction potential of not less than 300 mVvsSHE.
    Type: Application
    Filed: November 20, 2001
    Publication date: May 23, 2002
    Inventors: Akira Fukunaga, Haruko Ohno, Ichiro Katakabe, Sachiko Kihara
  • Publication number: 20020054981
    Abstract: A process for imaging a lithographic printing plate having a coating containing diazo resins. An ink jet printer is used to apply micro drops of a basic chemical solution that insolubilizes the affected areas of the coating to a developing solution. The latent image may be cured by heating the plate for a short period, and is then developed. The process works with conventional, commercially available lithographic plates and developers.
    Type: Application
    Filed: August 29, 2001
    Publication date: May 9, 2002
    Inventors: Albert S. Deutsch, Bruce R. Harrison
  • Patent number: 6358564
    Abstract: A process for preparing an old porcelain or ceramic substrate and refinishing with an epoxy coating top coat, where the old substrate is treated with an aqueous solution of citric acid prior to the step of coating with epoxy. In preferred aspects, the old substrate is treated with aqueous calcium carbonate solution prior to treating with the citric acid solution.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: March 19, 2002
    Assignee: The Glidden Company
    Inventor: John R. Kordosh
  • Patent number: 6352647
    Abstract: Methods of making hardmask assemblies or other layered structures, and other masks, include providing an annular seal member between a first surface of layered structure, preferably a hardmask assembly, and a first clamp element, the hardmask assembly comprising at least a hardmask layer; and applying a force between the first clamp element and a second clamp element to hold the hardmask assembly between the annular seal member and the second clamp element. In addition, there are provided methods further comprising etching the first surface of the hardmask assembly within the bounds of an interior space defined by the annular seal member. Methods further comprise etching the substrate layer through the hardmask layer and/or removing the hardmask layer after etching the substrate layer.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: March 5, 2002
    Assignee: Micron Technology, Inc.
    Inventor: J. Brett Rolfson
  • Publication number: 20020025378
    Abstract: A method is disclosed for treating the surface of tools made of tool steel, wherein primary carbides are embedded in the tool steel matrix. The thickness of the primary carbides disposed near the surface can be reduced by forming a surface which has point-wise recess; alternatively, the primary carbides can be completely removed. A hard material layer is deposited on this surface. The invention also describes tools made of tool steel, wherein primary carbides are embedded in the tool steel matrix. The primary carbides are significantly recessed, and a hard material layer is deposited thereon.
    Type: Application
    Filed: August 13, 2001
    Publication date: February 28, 2002
    Inventors: Klaus Keller, Fritz Koch
  • Patent number: 6348159
    Abstract: A method for etching substrates, comprising providing at least a first and a second substrate having a coating selected from the group consisting of semiconductor coatings, metallic coatings, and mixtures thereof and introducing at least the first substrate and an etchant into a first tank to etch at least a portion of the coating from the first substrate, introducing at least the second substrate into a second tank and transferring the etchant from the first tank to the second tank to provide etch of at least a portion of the coatings from the second substrate, and removing the etched first substrate from the first tank.
    Type: Grant
    Filed: February 15, 1999
    Date of Patent: February 19, 2002
    Assignee: First Solar, LLC
    Inventors: Todd J. Dapkus, John R. Bohland
  • Publication number: 20020016072
    Abstract: An object of the present invention is to provide a method of manufacturing a semiconductor wafer in which the manufacturing efficiency of grinding using a double-headed grinding machine is improved, minute surface undulations arising through the grinding are reduced, and the yield of the manufacturing process is improved. By processing a sliced wafer using a double-headed grinding machine, a strained layer and a macroscopic undulation component formed on the wafer surfaces during the slicing are removed, and the degree of flatness of the wafer is improved, and by subsequently carrying out both-surfaces lapping, minute surface undulations that arose during the double-headed grinding are removed.
    Type: Application
    Filed: August 2, 2001
    Publication date: February 7, 2002
    Applicant: Sumitomo Metal Industries, Ltd.
