Having Transistor Structure Patents (Class 257/187)
-
Patent number: 7485898Abstract: Subjected to obtain a crystalline TFT which simultaneously prevents increase of OFF current and deterioration of ON current. A gate electrode of a crystalline TFT is comprised of a first gate electrode and a second gate electrode formed in contact with the first gate electrode and a gate insulating film. LDD region is formed by using the first gate electrode as a mask, and a source region and a drain region are formed by using the second gate electrode as a mask. By removing a portion of the second gate electrode, a structure in which a region where LDD region and the second gate electrode overlap with a gate insulating film interposed therebetween, and a region where LDD region and the second gate electrode do not overlap, is obtained.Type: GrantFiled: May 1, 2007Date of Patent: February 3, 2009Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Setsuo Nakajima, Hisashi Ohtani, Shunpei Yamazaki
-
Publication number: 20090003399Abstract: An integrated circuit is provided with a photonic device and a spot-size converter waveguide device integrated on a common substrate. The spot-size converter waveguide device provides for transformation between a larger spot-size and a smaller spot-size corresponding to the photonic device. The spot-size converter waveguide device includes at least one of a bottom mirror and top mirror, which provide highly-reflective lower and upper cladding, respectively, for vertical confinement of light propagating through the waveguide device. The top mirror overlies opposing sidewalls of the spot-converter waveguide device, which provide highly-reflective sidewall cladding for lateral confinement of light propagating through the waveguide device. Advantageously, the highly-reflective lower cladding provided by the bottom mirror limits optical loss of the waveguide device. Similarly, the highly-reflective upper cladding and sidewall cladding provided by the top mirror limits optical loss of the waveguide device.Type: ApplicationFiled: June 26, 2007Publication date: January 1, 2009Inventor: Geoff W. Taylor
-
Publication number: 20080308840Abstract: A photo-FET based on a compound semiconductor including a channel layer formed on a substrate constituting a current path between source and drain electrodes, serving as part of a photodiode and a photosensitive region. A back-gate layer that serving as a substrate-side depletion layer formation layer is disposed between the substrate and the channel layer, and applies to the channel layer a back-gate bias by photogenerated carriers upon illumination. A barrier layer is disposed on the front side of the channel layer that causes one of the photogenerated carriers to run through the channel layer and other of the photogenerated carriers to sojourn or be blocked off. A front-side depletion layer formation layer is disposed on the front side of the channel layer brings the front-side depletion layer into contact with the substrate-side depletion layer without illumination to close the current path in the channel layer, bringing the photo-FET to an off-state.Type: ApplicationFiled: August 14, 2008Publication date: December 18, 2008Applicant: National Institute of Advanced Ind. Sci & TechInventor: Mutsuo Ogura
-
Patent number: 7432491Abstract: An image sensor including a substrate, at least one metal layer, and a plurality of pixels arranged in array. Each pixel includes a sense element disposed in the substrate and at least one metal interconnect segment disposed in the at least one metal layer. The array includes a pair of perpendicular axes extending from an optical center, wherein for a line of pixels extending perpendicularly from one of the axes to a peripheral edge of the array a spacing between the sense elements of consecutive pairs of pixels of the line is at least equal to a spacing between the associated at least one metal interconnect segments, and wherein for at least one consecutive pair of pixels of the line the spacing between the sense elements is greater by an incremental amount than the spacing between the corresponding at least one metal interconnect segments.Type: GrantFiled: October 24, 2005Date of Patent: October 7, 2008Assignee: Micron Technology, Inc.Inventors: Christopher D. Silsby, William G. Gazeley, Matthew M. Borg
-
Patent number: 7420225Abstract: A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode.Type: GrantFiled: November 30, 2005Date of Patent: September 2, 2008Assignee: Sandia CorporationInventors: Michael C. Wanke, Mark Lee, Eric A. Shaner, S. James Allen
-
Publication number: 20080203425Abstract: A phototransistor (400) comprises an emitter (43) comprising antimony, a base (42) comprising antimony, and a collector (41) comprising antimony. Preferably, the emitter, the base and the collector each comprises at least one of AlInGaAsSb, AlGaAsSb, AlGaSb, GaSb and InGaAsSb. The base comprises an emitter-contacting portion (41b) with a base-contacting portion (43a) of the emitter. The collector comprises a base-contacting portion (41b) which is in contact with a collector-contacting portion (421a) of the base. The phototransistor produces an internal gain upon being contacted with light within a receivable wavelength range, preferably greater than 1.7 micrometers. Also, a method of detecting light using such a phototransistor.Type: ApplicationFiled: January 24, 2005Publication date: August 28, 2008Inventor: Oleg Sulima
