Irradiation Of Semiconductor Devices Patents (Class 250/492.2)
-
Patent number: 8242443Abstract: A semiconductor device inspection apparatus having a noise subtraction function includes an electron gun, a stage for holding a sample, a main detector for detecting a signal discharged from the sample, and at least one or more sub detector for detecting noise generated from the sample or apparatus so that there can be obtained an image in which the noise caused by discharge generated on the sample or in the apparatus is removed from the signal. The noise subtraction function subtracts the noise detected by the sub detector from the signal detected by the main detector to remove or reduce the noise from the signal.Type: GrantFiled: August 20, 2010Date of Patent: August 14, 2012Assignee: Hitachi High-Technologies CorporationInventors: Yusuke Ominami, Yasuhiro Gunji, Yoshiyuki Shichida
-
Patent number: 8242468Abstract: Ion implanters are especially suited to meet process dose and energy demands associated with fabricating photovoltaic devices by ion implantation followed by cleaving.Type: GrantFiled: June 28, 2010Date of Patent: August 14, 2012Assignee: Twin Creeks Technologies, Inc.Inventors: Thomas Parrill, Aditya Agarwal
-
Patent number: 8237135Abstract: An ion implantation method and system that incorporate beam neutralization to mitigate beam blowup, which can be particularly problematic in low-energy, high-current ion beams. The beam neutralization component can be located in the system where blowup is likely to occur. The neutralization component includes a varying energizing field generating component that generates plasma that neutralizes the ion beam and thereby mitigates beam blowup. The energizing field is generated with varying frequency and/or field strength in order to maintain the neutralizing plasma while mitigating the creation of plasma sheaths that reduce the effects of the neutralizing plasma.Type: GrantFiled: January 22, 2009Date of Patent: August 7, 2012Assignee: Axcelis Technologies, Inc.Inventors: Bo H. Vanderberg, William F. DiVergilio
-
Patent number: 8237136Abstract: A method and system for treating a non-planar structure is described. The method includes forming a non-planar structure on a substrate. Additionally, the method includes generating a gas cluster ion beam (GCIB) formed from a material source for treatment of the non-planar structure, tilting the substrate relative to the GCIB, and irradiating the non-planar structure with the GCIB. The system includes a substrate tilt actuator coupled to a substrate holder and configured to tilt the substrate holder relative to a GCIB.Type: GrantFiled: October 8, 2009Date of Patent: August 7, 2012Assignee: TEL Epion Inc.Inventors: John J. Hautala, Noel Russell
-
Patent number: 8237133Abstract: Energy sources and methods for curing in an imprint lithography system are described. The energy sources may include one or more energy elements positioned outside of the viewing range of an imaging unit monitoring elements of the imprint lithography system. Each energy source is configured to provide energy along a path to solidify polymerizable material on a substrate.Type: GrantFiled: July 29, 2009Date of Patent: August 7, 2012Assignee: Molecular Imprints, Inc.Inventors: Mahadevan Ganapathisubramanian, Byung-Jin Choi, Liang Wang, Alex Ruiz
-
Patent number: 8232532Abstract: A tool for patterning a disk such as a magnetic media disk for use in a disk drive system. The tool includes a chamber and a first and second series of magnets, each evenly spaced about the chamber wall. An ion beam source at an end of the chamber emits an ion beam toward the disk which is held within the chamber. The first series of magnets deflect the ion beam away from center and toward the chamber wall. The second ion beam source deflects the ion beam back toward the center so that the ion beam can strike the disk at an angle. In addition, to bending the ion beam, the magnets also rotate the bent ion beam so the movement of the ion beam revolves within the chamber.Type: GrantFiled: June 23, 2009Date of Patent: July 31, 2012Assignee: Hitachi Global Storage Technologies Netherlands B.V.Inventors: Thomas Robert Albrecht, Jeffrey S. Lille
-
Patent number: 8232536Abstract: There is provided a particle beam irradiation system so as to provide the dose distribution having more accuracy.Type: GrantFiled: May 27, 2010Date of Patent: July 31, 2012Assignee: Mitsubishi Electric CorporationInventor: Hisashi Harada
-
Publication number: 20120188522Abstract: A reflective optical component is configured to reflect EUV radiation. The reflective optical component has a reflective layer with a bimetal cap layer of differing first and second metals selected to ensure that the outer surface of the cap layer is substantially unreactive or non-adsorptive to sulfur. The bimetal cap layer may be an alloy of the two metals or may consist of a base layer of the first metal deposited on the reflective layer and a surface layer of the second metal on the base layer. The interaction of the two metals may lead to modification of the bonding energy to the outer face of the cap layer of sulfur-containing molecules such as SO2 so that sulfur adsorption, which leads to loss of reflectivity, is reduced or eliminated.Type: ApplicationFiled: January 25, 2012Publication date: July 26, 2012Applicant: ASML Netherlands B.V.Inventor: Marianna Yuryevna Silova