    Inventors: Tomohiro Hashii, Tooru Watanabe
  • Patent number: 6337029
    Abstract: A composition comprising bifluoride salts in a somewhat viscous form for roughening glass, ceramic and porcelain surfaces in preparation for refinishing includes: a. bifluoride salts in an amount ranging from 10.0 to 85.0 parts by weight; b. thickener in an amount ranging from 0.1 to 5.0 parts by weight; c. organic solvent in an amount ranging from 2.0 to 20.0 parts by weight; and d. water in an amount ranging from 7.0 to 75.0 parts by weight. A coating of the composition is applied to a substrate, such as those having low surface tensions and to which paint adhesion is difficult. The coating is left in contact with the substrate for a period of time effective to roughen the substrate. The coating is then removed and discarded or alternatively, collected and reused. The substrate after treatment will have a roughened surface from which improved paint adhesion results.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: January 8, 2002
    Assignee: Xim Products
    Inventors: Richard D. Hardy, Juan E. Jarufe
  • Publication number: 20010045408
    Abstract: A method for manufacturing a dielectric waveguide at a low manufacturing cost, the dielectric waveguide comprising a pair of conductor plates approximately parallel to each other and the dielectric strip provided therebetween, which can form a dielectric strip having accurate individual dimensions without generating cracks and chips during processing. The method comprises the steps of forming a resist pattern on a green sheet containing at least a powdered inorganic material and an organic binder, removing a predetermined amount of the green sheet corresponding to an opening in the resist pattern by the use of a mask, removing the resist pattern, and firing the green sheet. In the step of removing the predetermined amount of the green sheet, the rate of removal is continuously or intermittently changed along the depth direction of the green sheet.
    Type: Application
    Filed: April 26, 2001
    Publication date: November 29, 2001
    Applicant: Murata Manufacturing Co., Ltd.
    Inventor: Toshikazu Takeda
  • Patent number: 6322712
    Abstract: In devices such as flat panel displays, an aluminum oxide layer is provided between an aluminum layer and an ITO layer when such materials would otherwise be in contact to protect the ITO from optical and electrical defects sustained, for instance, during anodic bonding and other fabrication steps. This aluminum oxide barrier layer is preferably formed either by: (1) partially or completely anodizing an aluminum layer formed over the ITO layer, or (2) an in situ process forming aluminum oxide either over the ITO layer or over an aluminum layer formed on the ITO layer. After either of these processes, an aluminum layer is then formed over the aluminum oxide layer.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: November 27, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Robert J. Hanson, Won-Joo Kim, Mike E. Pugh
  • Patent number: 6319419
    Abstract: A technique to prevent peeling of deposits formed on the surface of the inner walls of the thin-film formation apparatus and the members inside the apparatus and to suppress particle production without contamination of the inside of the apparatus. A member for a thin-film formation apparatus having inner walls and a method for manufacturing the member is provided. A plurality of unevenness is provided on at least a portion of the surface of the member and the inner walls on which unnecessary thin films are deposited. The surfaces are subjected to masking, and then, etching processing to form the plurality of unevenness. After the etching processing the masking is removed.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: November 20, 2001
    Assignee: Japan Energy Corporation
    Inventors: Tateo Ohhashi, Atsushi Fukushima, Hideyuki Takahashi
  • Publication number: 20010039449
    Abstract: A thin film device, such as an intravascular stent, is disclosed. The device is formed of a seamless expanse of thin-film (i) formed of a sputtered nitinol shape memory alloy, defining, in an austenitic state, an open, interior volume, having a thickness between 0.5-50 microns, having an austenite finish temperature Af below 37° C.; and demonstrating a stress/strain recovery greater than 3% at 37° C. The expanse can be deformed into a substantially compacted configuration in a martensitic state, and assumes, in its austenitic state, a shape defining such open, interior volume. Also disclosed is a sputtering method for forming the device.
    Type: Application
    Filed: January 24, 2001
    Publication date: November 8, 2001
    Inventors: A. David Johnson, Valery V. Martynov, Vikas Gupta, Arani Bose
  • Publication number: 20010030172
    Abstract: A sputtering target is provided which provides early stabilization of the film-deposition rate of the sputtering target from its initial stage of use. The sputtering target surface subjected to erosion is formed with a surface-deformed layer. The surface-deformed layer is reduced by precision machining and removed by etching. The extent of etching is controlled so that the surface roughness (Ra) is in a range between 0.1% and 10% of the mean crystal grain diameter of the material constituting the target. The surface roughness (Ra) is defined as the mean roughness on the center line of the surface.