-
Patent number: 7417268Abstract: An image sensor including a pixel assembly, each pixel including a photodiode and an access transistor connected to a read circuit, the photodiode and the access transistor being formed in and above a first semiconductor substrate, all or part of the read circuit being formed in a second semiconductor substrate, the second substrate being placed above the first substrate and separated therefrom by an intermediary insulating layer covering the access transistor, the photodiode receiving incident photons on its lower surface side opposite to the intermediary insulating layer.Type: GrantFiled: July 20, 2006Date of Patent: August 26, 2008Assignee: STMicroelectronics S.A.Inventors: Yvon Cazaux, Didier Herault
-
Patent number: 7408207Abstract: A device manufacturing method, including: a first process for providing the plural elements on the original substrate via a separation layer in a condition where terminal sections are exposed to a surface on an opposite side to the separation layer; a second process for adhering the surface where the terminal sections of the elements to be transferred on the original substrate are exposed, via conductive adhesive, to a surface of the final substrate on a side where conductive sections for conducting with the terminal sections of the elements are provided; a third process for producing exfoliation in the separation layer between the original substrate and the final substrate; and a fourth process for separating the original substrate from which the transfer of elements has been completed, from the final substrate.Type: GrantFiled: August 17, 2005Date of Patent: August 5, 2008Assignee: Seiko Epson CorporationInventors: Takashi Hashimoto, Atshushi Takakuwa, Tomoyuki Kamakura, Sumio Utsunomiya
-
Publication number: 20080179625Abstract: An image sensor includes a photo sensitive device and at lest one transistor such as a drive transistor for converting charge accumulated by the photo sensitive device into an electrical signal. That at least one transistor includes a channel region comprised of a plurality of differently doped regions that generates a conduction band offset in the channel region. Such a conductive band offset increases electron mobility in the channel region for minimizing charge trapping at an interface between a gate dielectric and the semiconductor substrate for minimizing flicker noise.Type: ApplicationFiled: November 13, 2007Publication date: July 31, 2008Inventors: Kyung-Ho Lee, Yi-Tae Kim, Jung-Chak Ahn
-
Patent number: 7400004Abstract: Regions of an integrated circuit are isolated by a structure that includes at least one isolating trench on the periphery of an active area. The trench is deep, extending at least about 0.5 ?m into the substrate. The isolating structure prevents photons and electrons originating in peripheral circuitry from reaching the active area. Where the substrate has a heavily-doped lower layer and an upper layer on it, the trench can extend through the upper layer to the lower layer. A thermal oxide can be grown on the trench walls. A liner can also be deposited on the sidewalls of each trench. A fill material having a high-extinction coefficient is then deposited over the liner. The liner can also be light absorbent so that both the liner and fill material block photons.Type: GrantFiled: May 10, 2006Date of Patent: July 15, 2008Assignee: Micron Technology, Inc.Inventors: Bryan G. Cole, Troy Sorensen
-
Patent number: 7397066Abstract: Microelectronic imagers with curved image sensors and methods for manufacturing curved image sensors. In one embodiment, a microelectronic imager device includes an imager die having a substrate, a curved microelectronic image sensor having a face with a convex and/or concave portion at one side of the substrate, and integrated circuitry in the substrate operatively coupled to the image sensor. The imager die can further include external contacts electrically coupled to the integrated circuitry and a cover over the curved image sensor.Type: GrantFiled: August 19, 2004Date of Patent: July 8, 2008Assignee: Micron Technology, Inc.Inventor: Steven D. Oliver
-
Patent number: 7391062Abstract: Group III-nitride quaternary and pentenary material systems and methods are disclosed for use in semiconductor structures, including laser diodes, transistors, and photodetectors, which reduce or eliminate phase separation and provide increased emission efficiency. In an exemplary embodiment the semiconductor structure includes a first ternary, quaternary or pentenary material layer using BInGaAlN material system of a first conduction type formed substantially without phase separation, and a quaternary or pentenary material active layer using BInGaAlN material system substantially without phase separation, and a third ternary, quaternary or pentenary material layer using BInGaAlN material system of an opposite conduction type formed substantially without phase separation.Type: GrantFiled: March 8, 2005Date of Patent: June 24, 2008Assignee: Matsushita Electric Industrial Co., Ltd.Inventors: Toru Takayama, Takaaki Baba, James S. Harris, Jr.