-
Patent number: 8227768Abstract: An ion implantation system configured to produce an ion beam is provided, wherein an end station has a robotic architecture having at least four degrees of freedom. An end effector operatively coupled to the robotic architecture selectively grips and translates a workpiece through the ion beam. The robotic architecture has a plurality of motors operatively coupled to the end station, each having a rotational shaft. At least a portion of each rotational shaft generally resides within the end station, and each of the plurality of motors has a linkage assembly respectively associated therewith, wherein each linkage assembly respectively has a crank arm and a strut. The crank arm of each linkage assembly is fixedly coupled to the respective rotational shaft, and the strut of each linkage assembly is pivotally coupled to the respective crank arm at a first joint, and pivotally coupled to the end effector at a second joint.Type: GrantFiled: June 18, 2009Date of Patent: July 24, 2012Assignee: Axcelis Technologies, Inc.Inventors: Theodore Smick, Geoffrey Ryding, Ronald F. Horner, Paul Eide, Marvin Farley, Kan Ota
-
Patent number: 8227771Abstract: A debris prevention system is constructed and arranged to prevent debris emanating from a radiation source from propagating with radiation from the radiation source into or within a lithographic apparatus. The debris prevention system includes a first foil trap that is rotatable around an axis of rotation, and a second foil trap that at least partly encloses the first foil trap. The second foil trap includes a plurality of foils optically open respective to a central location for placement of a radiation source and optically closed respective to directions perpendicular to the axis of rotation.Type: GrantFiled: July 23, 2007Date of Patent: July 24, 2012Assignee: ASML Netherlands B.V.Inventors: Wouter Anthon Soer, Maarten Marinus Johannes Wilhelmus Van Herpen
-
Patent number: 8227774Abstract: A method and system for photomask pattern generation is provided, and more specifically, a method and system for feature function aware priority printing is provided. The method of printing a photolithographic mask includes fracturing mask design data into write shapes that are multiples of a spot size and passing fractured mask design data to a write tool. Additionally, the method includes writing one or more non-critical shapes according to one or more time-saving rules.Type: GrantFiled: January 7, 2010Date of Patent: July 24, 2012Assignee: International Business Machines CorporationInventors: Brian N. Caldwell, Emily E. F. Gallagher, Steven C. Nash, Jed H. Rankin
-
Patent number: 8227763Abstract: A sequence of series-connected transformers for transmitting power to high voltages incorporates an applied voltage distribution to maintain each transformer in the sequence below its withstanding voltage.Type: GrantFiled: March 25, 2009Date of Patent: July 24, 2012Assignee: Twin Creeks Technologies, Inc.Inventors: Steven Richards, Geoffrey Ryding, Theodore Smick
-
Patent number: 8227770Abstract: An illumination system is used to illuminate a specified illumination field of an object surface with EUV radiation. The illumination system has an EUV source and a collector to concentrate the EUV radiation in the direction of an optical axis. A first optical element is provided to generate secondary light sources, and a second optical element is provided at the location of these secondary light sources, the second optical element being part of an optical device which includes further optical elements, and which images the first optical element into an image plane into the illumination field. Between the collector and the illumination field, a maximum of five reflecting optical elements are arranged. These optical elements reflect the main beam either grazingly or steeply. The optical axis, projected onto an illumination main plane, is deflected by more than 30° between a source axis portion and a field axis portion.Type: GrantFiled: August 4, 2009Date of Patent: July 24, 2012Assignee: Carl Zeiss SMT GmbHInventors: Martin Endres, Jens Ossmann
-
Patent number: 8227752Abstract: A method of inspecting an object using a scanning particle beam microscope, the method comprising: operating the microscope in a high-resolution mode by laterally scanning a particle beam of the high-resolution mode; operating the microscope in a 3D-mode for acquiring a three-dimensional representation of the object by laterally scanning a particle beam of the 3D-mode; wherein the particle beam of the high-resolution mode and the particle beam of the 3D-mode have a same beam energy and a same focus distance; and wherein an aperture angle of the particle beam of the 3D-mode is at least 2 times greater, or at least 5 times greater, or at least 10 times greater, or at least 100 times greater than an aperture angle of the particle beam of the high-resolution mode.Type: GrantFiled: February 17, 2011Date of Patent: July 24, 2012Assignee: Carl Zeiss NTS GmbHInventors: Hubert Mantz, Jaroslaw Paluszynski
-
