Light Responsive Structure Patents (Class 257/21)
  • Publication number: 20140312303
    Abstract: The present invention discloses a photo-detector comprising: an n-type photon absorbing layer of a first energy bandgap; a middle barrier layer, an intermediate layer is a semiconductor structure; and a contact layer of a third energy bandgap, wherein the layer materials are selected such that the first energy bandgap of the photon absorbing layer is narrower than that of said middle barrier layer; wherein the material composition and thickness of said intermediate layer are selected such that the valence band of the intermediate layer lies above the valence band in the barrier layer to create an efficient trapping and transfer of minority carriers from the barrier layer to the contact layer such that a tunnel current through the barrier layer from the contact layer to the photon absorbing layer is less than a dark current in the photo-detector and the dark current from the photon-absorbing layer to said middle barrier layer is essentially diffusion limited and is due to the unimpeded flow of minority carrier
    Type: Application
    Filed: April 7, 2014
    Publication date: October 23, 2014
    Applicant: Semi Conductor Devices-An Elbit Systems-Rafael Partnership
    Inventor: Philip KLIPSTEIN
  • Patent number: 8866199
    Abstract: An object of the present invention is to provide a group III-V compound semiconductor photo detector comprising an absorption layer having a group III-V compound semiconductor layer containing Sb as a group V constituent element, and an n-type InP window layer, resulting in reduced dark current. The InP layer 23 grown on the absorption layer 23 contains antimony as impurity, due to the memory effect with antimony which is supplied during the growth of a GaAsSb layer of the absorption layer 21. In the group III-V compound semiconductor photo detector 11, the InP layer 23 contains antimony as impurity and is doped with silicon as n-type dopant. Although antimony impurities in the InP layer 23 generate holes, the silicon contained in the InP layer 23 compensates for the generated carriers. As a result, the second portion 23d of the InP layer 23 has sufficient n-type conductivity.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: October 21, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Katsushi Akita, Takashi Ishizuka, Kei Fujii, Youichi Nagai
  • Publication number: 20140306182
    Abstract: A solid-state imaging device includes a first electrode, a second electrode disposed opposing to the first electrode, and a photoelectric conversion layer, which is disposed between the first electrode and the second electrode and in which narrow gap semiconductor quantum dots are dispersed in a conductive layer, wherein one electrode of the first electrode and the second electrode is formed from a transparent electrode and the other electrode is formed from a metal electrode or a transparent electrode.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Inventor: Atsushi Toda
  • Patent number: 8860164
    Abstract: A light receiving element includes a core configured to propagate a signal light, a first semiconductor layer having a first conductivity type, the first semiconductor layer being configured to receive the signal light from the core along a first direction in which the core extends, an absorbing layer configured to absorb the signal light received by the first semiconductor layer, and a second semiconductor layer having a second conductivity type opposite to the first conductivity type.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: October 14, 2014
    Assignee: Fujitsu Limited
    Inventor: Kazumasa Takabayashi
  • Publication number: 20140291479
    Abstract: The invention relates to quantum dot and photodetector technology, and more particularly, to quantum dot infrared photodetectors (QDIPs) and focal plane array. The invention further relates to devices and methods for the enhancement of the photocurrent of quantum dot infrared photodetectors in focal plane arrays.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 2, 2014
    Inventors: Xuejun Lu, Guiru Gu, Puminun Vasinajindakaw
  • Patent number: 8847204
    Abstract: This invention provides a germanium electroluminescence device and a fabricating method of the same for using germanium of an indirect bandgap semiconductor without modifying a bandgap as a light-emitting layer which emits a 1550 nm-wavelength light and enabling to use not only as infrared LEDs itself but also as light sources for optical communication systems.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: September 30, 2014
    Assignees: Seoul National University R&DB Foundation, The Board of Trustees of the Leland Standford Junior University
    Inventors: Byung-Gook Park, James S. Harris, Jr., Seongjae Cho
  • Publication number: 20140264275
    Abstract: A photodetector is provided with a thin film double layer heterostructure. The photodetector is comprised of: a substrate; a channel layer of a transistor deposited onto a top surface of the substrate; a source layer of the transistor deposited on the top surface of the substrate; a drain layer of the transistor deposited on the top surface of the substrate, the source layer and the drain layer disposed on opposing sides of the channel layer; a barrier layer deposited onto the channel layer; and a light absorbing layer deposited on the barrier layer. The light absorbing layer is configured to absorb light and, in response to light incident on the light absorbing layer, electrical conductance of the channel layer is changed through hot carrier tunneling from the light absorbing layer to the channel layer.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Inventors: Zhaohui Zhong, Theodore B. Norris, Chang-Hua Liu, You-Chia Chang
  • Patent number: 8835905
    Abstract: Described herein is device configured to be a solar-blind UV detector comprising a substrate; a plurality of pixels; a plurality of nanowires in each of the plurality of pixel, wherein the plurality of nanowires extend essentially perpendicularly from the substrate.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: September 16, 2014
    Assignee: Zena Technologies, Inc.