-
Patent number: 7385232Abstract: A dopant gradient region of a first conductivity type and a corresponding channel impurity gradient below a transfer gate and adjacent a charge collection region of a CMOS imager photodiode are disclosed. The channel impurity gradient in the transfer gate provides a complete charge transfer between the charge collection region of the photodiode and a floating diffusion node. The dopant gradient region is formed by doping a region at one end of the channel with a low enhancement dopant and another region at the other end of the channel with a high enhancement dopant.Type: GrantFiled: June 22, 2005Date of Patent: June 10, 2008Assignee: Micron Technology, Inc.Inventor: Inna Patrick
-
Publication number: 20080105820Abstract: An electromagnetic energy detection system, for detecting electromagnetic energy incident thereon, includes a resonant structure which includes first and second reflective regions separated by a photosensitive region such that electromagnetic energy entering the resonant structure is multiply reflected therein for detection by the photosensitive region.Type: ApplicationFiled: November 7, 2007Publication date: May 8, 2008Inventor: Robert H. Cormack
-
Patent number: 7368755Abstract: Provided is an array substrate of an LCD that includes a substrate, an active layer, a first insulating layer, and a gate electrode sequentially formed on the substrate. A source region and a drain region reside in predetermined regions of the active layer and each is doped with impurity ions. A second insulating layer overlies an entire surface of the substrate including the gate electrode. A pixel electrode resides on the second insulating layer. First and second contact holes reside in the first and second insulating layer and expose portions of the source region and the drain region, respectively. A portion of a source electrode contacts the source region through the first contact hole and a first portion of a drain electrode contacts the drain region and a second portion contacts the pixel electrode.Type: GrantFiled: September 21, 2004Date of Patent: May 6, 2008Assignee: LG. Philips LCD. Co., LtdInventors: Hun Jeoung, Jeong Woo Jang
-
Patent number: 7348609Abstract: The thin film transistor has a non-transparent structure besides and insulated with the gate. Hence, the light transmitted from the substrate is blocked and the light current induced in the thin film transistor is negligible. The method uses a mask with a slit pattern to form a non-uniform photoresist. Hence, the mask could be used to pattern two conductor layers for forming source/drain/channel.Type: GrantFiled: December 7, 2005Date of Patent: March 25, 2008Assignee: Chunghwa Picture Tubes, Ltd.Inventors: Hung-Jen Chu, Nei-Jen Hsiao, Hui-Chung Shen, Meng-Chi Liou
-
Patent number: 7348200Abstract: The invention provides a method of growing a non-polar a-plane gallium nitride. In the method, first, an r-plane substrate is prepared. Then, a low-temperature nitride-based nucleation layer is deposited on the substrate. Finally, the non-polar a-plane gallium nitride is grown on the nucleation layer. In growing the non-polar a-plane gallium nitride, a gallium source is supplied at a flow rate of about 190 to 390 ?mol/min and the flow rate of a nitrogen source is set to produce a V/III ratio of about 770 to 2310.Type: GrantFiled: March 3, 2006Date of Patent: March 25, 2008Assignees: Samsung Electro-Mechanics Co. Ltd., The University of TokushimaInventors: Soo Min Lee, Rak Jun Choi, Naoi Yoshiki, Sakai Shiro, Masayoshi Koike
-
Publication number: 20080048209Abstract: An image sensor according to embodiments may include a first substrate having photodiode cells, a second substrate having a logic circuit, and connection electrodes that may electrically connect the photodiode cells with the logic circuit. In embodiments, more area may be available on the first substrate for photodiode cells and light loss may be reduced.Type: ApplicationFiled: July 24, 2007Publication date: February 28, 2008Inventor: Jae Won Han
-
Publication number: 20080035954Abstract: A semiconductor device includes a photodiode formed using a silicon substrate, a wide-bandgap semiconductor layer formed on the silicon substrate and having a bandgap larger than that of silicon, and a switching element formed using the wide-bandgap semiconductor layer. The switching element is electrically connected to the photodiode so as to be on/off-controlled by a control signal from the photodiode.Type: ApplicationFiled: August 9, 2007Publication date: February 14, 2008Inventor: Yoshiaki Nozaki
-
Patent number: 7312484Abstract: A semiconductor structure, having a doped well region being formed in a substrate layer and a transistor having a terminal provided within said doped well region. The semiconductor structure also includes an oxide layer formed over the substrate layer, the doped well region, a poly silicon region, and the terminal of the transistor. The oxide layer including a step region being located where a height of the oxide layer transitions from a height associated with the doped well region to a height associated with the terminal of the transistor.Type: GrantFiled: February 7, 2006Date of Patent: December 25, 2007Assignee: Cypress Semiconductor CorporationInventors: Clifford I. Drowley, Ching-Chun Wang, Jungwook Yang