Patent number: 8227773Abstract: A glitch duration threshold is determined based on an allowable dose uniformity, a number of passes of a workpiece through an ion beam, a translation velocity, and a beam size. A beam dropout checking routine repeatedly measures beam current during implantation. A beam dropout counter is reset each time beam current is sufficient. On a first observation of beam dropout, a counter is incremented and a position of the workpiece is recorded. On each succeeding measurement, the counter is incremented if beam dropout continues, or reset if beam is sufficient. Thus, the counter indicates a length of each dropout in a unit associated with the measurement interval. The implant routine stops only when the counter exceeds the glitch duration threshold and a repair routine is performed, comprising recalculating the glitch duration threshold based on one fewer translations of the workpiece through the beam, and performing the implant routine starting at the stored position.Type: GrantFiled: July 29, 2010Date of Patent: July 24, 2012Assignee: Axcelis Technologies, Inc.Inventor: Shu Satoh
-
Patent number: 8227772Abstract: An apparatus that forms a source bushing, while comprehending the possible formation of electrically conductive films thereon, is disclosed. Such an apparatus may advantageously be used to isolate an ion source from other components within the ion implanter, as these components may be at different electrical potentials. In one embodiment, the source bushing is constructed from a material having a lower electrical resistance than is currently used. By constructing the bushing in this manner, the effects of the applied lower resistance films is reduced, as the change in effective resistance is reduced. In other embodiments, the source bushing is purposely lined with an electrically semiconducting material, so that the effects of the later applied lining are minimized. In either case, the electrical potential between the two devices that are being isolated by the bushing is more evenly applied across the bushing.Type: GrantFiled: November 4, 2009Date of Patent: July 24, 2012Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Klaus Becker, Daniel Alvarado
-
Patent number: 8222619Abstract: A multi-column electron beam exposure apparatus includes: a plurality of column cells; a wafer stage including an electron-beam-property detecting unit for measuring an electron beam property; and a controller for measuring beam properties of electron beams used in all the column cells by using the electron-beam-property detecting unit, and for adjusting the electron beams of the respective column cells so that the properties of the electron beams used in the column cells may be approximately identical. The electron beam property may be any of a beam position, a beam intensity, and a beam shape of the electron beam to be emitted. The electron-beam-property detecting unit may be a chip for calibration with a reference mark formed thereon or a Faraday cup.Type: GrantFiled: September 25, 2009Date of Patent: July 17, 2012Assignee: Advantest Corp.Inventors: Akio Yamada, Hiroshi Yasuda, Mitsuhiro Nakano, Takashi Kiuchi
-
Patent number: 8222617Abstract: A laser-driven particle beam irradiation apparatus includes: a particle beam generator irradiating a target with pulsed laser light to emit a laser-driven particle ray; a beam converging unit forming a transportation path which guides the emitted laser-driven particle ray to an object and spatially converging the laser-driven particle ray; an energy selector selecting an energy and an energy width of the laser-driven particle ray; an irradiation port causing the laser-driven particle ray to scan the object to adjust an irradiation position in the object; and an irradiation controller controlling operation of the particle beam generator, the beam converging unit, the energy selector and the irradiation port.Type: GrantFiled: July 24, 2009Date of Patent: July 17, 2012Assignees: Kabushiki Kaisha Toshiba, Japan Atomic Energy AgencyInventors: Yasushi Iseki, Takeshi Yoshiyuki, Hiroyuki Daido, Masahiro Ikegami, Mamiko Nishiuchi, Akira Noda
-
Patent number: 8222620Abstract: A light irradiation apparatus 10 is configured to comprise: a supporting means 11 for supporting a semiconductor wafer W as an irradiated object, the semiconductor wafer W being stuck with an adhesive sheet S having an ultraviolet curable adhesive on a circuit formation surface; and a light irradiating means 13 having a focus axis P at a location spaced by a predetermined distance, and being provided so as to enable head-swinging motion thereof. The supporting means 11 is supported by a multi-joint robot 12, and relatively displaces the wafer W so as to prevent an adhesive layer surface SA of the adhesive sheet S from deviating from a position of the focus axis P, when the ultraviolet ray irradiating means 13 performs the head-swinging motion.Type: GrantFiled: May 22, 2009Date of Patent: July 17, 2012Assignee: Lintec CorporationInventor: Kenji Kobayashi
-