    Type: Application
    Filed: May 24, 2001
    Publication date: October 18, 2001
    Inventors: Hideyuki Takahashi, Tateo Ohhashi, Kazuhiro Seki
  • Patent number: 6245250
    Abstract: A process vessel which may be utilized in wet processing of semiconductor wafers includes a tank having one or more fluid displacers attachable to the tank. The one or more fluid displacer(s) have position in which they extend into the interior of the tank. The fluid displacers may be carried by a lid moveable into a closed position covering the opening in the tank. Movement of the lid into the closed position causes the fluid displacers to extend into the tank.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: June 12, 2001
    Assignee: SCP Global Technologies Inc.
    Inventors: Tom Krawzak, Victor Mimken, Rod Fladwood, Wyland Atkins
  • Patent number: 6238743
    Abstract: A method of removing a ceramic coating, such as a thermal barrier coating (TBC) of yttria-stabilized zirconia (YSZ), from the surface of a component, such as a gas turbine engine component. The method generally entails subjecting the ceramic coating to an aqueous solution of ammonium bifluoride, optionally containing a wetting agent, such as by immersing the component in the solution while maintained at an elevated temperature. Using the method of the invention, a ceramic coating can be completely removed from the component and any cooling holes, with essentially no degradation of the bond coat.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: May 29, 2001
    Assignee: General Electric Company
    Inventor: William C. Brooks
  • Patent number: 6217787
    Abstract: We are familiar with etching printed circuit boards chemically by providing a copper board with a mask and etching copper away chemically at those points where the mask is not present. This is disadvantageous, e.g. from environmental standpoints, because the chemical liquid is increasingly enriched with copper, and, when the liquid has been used, it can no longer be employed and is also difficult to dispose of. The invention is based on the object of providing a method of either applying or removing conductive material electrically.
    Type: Grant
    Filed: June 29, 1998
    Date of Patent: April 17, 2001
    Assignee: Deutsche Thomson-Brandt GmbH
    Inventor: Hans-Otto Haller
  • Patent number: 6214250
    Abstract: A composite material suitable for labeling a substrate. The composite material, which is preferably a ceramic composite, comprises a fired ceramic body and a layer thereon. The fired ceramic body includes a base layer that comprising a glassy phase and a refractory phase, the glassy phase being capable of wetting a substrate at an application temperature. There is sufficient color contrast between the top layer and the fired ceramic body such that a code pattern (e.g., a bar code) present (or formed) is optically discernible. Methods of making and using the same are also taught.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: April 10, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Kyung H. Moh, Daniel Lacave, Bernardus M. Sueoss
  • Patent number: 6184153
    Abstract: The present invention is directed to a novel etching process for a semiconductor material which inhibits corrosion of metal comprised of pretreating the material, preferably with a surfactant, and then exposing the material to a mixture comprising salt, a buffered oxide etch, and optionally a surfactant.
    Type: Grant
    Filed: January 10, 1997
    Date of Patent: February 6, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Robert T. Rasmussen, Surjit S. Chadha, David A. Cathey
  • Patent number: 6177358
    Abstract: Generally, and in one form of the invention, a method is presented for the photo-stimulated etching of a CaF2 surface 12, comprising the steps of exposing the CaF2 surface 12 to an ambient species 16, exciting the CaF2 surface 12 and/or the ambient species 16 by photo-stimulation sufficiently to allow reaction of the CaF2 surface 12 with the ambient species 16 to form CaF2 ambient species products, and removing the ambient species 16 and the CaF2 ambient species products from the CaF2 surface 12. Other devices, systems and methods are also disclosed.