-
Patent number: 7304331Abstract: A nitride semiconductor device according to one embodiment of the present invention includes: a non-doped first aluminum gallium nitride (AlxGa1-xN (0?x?1)) layer which is formed as a channel layer; a non-doped or n type second aluminum gallium nitride (AlyGa1-yN (0?y?1, x <y)) layer which is formed on the first aluminum gallium nitride layer as a barrier layer; an aluminum nitride (AlN) film which is formed on the second aluminum gallium nitride layer as a gate insulating film lower layer; an aluminum oxide (AL2O3) film which is formed on the aluminum nitride film as a gate insulating film upper layer; a source electrode and a drain electrode which are formed as first and second main electrodes to be electrically connected to the second aluminum gallium nitride layer, respectively; and a gate electrode which is formed on the aluminum oxide film as a control electrode.Type: GrantFiled: December 20, 2004Date of Patent: December 4, 2007Assignee: Kabushiki Kaisha ToshibaInventors: Wataru Saito, Ichiro Omura
-
Patent number: 7294873Abstract: In an X-Y address type solid state image pickup device represented by a CMOS image sensor, a back side light reception type pixel structure is adopted in which a wiring layer is provided on one side of a silicon layer including photo-diodes formed therein. and visible light is taken in from the other side of the silicon layer, namely, from the side (back side) opposite to the wiring layer. wiring can be made without taking a light-receiving surface into account, and the degree of freedom in wiring for the pixels is enhanced.Type: GrantFiled: July 10, 2002Date of Patent: November 13, 2007Assignee: Sony CorporationInventors: Ryoji Suzuki, Keiji Mabuchi, Tomonori Mori
-
Patent number: 7291871Abstract: A pixel structure is provided. The pixel structure comprises a scan line, a data line, a pixel electrode and a thin film transistor. The data line branches out into a plurality of subsidiary lines in the area above the scan line. If there is a short circuit between the scan line and the data line, the short circuit can be repaired by cutting the connections to one of the branching subsidiary lines. In one embodiment of this invention, a repair line is set up on one side of the data line such that a portion of the repair line crosses over the scan line. If there is a short circuit between the scan line and the data line, a laser repair operation can be carried out through the repair line.Type: GrantFiled: October 19, 2005Date of Patent: November 6, 2007Assignee: Au Optronics CorporationInventor: Han-Chung Lai
-
Patent number: 7288801Abstract: A CMOS image sensing structure includes a photodiode, in which an epitaxial layer is on a P-type substrate. The photodiode includes an N-well collection node in the epitaxial layer. An isolation trench is provided around the collection node to provide better control of the width of the collection node. The collection node can be surrounded by P-wells or by epitaxial material. It can also be surrounded by epitaxial material with the isolation trench being outwardly extended to ensure compliance with existing design rules.Type: GrantFiled: February 25, 2004Date of Patent: October 30, 2007Assignee: STMicroelectronics Ltd.Inventor: Jeffrey Raynor
-
Patent number: 7262445Abstract: In a charge transfer device which has many two-layered transfer electrodes, 8L disposed along a charge transfer direction X above a transfer channel is driven with two-phase driving pulses supplied to the transfer electrodes of the second layer, the transfer channel below the last-stage transfer electrode disposed at the last stage of the charge transfer direction X is constructed to have three-step potential, and the potential is set to be stepwise deeper from the upstream side to the downstream side in the charge transfer direction X.Type: GrantFiled: October 27, 2004Date of Patent: August 28, 2007Assignee: Sony CorporationInventor: Naoki Nishi
-
Patent number: 7244971Abstract: A solid state image pickup device comprising: a semiconductor substrate having a surface layer; charge storage regions disposed in the surface layer; vertical channels disposed in the surface layer adjacent to respective columns of the charge storage regions; vertical transfer electrodes formed above the semiconductor substrate, crossing the vertical channels; a horizontal channel disposed in the surface layer coupled to the vertical channels, having a first portion with transfer stages, each including a barrier region and a well region, and a second portion constituting a gate region with gradually decreasing width, and including an upstream region and a downstream region of different effective impurity concentration, establishing a built-in potential; horizontal transfer electrodes disposed above respective transfer stages of the horizontal channel; an output gate electrode disposed above the gate region; a floating diffusion region disposed in the surface layer coupled to the gate region of the horizontalType: GrantFiled: May 19, 2004Date of Patent: July 17, 2007Assignee: Fujifilm CorporationInventors: Tomohiro Sakamoto, Yuko Nomura
-