Patent number: 8222599Abstract: A method of measuring a three-dimensional device in a wafer is provided. The method comprises the step of forming a trench in the wafer. The trench has a facet passing through the three-dimensional device a predetermined offset from a desired image position. The method further comprises iteratively, until a remaining distance between the facet and the desired image position is less than a predetermined threshold, adjusting one or more parameters of a polishing beam based on the remaining distance, polishing the facet with the polishing beam to position the facet closer to the desired image position, and measuring the remaining distance.Type: GrantFiled: April 15, 2009Date of Patent: July 17, 2012Assignee: Western Digital (Fremont), LLCInventor: Chester Xiaowen Chien
-
Patent number: 8217348Abstract: The invention provides a system for achieving detection and measurement of film thickness reduction of a resist pattern with high throughput which can be applied to part of in-line process management. By taking into consideration the fact that film thickness reduction of the resist pattern leads to some surface roughness of the upper surface of the resist, a film thickness reduction index value is calculated by quantifying the degree of roughness of the part corresponding to the upper surface of the resist on an electron microscope image of the resist pattern which has been used in the conventional line width measurement. The amount of film thickness reduction of the resist pattern is estimated by applying the calculated index value to a database previously made for relating a film thickness reduction index value to an amount of film thickness reduction of the resist pattern.Type: GrantFiled: January 16, 2009Date of Patent: July 10, 2012Assignee: Hitachi High-Technologies CorporationInventors: Mayuka Iwasaki, Chie Shishido, Maki Tanaka
-
Patent number: 8216923Abstract: An improved, lower cost method of processing substrates, such as to create solar cells is disclosed. In addition, a modified substrate carrier is disclosed. The carriers typically used to carry the substrates are modified so as to serve as shadow masks for a patterned implant. In some embodiments, various patterns can be created using the carriers such that different process steps can be performed on the substrate by changing the carrier or the position with the carrier. In addition, since the alignment of the substrate to the carrier is critical, the carrier may contain alignment features to insure that the substrate is positioned properly on the carrier. In some embodiments, gravity is used to hold the substrate on the carrier, and therefore, the ions are directed so that the ion beam travels upward toward the bottom side of the carrier.Type: GrantFiled: October 1, 2010Date of Patent: July 10, 2012Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Nicholas Bateman, Kevin Daniels, Atul Gupta, Russell Low, Benjamin Riordon, Robert Mitchell, Steven Anella
-
Patent number: 8217372Abstract: A gas-cluster-jet generator with improved vacuum management techniques and apparatus is disclosed. The gas-cluster-jet generator comprises a substantially conically shaped vacuum chamber for housing the nozzle and jet exit portions of the gas-cluster-jet generator. A skimmer may be located at the narrow end of the conical chamber and a close-coupled vacuum pump is located at the wide end of the conical chamber. Support members for the nozzle are high conductivity “spider” supports that provide support rigidity while minimizing gas flow obstruction for high pumping speed. The conically shaped vacuum chamber redirects un-clustered gas in a direction opposite the direction of the gas-cluster-jet for efficient evacuation of the un-clustered gas. The nozzle and a skimmer may have fixed precision relative alignment, or may optionally have a nozzle aiming adjustment feature for aligning the gas-cluster-jet with the skimmer and downstream beamline components.Type: GrantFiled: June 29, 2010Date of Patent: July 10, 2012Assignee: Exogenesis CorporationInventor: Stanley Harrison
-
Patent number: 8212227Abstract: An electron beam apparatus equipped with a height detection system includes an electron beam unit emitting an electron beam to the specimen, and a height detection system for detecting height of the specimen which is set on a table. The height detection system includes an illumination system configured to direct first and second beams of light through a mask with a multi-slit pattern to a surface of the specimen at substantially opposite azimuth angles and at substantially equal angles of incidence, first and second detectors which respectively detect first and second multi-slit images of the first and second beams reflected from the specimen and generate output signals thereof, and a device which receives the output signals and generates a comparison signal which is responsive to the height of the specimen. An objective lens of the electron beam unit is controlled in accordance with the comparison signal.Type: GrantFiled: April 5, 2010Date of Patent: July 3, 2012Assignee: Hitachi, Ltd.Inventors: Masahiro Watanabe, Takashi Hiroi, Maki Tanaka, Hiroyuki Shinada, Yasutsugu Usami
-
Patent number: 8207513Abstract: A charged particle beam apparatus is provided which has high resolving power and a wide scanning region (observation field of view). The apparatus has a unit for adjusting the focus, a unit for adjusting astigmatism, a unit for controlling and detecting scanning positions and a controller operative to control the focus adjustment and astigmatism adjustment at a time in interlocked relation to the scanning positions, thereby assuring compatibility between the high resolving power and the observation view field of a wide area.Type: GrantFiled: November 10, 2009Date of Patent: June 26, 2012Assignee: Hitachi High-Technologies CorporationInventors: Yuko Sasaki, Yasuhiro Gunji, Zhaohui Cheng