    Inventors: Munib Wober, Young-June Yu
  • Patent number: 8835906
    Abstract: A sensor includes: a base wafer containing silicon; a seed member provided directly or indirectly on the base wafer; and a photothermal absorber that is made of a Group 3-5 compound semiconductor lattice-matching or pseudo lattice-matching the seed member and being capable of generating a carrier upon absorbing light or heat, where the photothermal absorber outputs an electric signal in response to incident light to be introduced into the photothermal absorber or heat to be applied to the photothermal absorber. A semiconductor wafer includes: a base wafer containing silicon; a seed member provided directly or indirectly on the base wafer; and a photothermal absorber that is made of a Group 3-5 compound semiconductor lattice-matching or pseudo lattice-matching the seed member and being capable of generating a carrier upon absorbing light or heat.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: September 16, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Masahiko Hata, Tomoyuki Takada, Sadanori Yamanaka, Taro Itatani
  • Patent number: 8835955
    Abstract: A silicon-on-insulator (SOI) substrate structure and method of fabrication including a single crystal silicon substrate, a layer of single crystal rare earth oxide formed on the substrate, a layer of engineered single crystal silicon formed on the layer of single crystal rare earth oxide, and a single crystal insulator layer of IIIOxNy formed on the engineered single crystal silicon layer. In some embodiments the III material in the insulator layer includes more than on III material. In a preferred embodiment the single crystal rare earth oxide includes Gd2O3 and the single crystal insulator layer of IIIOxNy includes one of AlOxNy and AlGaOxNy.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: September 16, 2014
    Assignee: Translucent, Inc.
    Inventors: Erdem Arkun, Rytis Dargis, Andrew Clark, Michael Lebby
  • Publication number: 20140252314
    Abstract: An embodiment relates to a device comprising a substrate having a front side and a back-side, a nanowire disposed on the back-side and an image sensing circuit disposed on the front side, wherein the nanowire is configured to be both a channel to transmit wavelengths up to a selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the nanowire.
    Type: Application
    Filed: May 19, 2014
    Publication date: September 11, 2014
    Applicant: ZENA TECHNOLOGIES, INC.
    Inventors: Young-June Yu, Munib Wober
  • Publication number: 20140252313
    Abstract: An optoelectronic device includes: (1) a top transparent electrode; (2) a bottom electrode spaced apart from the top transparent electrode; and (3) nanopillars arranged between the top transparent electrode and the bottom electrode such that each of the nanopillars includes a top end electrically connected to the top transparent electrode and a bottom end electrically connected to the bottom electrode. The top transparent electrode is shaped to provide optical elements each arranged to couple light into or out of a respective one of the nanopillars.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 11, 2014
    Inventors: Giacomo Mariani, Diana L. Huffaker
  • Patent number: 8828764
    Abstract: Implementations and techniques for coupled asymmetric quantum confinement structures are generally disclosed.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: September 9, 2014
    Assignee: University of Seoul Industry Cooperation Foundation
    Inventor: Doyeol Ahn
  • Patent number: 8822977
    Abstract: A photodetector and a method of manufacturing the photodetector are provided, in which variation in sensitivity is suppressed over the near-infrared region from the short wavelength side including 1.3 ?m to the long wavelength side. The photodetector includes, on an InP substrate, an absorption layer of a type II multiple quantum well structure comprising a repeated structure of a GaAsSb layer and an InGaAs layer, and has sensitivity in the near-infrared region including wavelengths of 1.3 ?m and 2.0 ?m. The ratio of the sensitivity at the wavelength of 1.3 ?m to the sensitivity at the wavelength of 2.0 ?m is not smaller than 0.5 but not larger than 1.6.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 2, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Katsushi Akita, Takashi Ishizuka, Kei Fujii, Hideaki Nakahata, Youichi Nagai, Hiroshi Inada, Yasuhiro Iguchi
  • Publication number: 20140231750
    Abstract: A quantum well infrared photodetector (QWIP) and method of making is disclosed. The QWIP includes a plurality of epi-layers formed into multiple periods of quantum wells, each of the quantum wells being separated by a barrier, the quantum wells and barriers being formed of II-VI semiconductor materials. A multiple wavelength QWIP is also disclosed and includes a plurality of QWIPs stacked onto a single epitaxial structure, in which the different QWIPs are designed to respond at different wavelengths. A dual wavelength QWIP is also disclosed and includes two QWIPs stacked onto a single epitaxial structure, in which one QWIP is designed to respond at 10 ?m and the other at 3-5 ?m wavelengths.