Patent number: 7227199Abstract: Disclosed is a method of manufacturing an image sensor having light sensitivity over a photodiode equal in area to that of a unit pixel. The image sensor includes an image sensor comprising: a first semiconductor substrate doped with a first conductive dopant; a first diffusion layer formed in the semiconductor substrate and doped with a second conductive dopant; a second diffusion layer formed in the semiconductor substrate adjacent the first diffusion layer and having a width wider than a width of the first diffusion layer; a third diffusion layer doped with the first conductive dopant and formed at an exposed surface of the semiconductor substrate in the first diffusion layer; a gate electrode formed on the exposed surface and having a first edge adjacent to the third diffusion layer; and a fourth diffusion layer doped with the second conductive dopant and formed at the exposed surface adjacent a second edge of the gate electrode, the fourth diffusion layer defining a gap with the second diffusion layer.Type: GrantFiled: February 8, 2005Date of Patent: June 5, 2007Assignee: Hynix Semiconductor Inc.Inventor: Joon Hwang
-
Patent number: 7224011Abstract: Image sensors and methods of manufacturing an image sensor are disclosed. A disclosed photo diode may receive short wavelength light in its depletion region without exhibiting defective phenomenon such as noise and dark current. In the illustrated example, this performance is achieved by forming a trench type light-transmission layer to occupy a major surface of the photo diode so as to reduce the area available for defects on the surface of the semiconductor substrate. As a result of this reduction, the depletion region formed upon the operation of the sensor may extend toward the surface of the semiconductor substrate without concern for defects. The image sensor may be manufactured without forming a blocking layer in connection with a silicide layer.Type: GrantFiled: December 23, 2003Date of Patent: May 29, 2007Assignee: Dongbu Electronics, Co. Ltd.Inventor: Hoon Jang
-
Patent number: 7224003Abstract: The present invention provides a solid-state image pickup apparatus which is able to easily discharge signal charges in a signal accumulating section and which is free from reduction in the dynamic range of the element, thermal noise in a dark state, an image-lag and so forth even if the pixel size of the MOS solid-state image pickup apparatus is reduced, the voltage of a reading gate is lowered and the concentration in the well is raised. The solid-state image pickup apparatus according to the present invention incorporates a p-type silicon substrate having a surface on which a p+ diffusion layer for constituting a photoelectric conversion region and a drain of a reading MOS field effect transistor are formed. A signal accumulating section formed by an n-type diffusion layer is formed below the p+ diffusion layer. A gate electrode of the MOS field effect transistor is, on the surface of the substrate, formed between the p+ diffusion layer and the drain.Type: GrantFiled: March 24, 2006Date of Patent: May 29, 2007Assignee: Kabushiki Kaisha ToshibaInventors: Nobuo Nakamura, Hisanori Ihara, Ikuko Inoue, Hidenori Shibata, Akiko Nomachi, Yoshiyuki Shioyama, Hidetoshi Nozaki, Masako Hori, Akira Makabe, Hiroshi Naruse, Hideki Inokuma, Seigo Abe, Hirofumi Yamashita, Tetsuya Yamaguchi
-
Patent number: 7217961Abstract: A solid-state image pickup device includes an element isolation insulating film electrically isolating pixels on the surface of a well region; a first isolation diffusion layer electrically isolating the pixels under the element isolation insulating film; and a second isolation diffusion layer electrically isolating the pixels under the first isolation diffusion layer, wherein a charge accumulation region is disposed in the well region surrounded by the first and second isolation diffusion layers, the inner peripheral part of the first isolation diffusion layer forms a projecting region, an impurity having a conductivity type of the first isolation diffusion layer and an impurity having a conductivity type of the charge accumulation region are mixed in the projecting region, and a part of the charge accumulation region between the charge accumulation region and the second isolation diffusion layer is abutted or close to the second isolation diffusion layer under the projecting region.Type: GrantFiled: January 26, 2006Date of Patent: May 15, 2007Assignee: Sony CorporationInventors: Keiji Tatani, Hideshi Abe, Masanori Ohashi, Atsushi Masagaki, Atsuhiko Yamamoto, Masakazu Furukawa
-
Patent number: 7214971Abstract: A semiconductor light-receiving device has a substrate including upper, middle and lower regions in its front side. A p-type layer on the lower region has a top surface including a portion on a level with the middle region. An electrode covers at least part of the boundary between the portion of the p-type layer and the middle region. An n-type layer on the p-type layer has a top surface including a portion on a level with the upper region. Another electrode covers at least part of the boundary between the portion of the n-type layer and the upper region.Type: GrantFiled: June 10, 2004Date of Patent: May 8, 2007Assignee: Hamamatsu Photonics K.K.Inventors: Minoru Niigaki, Kazutoshi Nakajima
-