-
Patent number: 8207512Abstract: The present invention provides a charged particle beam apparatus used to measure micro-dimensions (CD value) of a semiconductor apparatus or the like which captures images for measurement. For the present invention, a sample for calibration, on which a plurality of polyhedral structural objects with known angles on surfaces produced by the crystal anisotropic etching technology are arranged in a viewing field, is used. A beam landing angle at each position within a viewing field is calculated based on geometric deformation on an image of each polyhedral structural object. Beam control parameters for equalizing the beam landing angle at each position within the viewing field are pre-registered. The registered beam control parameters are applied according to the position of the pattern to be measured within the viewing field when performing dimensional measurement.Type: GrantFiled: October 5, 2010Date of Patent: June 26, 2012Assignee: Hitachi High-Technologies CorporationInventors: Chie Shishido, Mayuka Oosaki, Mitsugu Sato, Hiroki Kawada, Tatsuya Maeda
-
Patent number: 8207514Abstract: A charged particle beam drawing apparatus forms a map having meshes, forms representative figures, area of each representative figure in each mesh being equal to gross area of figures in each mesh, and calculates a proximity effect correction dose of the charged particle beam in each mesh on the basis of area of each representative figure in each mesh. If it is necessary to change the proximity effect correction dose of the charged particle beam for drawing at least one pattern corresponding to at least one figure, the charged particle beam drawing apparatus changes area of the at least one figure before the representative figures are formed by a representative figure forming portion, and changes the proximity effect correction dose of the charged particle beam for drawing the at least one pattern corresponding to the at least one figure, calculated by a proximity effect correction dose calculating portion.Type: GrantFiled: September 15, 2010Date of Patent: June 26, 2012Assignee: NuFlare Technology, Inc.Inventors: Shigehiro Hara, Shuichi Tamamushi, Takashi Kamikubo, Hitoshi Higurashi, Shinji Sakamoto, Yusuke Sakai, Yoshihiro Okamoto, Akihito Anpo
-
Publication number: 20120156623Abstract: A semiconductor device manufacturing method which improves exposure characteristics. The method includes the step of making preparations for use of an exposure apparatus. The apparatus includes a light emitting unit with a first electrode and a second electrode for generating EUV light, a heating light source for heating the first electrode and the second electrode, and an exposure unit for projecting the EUV light on a substrate through a mask. The method also includes the following steps: heating the first electrode and the second electrode by the heating light source; after the heating step, applying a voltage between the first electrode and the second electrode and generating EUV light by plasma excitation of predetermined atoms; and leading the EUV light into the exposure unit and making an exposure on a photosensitive film formed over the substrate inside the exposure unit.Type: ApplicationFiled: December 7, 2011Publication date: June 21, 2012Applicant: RENESAS ELECTRONICS CORPORATIONInventor: Seiichiro SHIRAI
-
Patent number: 8203126Abstract: Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other.Type: GrantFiled: July 22, 2010Date of Patent: June 19, 2012Assignee: Applied Materials, Inc.Inventors: Juan Carlos Rocha-Alvarez, Thomas Nowak, Dale R. Du Bois, Sanjeev Baluja, Scott A. Hendrickson, Dustin W. Ho, Andrzei Kaszuba, Tom K. Cho
-
Patent number: 8198601Abstract: The disclosure relates to a method for producing a multi-beam deflector array device with a plurality of openings for use in a particle-beam exposure apparatus, in particular a projection lithography system, said method starting from a CMOS wafer and comprising the steps of generating at least one pair of parallel trenches on the first side of the wafer blank at the edges of an area where the circuitry layer below is non-functional, the trenches reaching into the layer of bulk material; passivating the sidewalls and bottom of the trenches; depositing a conducting filling material into the trenches, thus creating columns of filling material serving as electrodes; attaching metallic contact means to the top of the electrodes; structuring of an opening between the electrodes, said opening stretching across abovementioned area so that the columns are arranged opposite of each other on the sidewalls of the opening.Type: GrantFiled: January 25, 2010Date of Patent: June 12, 2012Assignee: IMS Nanofabrication AGInventors: Elmar Platzgummer, Heinrich Fragner
-