    Type: Grant
    Filed: December 30, 1993
    Date of Patent: January 23, 2001
    Assignee: Texas Instruments Incorporated
    Inventor: Monte A. Douglas
  • Patent number: 6114044
    Abstract: A method of fabricating a micromachine includes the step of constructing a low surface energy film on the micromachine. The micromachine is then rinsed with a rinse liquid that has a high surface energy, relative to the low surface energy film, to produce a contact angle of greater than 90.degree. between the low surface energy film and the rinse liquid. This relatively large contact angle causes any rinse liquid on the micromachine to be displaced from the micromachine when the micromachine is removed from the rinse liquid. In other words, the micromachine is dried by dewetting from a liquid-based process. Thus, a separate evaporative drying step is not required, as the micromachine is removed from the liquid-based process in a dry state. The relatively large contact angle also operates to prevent attractive capillary forces between micromachine components, thereby preventing contact and adhesion between adjacent microstructure surfaces.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: September 5, 2000
    Assignee: Regents of the University of California
    Inventors: Michael R. Houston, Roger T. Howe, Roya Maboudian, Uthara Srinivasan
  • Patent number: 6100203
    Abstract: Aqueous cleaning compositions comprise from about 0.01 to about 10 weight percent of hydrogen fluoride; from about 1 to about 10 weight percent of hydrogen peroxide; and from about 0.01 to about 30 weight percent of isopropyl alcohol. Methods of manufacturing microelectronic devices comprise providing electrodes on insulation films on microelectronic substrates; etching the insulation films using the electrodes as etching masks to form an exposed surfaces on the electrodes; cleaning the exposed surfaces with aqueous cleaning compositions comprising from about 0.01 to about 10 weight percent of hydrogen fluoride; from about 1 to about 10 weight percent of hydrogen peroxide; and from about 0.01 to about 30 weight percent of isopropyl alcohol; and forming dielectric films on the exposed surfaces of the electrodes. The cleaning step and the etching step are carried out simultaneously.
    Type: Grant
    Filed: July 16, 1998
    Date of Patent: August 8, 2000
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joon-ing Kil, Pil-kwon Jun, Min-sang Yun, Young-hwan Yun, Gyu-hwan Kwack, Sang-moon Chon
  • Patent number: 6093331
    Abstract: A method for the precise removal of the backside silicon on face down semiconductor devices to obtain a planar surface to allow electron beam microprobe analysis of the semiconductor device. The backside silicon is removed by plasma etching in a fluorocarbon based chemical plasma. The epitaxial layer in a CMOS device acts as an etch stop and the buried oxide layer in an SOI device acts as an etch stop.
    Type: Grant
    Filed: December 11, 1997
    Date of Patent: July 25, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Donald L. Wollesen
  • Patent number: 6074570
    Abstract: An identification label for permanently marking a metal or other etchable surface such as an automobile part with an identifying indicia is disclosed. The label has a protective cover sheet, a pressure sensitive adhesive irremovably affixed to the cover sheet, and a liner with a release coating removably affixed to the adhesive. An identifying indicia comprising an etchant in a visible vehicle such as a printing ink is printed on the adhesive at the interface of the removable liner and the adhesive so that when the liner is removed, the remaining portions of the label may be adhesively attached to the metal surface with the etchant of the identifying indicia in etching contact therewith. The identifying indicia will thus be etched into the surface of the part for a permanent marking of the part.
    Type: Grant
    Filed: June 21, 1994
    Date of Patent: June 13, 2000
    Assignee: X-Cal Corporation
    Inventor: John Samonides
  • Patent number: 6048406
    Abstract: Traditionally, hydrofluoric acid (HF) or buffered bydrofluoric acid (NH.sub.4 F) is mixed with water to form a etching solution for cleaning silicon dioxide from semiconductor wafer surfaces. An etching solution formed by mixing ammonium hydrogen bifluoride ((NH.sub.4)HF.sub.2) with water provides a benign alternative for cleaning silicon dioxide.
    Type: Grant
    Filed: April 8, 1998
    Date of Patent: April 11, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Ashutosh Misra, Jagdish Prasad, Jennifer A. Sees, Lindsey H. Hall
  • Patent number: 6042739
    Abstract: An etchant for chalcogenide glass or oxychalcogenide glass contains an acid and a compound, e.g., an oxidizing agent, which reacts with hydrogen chalcogen to guarantee safe etching of sulfuric glasses in rendering the glass surface smooth and free from surface defects. The etchant is used for an etching method in which a member made of chalcogenide glass or oxychalcogenide glass is dipped in the prepared etchant. The member can make a glass optical member having a surface, substantially free from latent scratch, whose surface roughness difference is one micron meter or less in a length of 0.1 micron meter taken along the surface.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: March 28, 2000
    Assignee: Hoya Corporation
    Inventor: Katsuhisa Itoh
  • Patent number: 6030514
    Abstract: A target for sputtering is subjected to a surface treatment process and special packaging after target manufacture for improved sputtering performance and process and yield by reducing particulates. The sputtering target is first surface treated to remove oxides, impurities and contaminants. The surface treated target is then covered with a metallic enclosure and, optionally, a passivating barrier layer. The metallic enclosure protects the target surface from direct contact with subsequently employed packaging material such as plastic bags, thereby eliminating sources of organic materials during sputtering operations. The surface treatment of the target removes deformed material, smearing, twins, or burrs and the like from the target surface, reducing "burn-in" or sputter conditioning time prior to production sputtering of thin films.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: February 29, 2000
    Assignees: Sony Corporation, Materials Research Corporation
    Inventors: John A. Dunlop, Michael Goldstein, Gerald B. Feldewerth, Cari Shim, Stephan Schittny
  • Patent number: 6022485
    Abstract: A catalytic method and an apparatus for selectively removing material from a solid substrate is provided. The method comprises contacting a surface of a solid substrate with a catalyst material in the presence of a reactant under conditions effective to selectively remove material from those areas of said solid substrate in contact with said catalyst material and said reactant.