Patent number: 7211838Abstract: The present invention provides an electro-optical device capable of achieving an increased light emission efficiency and an enhanced visibility. An organic electroluminescents (EL) display device has a plurality of material layers including a luminescent layer. In a plurality of material layers layered in the direction of light emission from the luminescent layer, first and second insulating interlayers are disposed between a substrate, which is positioned at the outermost surface, and the luminescent layer. The first and second insulating interlayers have a refractive index lower than that of the substrate. Accordingly, by forming predetermined materials having a low refractive index, the resulting low refractive index layers have a low dielectric constant, and consequently, the capacity between wires can be reduced.Type: GrantFiled: December 27, 2002Date of Patent: May 1, 2007Assignee: Seiko Epson CorporationInventor: Takashi Miyazawa
-
Patent number: 7208778Abstract: A power amplifier includes a substrate, a heat sink for dissipating heat, and a heterojunction bipolar transistor (HBT) disposed on the substrate. The HBT includes a collector, a base, and at least an emitter. The power amplifier further includes an emitter electrode directly connecting the heat sink and the emitter of the HBT. The emitter electrode is a flip-chip bump, and the heat sink is a metal layer that sandwiches the HBT with the substrate. Alternatively, the emitter electrode is a backside via that penetrates the substrate, and the heat sink is a metal layer, disposed on the substrate opposite the HBT.Type: GrantFiled: October 19, 2004Date of Patent: April 24, 2007Assignee: Mediatek IncorporationInventors: Jin Wook Cho, Hongxi Xue
-
Patent number: 7205584Abstract: A method and structure for reducing dark current in an image sensor includes preventing unwanted electrons from being collected in the photosensitive region of the image sensor. In one embodiment, dark current is reduced by providing a deep n-type region having an n-type peripheral sidewall formed in a p-type substrate region underlying a pixel array region to separate the pixel array region from a peripheral circuitry region of the image sensor. The method and structure also provide improved protection from blooming.Type: GrantFiled: December 22, 2003Date of Patent: April 17, 2007Assignee: Micron Technology, Inc.Inventors: Howard E. Rhodes, Steve Cole
-
Patent number: 7199406Abstract: A method for manufacturing a transistor includes forming a semiconductor layer on a substrate, a first insulation film on the semiconductor layer, and a gate electrode on the first insulation film. The method also includes forming a source region, a channel region, and a drain region in the semiconductor layer and forming a second insulation film on the gate electrode. A source electrode and a drain electrode are formed on the second insulation film and are coupled to the source region and the drain region, respectively. The method further includes coupling the drain electrode to the gate electrode through a contact hole that is vertically above the channel region.Type: GrantFiled: November 5, 2004Date of Patent: April 3, 2007Assignee: Samsung SDI Co., Ltd.Inventors: Keum-Nam Kim, Ui-Ho Lee
-
Patent number: 7199405Abstract: A pixel sensor cell for use in a CMOS imager exhibiting improved storage capacitance. The source follower transistor is formed with a large gate that has an area from about 0.3 ?m2 to about 10 ?m2. The large size of the source follower gate enables the photocharge collector area to be kept small, thereby permitting use of the pixel cell in dense arrays, and maintaining low leakage levels. Methods for forming the source follower transistor and pixel cell are also disclosed.Type: GrantFiled: October 20, 2004Date of Patent: April 3, 2007Assignee: Micron Technology, Inc.Inventor: Howard E. Rhodes
-
Patent number: 7196365Abstract: To arrange diffusion-inhibitory films 5a, 5b, and 5c for inhibiting the diffusion of a wiring material absent in a region on or above a light receiving unit 2, the diffusion-inhibitory films 5a, 5b, and 5c formed on a region above the light receiving unit 2 are selectively removed. Alternatively, the diffusion-inhibitory films are arranged only on top surfaces of wirings 4a, 4b, and 4c, and only a passivation film 12 and interlayer insulating films 3a, 3b, and 3c are arranged in the region on or above the light receiving unit 2. Thus, with less interface between different insulation films and less reflection of incident light in an incident region, the incident light 13 highly efficiently passes through these insulating films and comes into the light receiving unit 2. The light receiving unit 2 can thereby receive a sufficient quantity of the incident light 13.Type: GrantFiled: April 25, 2003Date of Patent: March 27, 2007Assignee: Sony CorporationInventor: Ikuhiro Yamamura
-