Patent number: 8198609Abstract: The present invention relates to an apparatus for forming a nano pattern capable of fabricating the uniform nano pattern at a low cost including a laser for generating a beam; a beam splitter for splitting the beam from the laser into two beams with the same intensity; variable mirrors for reflecting the two beams split by the beam splitter to a substrate; beam expansion units for expanding diameters of the beams by being positioned on paths of the two beams traveling toward the substrate; and a beam blocking unit, installed on an upper part of the substrate, transmitting only a specific region expanded through the beam expansion unit and blocking regions a remaining region, and a method for forming the nano pattern using the same.Type: GrantFiled: July 23, 2008Date of Patent: June 12, 2012Assignee: Samsung LED Co., LtdInventors: Moo Youn Park, Jin Ha Kim, Soo Ryong Hwang, Il Hyung Jung, Jong Ho Lee
-
Patent number: 8198603Abstract: A sample preparing device has a sample stage that supports a sample and undergoes rotation about a first rotation axis to bring a preselected direction of the sample piece into coincidence with an intersection line between a first plane formed by a surface of the sample piece and a second plane. A manipulator holds sample piece of the sample and undergoes rotation about a second rotation axis independently of the sample stage to rotate the sample piece to a preselected position in the state in which the preselected direction of the sample piece coincides with the intersection line. The manipulator is disposed relative to the sample stage so that an angle between the second rotation axis and the surface of the sample is in the range of 0° to 45°.Type: GrantFiled: October 29, 2008Date of Patent: June 12, 2012Assignee: SII NanoTechnology Inc.Inventors: Haruo Takahashi, Ikuko Nakatani, Junichi Tashiro
-
Patent number: 8198614Abstract: The present invention relates to a terahertz wave generator and a method of generating high-power terahertz waves using the terahertz wave generator. The terahertz wave generator includes a hollow spherical body, and a focusing lens installed in a cutout portion of the spherical body or an opening formed in the cutout portion, wherein an inner surface of the spherical body is coated with metal. In the method, frequencies having different levels are incident through the focusing lens or the opening to generate a plurality of air plasmas, and the air plasmas cause continuous focusing the metal-coated inner surface and hollow space of the spherical body, thus generating high-power terahertz waves. According to the present invention, a plurality of air plasmas is continuously generated, thus solving the problem in which the light intensity of terahertz waves generated using one air plasma is low.Type: GrantFiled: December 17, 2009Date of Patent: June 12, 2012Assignee: Korea Institute of Science and TechnologyInventors: Jae Hun Kim, Seok Lee, Deok Ha Woo, Sun Ho Kim, Young Tae Byun, Young Min Jhon
-
Publication number: 20120138823Abstract: A method for generating patterned strained regions in a semiconductor device is provided. The method includes directing a light-emitting beam locally onto a surface portion of a semiconductor body; and manipulating a plurality of dislocations located proximate to the surface portion of the semiconductor body utilizing the light-emitting beam, the light-emitting beam being characterized as having a scan speed, so as to produce the patterned strained regions.Type: ApplicationFiled: February 14, 2012Publication date: June 7, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Chung Woh Lai, Xiao Hi Liu, Anita Madan, Klaus Schwarz, J. Campbell Scott
-
Patent number: 8193492Abstract: The invention pertains to a method for exciting a resonant element of a microstructure, this element being mobile according to one degree of freedom. The method comprises a step for applying a charged particle beam to said microstructure, the beam being configured so as to drive the element in an alternating motion depending on its degree of freedom.Type: GrantFiled: June 17, 2010Date of Patent: June 5, 2012Assignee: Commissariat a l'Energie Atomique et aux Energies AlternativesInventor: Henri Blanc
-
Patent number: 8193494Abstract: A first electron biprism is disposed in a condenser optical system and an observation region of a specimen is irradiated simultaneously with two electron beams of different angles. The two electron beams that have simultaneously transmitted the specimen are spatially separated and focused with a second electron biprism disposed in an imaging optical system and two electron microscopic images of different irradiation angles are obtained. The two picture images are obtained by a detecting unit. Based on the two picture images, a stereoscopic image or two images having different kinds of information of the specimen is/are produced and displayed on a display device.Type: GrantFiled: August 5, 2010Date of Patent: June 5, 2012Assignee: Hitachi, Ltd.Inventors: Ken Harada, Akira Sugawara
-