    Type: Grant
    Filed: October 17, 1997
    Date of Patent: February 8, 2000
    Assignee: International Business Machines Corporation
    Inventor: Roger W. Cheek
  • Patent number: 6010637
    Abstract: A method for preparing a sample for its optical analysis in the manufacture of a semiconductor device includes the step of drying a liquid formed on the semiconductor wafer until the concentration of contaminants contained in the liquid is of a sufficiently high level for the optical analyzer to adequately detect the contaminants. The liquid may be of a film formed on the wafer and dissolved into liquid drops, or deionized water or various chemicals to which the wafer is exposed during a manufacturing process. The apparatus includes a chuck for bringing the wafer into and out of a processing chamber, a guide for guiding the chuck, a piston cylinder for driving the chuck along the guide to a processing position, and a gas supplying system which directs nitrogen gas onto the wafer for drying the liquid. Appropriate controls are provided so that the apparatus can be operated automatically or manually.
    Type: Grant
    Filed: March 4, 1998
    Date of Patent: January 4, 2000
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chun-deuk Lee, Kyoung-seop Lee, Hyun-woon Lee, Jung-keun Lee
  • Patent number: 5980765
    Abstract: Using a newly developed composite ceramics material suited for balls of ball-point pens, a method of manufacturing composite ceramics balls for ball-point pens that have affinity for both oil-based ink and water-based ink is provided. In this method, the composite ceramics, whose main components are mullite (3Al.sub.2 O.sub.3 .multidot.2SiO.sub.2) and zirconia (ZrO.sub.2) at the ratio of 50-95% to 5-50% by weight, is polished into mirror-finished balls and then chemical processing or physical processing is performed on the ball surfaces to form indentations in the ball surfaces. The chemical processing is preferably an etching using hydrofluoric acid, and the degree of indentations can be controlled by changing the concentration of hydrofluoric acid and the duration of etching.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: November 9, 1999
    Assignee: Ohto Kabushiki Kaisha
    Inventors: Takao Machida, Tooru Ishijima
  • Patent number: 5904545
    Abstract: Apparatus for assembling microstructures onto a substrate through fluid transport. The apparatus includes a vessel that contains the substrate, a fluid, and microstructures. The substrate has at least one recessed region thereon. The microstructures being shaped blocks self-align into the recessed regions located on the substrate such that the microstructure becomes integral with the substrate. The apparatus also includes a pump that circulates the microstructures within the vessel at a rate where at least one of the microstructures is disposed into the recessed region.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 18, 1999
    Assignee: The Regents of the University of California
    Inventors: John Stephen Smith, Hsi-Jen J. Yeh, Mark A. Hadley, Ashish K. Verma
  • Patent number: 5901032
    Abstract: An electrochemical cell for etching a metal workpiece such as an aluminum foil, a method for etching the foil using the electrochemical cell, and foil thus produced is provided. The cell includes an etch tank having an etch electrolyte disposed therein and containing at least a first and a second compartment each containing (i)an etch electrolyte, (ii) a cathode plate, and (iii) an ion exchange membrane separator portion having an ion exchange polymeric material effective to substantially retard or prevent reduction of the oxidizing agent or agents present in the etch electrolyte, the first and second compartments being arranged in the etch tank with the ion exchange membrane separator portions in facing relationship one to the other; and a metal workpiece such as an aluminum foil anode present in the etch tank and disposed between each said first and second compartments.