Patent number: 7161193Abstract: There is provided an electro-optical device including, above a substrate, data lines extending in a first direction, scanning lines extending in a second direction and intersecting the data lines, pixel electrodes and thin film transistors disposed so as to correspond to intersection regions of the data lines and the scanning lines; and storage capacitors electrically connected to the thin film transistors and the pixel electrodes, the thin film transistors including semiconductor layers having channel regions which extend in a longitudinal direction and channel adjacent regions which extend further from the channel regions in the longitudinal direction, and the scanning lines including light-shielding parts disposed at sides of the channel regions.Type: GrantFiled: April 27, 2005Date of Patent: January 9, 2007Assignee: Seiko Epson CorporationInventors: Hidenori Kawata, Yoshifumi Tsunekawa, Tomohiko Hayashi
-
Patent number: 7154136Abstract: Regions of an integrated circuit are isolated by a structure that includes at least one isolating trench on the periphery of an active area. The trench is deep, extending at least about 0.5 ?m into the substrate. The isolating structure prevents photons and electrons originating in peripheral circuitry from reaching the active area. Where the substrate has a heavily-doped lower layer and an upper layer on it, the trench can extend through the upper layer to the lower layer. A thermal oxide can be grown on the trench walls. A liner can also be deposited on the sidewalls of each trench. A fill material having a high-extinction coefficient is then deposited over the liner. The liner can also be light absorbent so that both the liner and fill material block photons.Type: GrantFiled: February 20, 2004Date of Patent: December 26, 2006Assignee: Micron Technology, Inc.Inventors: Bryan G. Cole, Troy Sorensen
-
Patent number: 7151280Abstract: A semiconductor device includes a heterojunction semiconductor region 9, which forms a heterojunction with a drain region 2. The heterojunction semiconductor region 9 is connected to a source electrode 7, and has a band gap different from a band gap of a semiconductor substrate constituting the drain region 2. It is possible to set the size of an energy barrier against conduction electrons, which is formed between the drain region 2 and the heterojunction semiconductor region 9, into a desired size by changing the conductivity type or the impurity density of the heterojunction semiconductor region 9. This is a characteristic not found in a Schottky junction, in which the size of the energy barrier is inherently determined by a work function of a metal material. It is easy to achieve optimal design of a passive element in response to a withstand voltage system of a MOSFET as a switching element.Type: GrantFiled: December 16, 2004Date of Patent: December 19, 2006Assignee: Nissan Motor Co., Ltd.Inventors: Tetsuya Hayashi, Masakatsu Hoshi, Saichirou Kaneko, Hideaki Tanaka
-
Patent number: 7144521Abstract: A method for etching a high aspect ratio feature through a mask into a layer to be etched over a substrate is provided. The substrate is placed in a process chamber, which is able to provide RF power at a first frequency, a second frequency different than the first frequency, and a third frequency different than the first and second frequency. An etchant gas is provided to the process chamber. A first etch step is provided, where the first frequency, the second frequency, and the third frequency are at power settings for the first etch step. A second etch step is provided, where the first frequency, the second frequency, and the third frequency are at a different power setting.Type: GrantFiled: December 15, 2003Date of Patent: December 5, 2006Assignee: Lam Research CorporationInventors: Camelia Rusu, Rajinder Dhindsa, Eric A. Hudson, Mukund Srinivasan, Lumin Li, Felix Kozakevich
-
Patent number: 7126169Abstract: The present invention provides a semiconductor element in which the field-effect transistor and the Schottky diode are arranged such that a depletion layer stemming from the Schottky diode is superimposed on a depletion layer stemming from a junction between a second conductivity type semiconductor constituting the field-effect transistor and a drift region (first conductivity type semiconductor) in an off-state. Furthermore, the present invention provides a semiconductor element in which the field-effect transistor and the Schottky diode are arranged so that a second conductivity type semiconductor other than the second conductivity type semiconductor constituting the field-effect transistor is not interposed between the electric field effect transistor and the Schottky diode. According to preferable embodiments of the present invention, the reverse recovery time due to a parasitic diode can be reduced by providing the Schottky diode such that the element area of the semiconductor element is not increased.Type: GrantFiled: October 23, 2001Date of Patent: October 24, 2006Assignee: Matsushita Electric Industrial Co., Ltd.Inventor: Makoto Kitabatake
-
Patent number: 7115925Abstract: An active pixel includes a a photosensitive element formed in a semiconductor substrate. A transfer transistor is formed between the photosensitive element and a floating diffusion and selectively operative to transfer a signal from the photosensitive element to the floating diffusion. The floating diffusion is formed from an n-type implant with a dosage in the range of 5e13 to 5e14 ions/cm2. Finally, an amplification transistor is controlled by the floating diffusion.Type: GrantFiled: January 14, 2005Date of Patent: October 3, 2006Assignee: OmniVision Technologies, Inc.Inventor: Howard E. Rhodes