Patent number: 8188449Abstract: A charged particle beam drawing apparatus for drawing patterns corresponding to figures in a drawing data, has a portion for dividing a drawing area on the workpiece into block frames, a portion for combining at least a first block frame and a second block frame into a virtual block frame, and a portion for transferring a data of the virtual block frame from an input data dividing module to a common memory of a first converter and a second converter. The first converter converts a data of a first figure included in the first block frame into a first drawing apparatus internal format data. The second converter converts a data of a second figure included in the second block frame into a second drawing apparatus internal format data. The first figure and the second figure are included in a cell extending over the first block frame and the second block frame.Type: GrantFiled: June 16, 2010Date of Patent: May 29, 2012Assignee: NuFlare Technology, Inc.Inventors: Hayato Shibata, Hitoshi Higurashi, Akihito Anpo, Jun Yashima, Shigehiro Hara, Susumu Oogi
-
Patent number: 8188447Abstract: A method includes dividing a semiconductor wafer into a plurality of dies areas, generating a map of the semiconductor wafer, scanning each of the plurality of die areas of the semiconductor wafer with a laser, and adjusting a parameter of the laser during the scanning based on a value of the die areas identified by the map of the semiconductor wafer. The map characterizing the die areas based on a first measurement of each individual die area.Type: GrantFiled: January 26, 2009Date of Patent: May 29, 2012Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chung-Ru Yang, Chyi Shyuan Chern, Soon Kang Huang
-
Patent number: 8183545Abstract: There is provided a charged particle beam writing apparatus in which data processing is optimized by automatically dividing process regions on which parallel distributed processing is performed.Type: GrantFiled: August 5, 2010Date of Patent: May 22, 2012Assignee: NuFlare Technology, Inc.Inventor: Jun Yashima
-
Patent number: 8183546Abstract: Ions are generated and directed toward a workpiece. A laser source generates a laser that is projected above the workpiece in a line. As the laser is generated, a fraction of the ions are blocked by the laser. This may enable selective implantation or modification of the workpiece. In one particular embodiment, the lasers are generated while ions are directed toward the workpiece and then stopped. Ions are still directed toward the workpiece after the lasers are stopped.Type: GrantFiled: February 25, 2010Date of Patent: May 22, 2012Assignee: VARIAN Semiconductor Equipment Associates, Inc.Inventor: Deepak A. Ramappa
-
Patent number: 8183543Abstract: A multi-beam source for generating a plurality of beamlets of energetic electrically charged particles. The multi-beam source includes an illumination system generating an illuminating beam of charged particles and a beam-forming system being arranged after the illumination system as seen in the direction of the beam, adapted to form a plurality of telecentric or homocentric beamlets out of the illuminating beam. The beam forming system includes a beam-splitter and an electrical zone device, the electrical zone having a composite electrode composed of a plurality of substantially planar partial electrodes, adapted to be applied different electrostatic potentials and thus influencing the beamlets.Type: GrantFiled: July 23, 2008Date of Patent: May 22, 2012Assignee: IMS Nanofabrication AGInventor: Elmar Platzgummer
-
Patent number: 8178855Abstract: For use with an irradiation system including a radiation source operable to produce a radiation beam towards a target, a beam modulator including a flexible, deformable container at least partially filled with a radiation attenuating fluid, a non-deformable first contacting surface in contact with a first portion of the container, the first contacting surface pivotable about a first axis, and a positioner operable to rotate the first contacting surface about the first axis, wherein as the first contacting surface rotates about the first axis, the first contacting surface deforms the container.Type: GrantFiled: February 24, 2010Date of Patent: May 15, 2012Inventor: Moshe Ein-Gal
-
Patent number: 8178856Abstract: A charged particle beam writing apparatus includes a charge amount distribution calculation unit configured to calculate a charge amount distribution which is charged by irradiation of a charged particle beam onto a writing region of a target workpiece, by using a charge decay amount and a charge decay time constant both of which depend on a pattern area density, a position displacement amount distribution calculation unit configured to calculate a position displacement amount of each writing position due to charge amounts of the charge amount distribution by performing convolution of each charge amount of the charge amount distribution with a response function, and a writing unit configured to write a pattern on the each writing position where the position displacement amount has been corrected, using a charged particle beam.Type: GrantFiled: July 26, 2010Date of Patent: May 15, 2012Assignee: NuFlare Technology, Inc.Inventors: Noriaki Nakayamada, Seiji Wake
-