    Type: Grant
    Filed: October 17, 1997
    Date of Patent: May 4, 1999
    Assignee: Philips Electronics North America Corporation
    Inventors: Albert Kennedy Harrington, Thomas Flavian Strange, Roland F. Dapo
  • Patent number: 5883012
    Abstract: Trench structures (12,32,35,46) are formed in single crystal silicon substrates (10,30) that have either a (110) or (112) orientation. A selective wet etch solution is used that removes only the exposed portions of the single crystal silicon substrates (10,30) that are in the (110) or (112) crystal planes. The trench structures (12,32,35,46) are defined by the {111} crystal planes in the single crystal silicon substrate (10,30) that are exposed during the selective wet etch process. Trench structures (32,35) can be formed on both sides of a single crystal silicon substrate (30) to form an opening (34). Opening (34) can be used as an alignment mark to align front side processing to backside and vice versa. Trench structures can also be use to form a microstructure (41,61) for a sensor (40,60).
    Type: Grant
    Filed: December 21, 1995
    Date of Patent: March 16, 1999
    Assignee: Motorola, Inc.
    Inventors: Herng-Der Chiou, Ping-Chang Lue
  • Patent number: 5846444
    Abstract: A method and apparatus for treating a surface on a glass article with a fluid. The article is surrounded by a containment system for the treating fluid and the fluid is continuously agitated by an agitator.
    Type: Grant
    Filed: September 5, 1996
    Date of Patent: December 8, 1998
    Assignee: Corning Incorporated
    Inventors: Stephen P. Edwards, Donald B. Kloeber, Joseph W. Neubert, Stephen R. Ormsby
  • Patent number: 5833871
    Abstract: In a method of finishing a surface of a floating type magnetic head in which a sliding contact surface opposing a magnetic recording medium is made of a polycrystal material comprising at least two kinds of phases of different compositions mixed together, the sliding contact surface is roughened by treatment with an etching solution in accordance with a chemical etching process. The sliding contact surface of the floating type magnetic head can be mirror-finished with an appropriate surface roughness, so that satisfactory CSS performance and good electromagnetic performance can be obtained. The sliding contact surface is preferably made of a polycrystal ceramic material selected from the CaTiO.sub.3 ceramic system, the AlTiC ceramic system and the MnO-NiO ceramic system. The etching solution contains aqueous hydrogen peroxide as an oxidizing agent and is preferably an aqueous hydrogen peroxide and ammonia solution.
    Type: Grant
    Filed: July 7, 1997
    Date of Patent: November 10, 1998
    Assignee: Minebea Co., Ltd.
    Inventors: Takeshi Matsushita, Shinya Ibaraki, Shigeyuki Adachi
  • Patent number: 5821170
    Abstract: A method for etching aluminum containing layers. A layer (13) of aluminum nitride is formed on a semiconductor substrate (11). The layer (13) of aluminum nitride is etched using a dilute ammonium hydroxide solution that is diluted with water such that the ammonium hydroxide solution has one part of ammonium hydroxide to at least fifteen parts of water. The dilute ammonium hydroxide solution is showered onto the semiconductor substrate and forms an aluminum hydroxide layer. The aluminum hydroxide layer is dissolved by excess water in the dilute aluminum hydroxide solution and rinsed from the semiconductor substrate (11).
    Type: Grant
    Filed: September 30, 1996
    Date of Patent: October 13, 1998
    Assignee: Motorola, Inc.
    Inventors: Lawrence S. Klingbeil, Jr., Terry K. Daly
  • Patent number: 5804314
    Abstract: A flexible and efficient bulk micromachining method for fabricating a novel microstructure that is bounded by substantially planar surfaces meeting only at substantially right angle corner features. The novel microstructure of the present invention is useful as a spacer in assembly processes where high accuracy is required, such as precise positioning of optical fibers or conductors. In the preferred embodiment, the microstructure of the present invention includes a shelf feature disposed along a height dimension of the microstructure, which is required for some applications. The bulk micromachining method of the present invention includes providing a first substrate having a top planar surface and an opposing planar surface. The opposing surface of the substrate is anisotropically etched to provide a first thinned region. The top surface of the first substrate is anisotropically etched so that a first recessed feature having a vertical side is made integral with the first thinned region.
    Type: Grant
    Filed: March 22, 1994
    Date of Patent: September 8, 1998
    Assignee: Hewlett-Packard Company
    Inventors: Leslie A. Field, Phillip W. Barth