-
Patent number: 7105867Abstract: There is a demand of a solid-state imaging device capable of being driven at a high speed and in which the shading of sensitivity and illuminance defect can be prevented from being caused. A solid-state imaging device (20) comprises a light-receiving sensor section disposed on the surface layer portion of a substrate (21) for performing a photoelectric conversion, a charge transfer section for transferring a signal charge read out from the light-receiving sensor section, a transfer electrode (27) (28) made of polysilicon formed on a substrate (21) at its position approximately above the charge transfer section through an insulating film (26), and an interconnection made of polysilicon and interconnected to the transfer electrode (27) (28). At least one of the polysilicon transfer electrode (27)(28) and the interconnection is formed on a polysilicon layer (27a) (28a) by selectively depositing a high-melting point metal having a resistance value lower than that of polysilicon.Type: GrantFiled: March 8, 2005Date of Patent: September 12, 2006Assignee: Sony CorporationInventors: Yasushi Maruyama, Hideshi Abe
-
Patent number: 7102185Abstract: An interline transfer type image sensing device that can be operated at high speed and with low image smear is described. The device incorporates a refractory metal layer which is used for both a light shield over the vertical charge transfer region and as a wiring layer for low resistance strapping of poly crystalline silicon (polysilicon) gate electrodes for the vertical charge transfer region. Plugs provided by a separate metallization layer connect the refractory light shield to the polysilicon gate electrode. These plugs allow high temperature processing after refractory light shield patterning for improved sensor performance without degradation of the polysilicon gate electrode or the refractory lightshield layer.Type: GrantFiled: June 21, 2004Date of Patent: September 5, 2006Assignee: Eastman Kodak CompanyInventors: David N. Nichols, David L. Losee, Christopher Parks
-
Patent number: 7098394Abstract: A system and method for providing power to a light-powered transponder. In order to create a sufficient voltage differential, two different photovoltaic elements are used. The photovoltaic elements generate voltages of different polarities. Because the photovoltaic elements are used independently to generate voltages with different polarities, the present system can achieve a desired voltage differential despite the inherent difficulties presented by the use of a standard CMOS process.Type: GrantFiled: March 21, 2003Date of Patent: August 29, 2006Assignee: Pharmaseq, Inc.Inventors: John Armer, Thomas Richard Senko
-
Patent number: 7087939Abstract: There is a demand of a solid-state imaging device capable of being driven at a high speed and in which the shading of sensitivity and illuminance defect can be prevented from being caused. A solid-state imaging device (20) includes a light-receiving sensor section disposed on the surface layer portion of a substrate (21) that performs a photoelectric conversion, a charge transfer section that transfers a signal charge read out from the light-receiving sensor section, a transfer electrode (27) (28) made of polysilicon formed on a substrate (21) at a position approximately above the charge transfer section through an insulating film (26), and an interconnection made of polysilicon and interconnected to the transfer electrode (27) (28). At least one of the polysilicon transfer electrode (27)(28) and the interconnection is formed on a polysilicon layer (27a) (28a) by selectively depositing a high-melting point metal having a resistance value lower than that of polysilicon.Type: GrantFiled: March 8, 2005Date of Patent: August 8, 2006Assignee: Sony CorporationInventors: Yasushi Maruyama, Hideshi Abe
-
Patent number: 7067857Abstract: The gist of the present invention is as follows: In a monolithic microwave integrate circuit (MMIC) using a heterojunction bipolar transistor (HBT), via holes are respectively formed from the bottom of the MMIC for the emitter, base and collector. Of the via holes, one is located so as to face the HBT. The respective topside electrodes for the other via holes located so as not to face the HBT are provided in contact with the MMIC substrate.Type: GrantFiled: March 1, 2004Date of Patent: June 27, 2006Assignee: Hitachi, Ltd.Inventors: Kazuhiro Mochizuki, Isao Ohbu, Tomonori Tanoue, Chisaki Takubo, Kenichi Tanaka
-
Patent number: 7067853Abstract: This invention discloses the design of a semiconductor-based image intensifier chip and its constituent photodetector array device based on sidewall-passivated mesa heterojunction phototransistors (HPTs).Type: GrantFiled: March 18, 2005Date of Patent: June 27, 2006Inventor: Jie Yao
-
Patent number: 7045833Abstract: An avalanche photodiode including a multiplication layer is provided. The multiplication layer may include a well region and a barrier region. The well region may include a material having a higher carrier ionization probability than a material used to form the barrier region.Type: GrantFiled: October 1, 2001Date of Patent: May 16, 2006Assignee: Board of Regents, The University of Texas SystemInventors: Joe C. Campbell, Ping Yuan