    Type: Application
    Filed: February 20, 2014
    Publication date: August 21, 2014
    Applicant: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Arvind Ravikumar, Claire Gmachl, Aidong Shen, Maria Tamargo
  • Patent number: 8809672
    Abstract: The present disclosure provides a catalyst-free growth mode of defect-free Gallium Arsenide (GaAs)-based nanoneedles on silicon (Si) substrates with a complementary metal-oxide-semiconductor (CMOS)-compatible growth temperature of around 400° C. Each nanoneedle has a sharp 2 to 5 nanometer (nm) tip, a 600 nm wide base and a 4 micrometer (?m) length. Thus, the disclosed nanoneedles are substantially hexagonal needle-like crystal structures that assume a 6° to 9° tapered shape. The 600 nm wide base allows the typical micro-fabrication processes, such as optical lithography, to be applied. Therefore, nanoneedles are an ideal platform for the integration of optoelectronic devices on Si substrates. A nanoneedle avalanche photodiode (APD) grown on silicon is presented in this disclosure as a device application example. The APD attains a high current gain of 265 with only 8V bias.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: August 19, 2014
    Assignee: The Regents of the University of California
    Inventors: Chih-Wei Chuang, Connie Chang-Hasnain, Forrest Grant Sedgwick, Wai Son Ko
  • Patent number: 8809877
    Abstract: A semiconductor voltage transformation structure is provided. The semiconductor voltage transformation structure includes: a first electrode layer ; an electricity-to-light conversion layer formed on the first electrode layer; a second electrode layer formed on the electricity-to-light conversion layer; a first isolation layer formed on the second electrode layer; a third electrode layer formed on the first isolation layer; a light-to-electricity conversion layer formed on the third electrode layer; and a fourth electrode layer formed on the light-to-electricity conversion layer, in which the first isolation layer, the second electrode layer and the third electrode layer are transparent to a working light emitted by the electricity-to-light conversion layer.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: August 19, 2014
    Inventor: Lei Guo
  • Publication number: 20140225064
    Abstract: Systems and methods of implementing barrier infrared detectors on lattice mismatched substrates are provided. The barrier infrared detector systems combine an active detector structure (e.g., contact/barrier/absorber pairs) with a non-lattice matched substrate through a multi-layered transitional structure that forms a virtual substrate that can be strain balanced with the detector structure. The transitional metamorphic layer may include one or both of at least one graded metamorphic buffer layer or interfacial misfit array (IMF). A further interfacial layer may be interposed within the transitional structure, in some embodiments this interfacial layer includes at least one layer of AlSb.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 14, 2014
    Applicant: California Institute of Technology
    Inventors: Arezou Khoshakhlagh, David Z. Ting, Sarath D. Gunapala, Cory J. Hill
  • Patent number: 8803128
    Abstract: A composite material is described. The composite material comprises semiconductor nanocrystals, and organic molecules that passivate the surfaces of the semiconductor nanocrystals. One or more properties of the organic molecules facilitate the transfer of charge between the semiconductor nanocrystals. A semiconductor material is described that comprises p-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of electrons in the semiconductor material being greater than or equal to a mobility of holes. A semiconductor material is described that comprises n-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of holes in the semiconductor material being greater than or equal to a mobility of electrons.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: August 12, 2014
    Assignee: InVisage Technologies, Inc.