Patent number: 8178857Abstract: A method for flattening a sample surface by irradiating the sample surface with a gas cluster ion beam, generates clusters of source gas in a cluster generating chamber, ionizes the generated clusters in an ionization chamber, accelerates the ionized cluster beam in an electric field of an accelerating electrode, selects a cluster size using a magnetic field of a sorting mechanism, and irradiates the surface of a sample. An irradiation angle between the sample surface and the gas cluster ion beam is less than 30° and an average cluster size of the gas cluster ion beam is 50 or above.Type: GrantFiled: May 18, 2006Date of Patent: May 15, 2012Assignee: Japan Aviation Electronics Industry, LimitedInventors: Akinobu Sato, Akiko Suzuki, Emmanuel Bourelle, Jiro Matsuo, Toshio Seki
-
Patent number: 8178837Abstract: A navigation system for easily determining defective positions is provided. In the case of CAD navigation to defective positions, logical information for indicating defective positions is created in a CAD format, instead of CAD data of physical information indicating circuit design. Specifically, by attaching marks such as rectangles, characters, or lines, to an electron microscope image with software, quick navigation is performed with required minimum information. By using created CAD data, re-navigation with the same equipment and CAD navigation to heterogeneous equipment are performed.Type: GrantFiled: March 22, 2010Date of Patent: May 15, 2012Assignee: Hitachi High-Technologies CorporationInventors: Tohru Ando, Tsutomu Saito, Yasuhiko Nara, Mikio Takagi, Koichi Takauchi
-
Patent number: 8173978Abstract: Provided is a method for controlling electron beams in a multi-microcolumn, in which unit microcolumns having an electron emitter, a lens, and a deflector are arranged in an n×m matrix. A voltage is uniformly or differentially applied to each electron emitter or extractor. The same control voltage or different voltages are applied to a region at coordinates in a control division area of each extractor to deflect the electron beams. Lens layers not corresponding to the extractors are collectively or individually controlled so as to efficiently control the electron beams of the unit microcolumn. Further, a multi-microcolumn using the method is provided.Type: GrantFiled: July 5, 2005Date of Patent: May 8, 2012Assignee: Cebt Co., LtdInventors: Ho Seob Kim, Byeng Jin Kim
-
Patent number: 8173552Abstract: Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a liquid on a region of a die, and then forming an identification mark through the liquid on the die.Type: GrantFiled: August 4, 2009Date of Patent: May 8, 2012Assignee: Intel CorporationInventors: George P. Vakanas, Sergei L. Voronov, Luey Chon Ng, George E. Malouf
-
Patent number: 8173093Abstract: Provided is an iron silicide sputtering target in which the oxygen as the gas component in the target is 1000 ppm or less, and a manufacturing method of such iron silicide sputtering target including the steps of melting/casting high purity iron and silicon under high vacuum to prepare an alloy ingot, subjecting the ingot to gas atomization with inert gas to prepare fine powder, and thereafter sintering the fine powder. With this iron silicide sputtering target, the amount of impurities will be reduced, the thickness of the ?FeSi2 film during deposition can be made thick, the generation of particles will be reduced, a uniform and homogenous film composition can be yielded, and the sputtering characteristics will be favorable. The foregoing manufacturing method is able to stably produce this target.Type: GrantFiled: September 1, 2003Date of Patent: May 8, 2012Assignee: JX Nippon Mining & Metals CorporationInventors: Kunihiro Oda, Ryo Suzuki
-
Patent number: 8173962Abstract: An evaluation method and apparatus is provided for evaluating a displacement between patterns of a pattern image by using design data representative of a plurality of patterns superimposed ideally. A first distance is measured for an upper layer pattern between a line segment of the design data and an edge of the charged particle radiation image, a second distance is measured for a lower layer pattern between a line segment of the design data and an edge of the charged particle radiation image; and an superimposition displacement is detected between the upper layer pattern and lower layer pattern in accordance with the first distance and second distance.Type: GrantFiled: February 18, 2010Date of Patent: May 8, 2012Assignee: Hitachi High-Technologies CorporationInventors: Takumichi Sutani, Ryoichi Matsuoka, Hidetoshi Morokuma, Akiyuki Sugiyama, Hiroyuki Shindo
-
Patent number: 8173977Abstract: It is an object of the present invention to provide a laser irradiation apparatus and a laser irradiation method that increase energy intensity distribution in a region having low energy intensity distribution in an end region in a major-axis direction of laser light, in performing laser irradiation. In irradiating an irradiation surface with laser light, laser light oscillated from a laser oscillator is converged in one direction through an optical element. The laser light which passes through the optical element and which is converged in one direction passes through a means which shields an end region in a major-axis direction of the laser light. Accordingly, a region where energy intensity distribution is precipitously high in the end region in the major-axis direction of the laser light can be formed in the irradiation surface.Type: GrantFiled: September 26, 2007Date of Patent: May 8, 2012Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Koichiro Tanaka