    Inventors: Edward Hartley Sargent, Ghada Koleilat, Larissa Levina
  • Patent number: 8802481
    Abstract: Apparatuses capable of and techniques for detecting the visible light spectrum are provided.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: August 12, 2014
    Assignee: University of Seoul Industry Cooperation Foundation
    Inventor: Doyeol Ahn
  • Patent number: 8803164
    Abstract: To provide a solid-state image sensing device or a semiconductor display device, which can easily obtain the positional data of an object without contact. Included are a plurality of first photosensors on which light with a first incident angle is incident from a first incident direction and a plurality of second photosensors on which light with a second incident angle is incident from a second incident direction. The first incident angle of light incident on one of the plurality of first photosensors is larger than that of light incident on one of the other first photosensors. The second incident angle of light incident on one of the plurality of second photosensors is larger than that of light incident on one of the other second photosensors.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: August 12, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiyuki Kurokawa, Takayuki Ikeda
  • Patent number: 8784703
    Abstract: A method of making a colloidal solution of high confinement semiconductor nanocrystals includes: forming a first solution by combining a solvent, growth ligands, and at most one semiconductor precursor; heating the first solution to the nucleation temperature; and adding to the first solution, a second solution having a solvent, growth ligands, and at least one additional and different precursor than that in the first solution to form a crude solution of nanocrystals having a compact homogenous semiconductor region. The method further includes: waiting 0.5 to 20 seconds and adding to the crude solution a third solution having a solvent, growth ligands, and at least one additional and different precursor than those in the first and second solutions; and lowering the growth temperature to enable the formation of a gradient alloy region around the compact homogenous semiconductor region, resulting in the formation of a colloidal solution of high confinement semiconductor nanocrystals.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: July 22, 2014
    Assignee: Eastman Kodak Company
    Inventors: Keith Brian Kahen, Matthew Holland, Sudeep Pallikkara Kuttiatoor
  • Patent number: 8785908
    Abstract: Optically sensitive devices include a device comprising a first contact and a second contact, each having a work function, and an optically sensitive material between the first contact and the second contact. The optically sensitive material comprises a p-type semiconductor, and the optically sensitive material has a work function. Circuitry applies a bias voltage between the first contact and the second contact. The optically sensitive material has an electron lifetime that is greater than the electron transit time from the first contact to the second contact when the bias is applied between the first contact and the second contact. The first contact provides injection of electrons and blocking the extraction of holes. The interface between the first contact and the optically sensitive material provides a surface recombination velocity less than 1 cm/s.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: July 22, 2014
    Assignee: InVisage Technologies, Inc.
    Inventors: Igor Constantin Ivanov, Edward Hartley Sargent, Hui Tian
  • Patent number: 8779413
    Abstract: Optoelectronic devices and methods of producing the same are disclosed. Methods may include forming a film from fused all-inorganic colloidal nanostructures, where the nanostructures may include inorganic nanoparticles and functional inorganic ligands, and the fused nanostructures may form an electrical network that is photoconductive. Other methods may provide an optoelectronic device which may include an integrated circuit or large panel thin-film transistor matrix, an array of conductive regions, and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: July 15, 2014
    Assignee: Sunpower Technologies LLC
    Inventor: Daniel Landry
  • Publication number: 20140191195
    Abstract: Pixels in a focal plane array are defined by controlled variation of the Fermi energy at the surface of the detector array. Varying the chemical composition of the semiconductor at the detector surface produces a corresponding variation in the surface Fermi energy which produces a corresponding variation in the electric field and electrostatic potential in the bulk semiconductor below the surface. This defines pixels by having one Fermi energy at the surface of each pixel and a different Fermi energy at the surface between pixels. Fermi energy modulation can also be controlled by applying an electrostatic potential voltage V1 to the metal pad defining each pixel, and applying a different electrostatic potential voltage V2 to an interconnected metal grid covering the gaps between all the pixel metal pads. Methods obviate the need to etch deep trenches between pixels, resulting in a more manufacturable quasi-planar process without sacrificing performance.
    Type: Application
    Filed: January 6, 2014
    Publication date: July 10, 2014
    Inventors: Mani Sundaram, Axel Reisinger
  • Publication number: 20140191196
    Abstract: Provided is an optical device which includes an active layer which includes at least two outer barriers and at least one coupled quantum well, each of the at least one coupled quantum well is sandwiched between the at least two outer barriers. Each of the at least one coupled quantum well includes at least three quantum well layers and at least two coupling barriers interposed between the at least three quantum layers. The at least two coupling barriers have a potential energy which is higher than a ground level and is lower than energy levels of the at least two outer barriers.
    Type: Application
    Filed: January 6, 2014
    Publication date: July 10, 2014
    Applicants: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong-chul CHO, Yong-tak LEE, Chang-young PARK, Byung-hoon NA, Yong-hwa PARK, Gun-wu JU, Hee-ju CHIO
  • Patent number: 8772770
    Abstract: An oxide semiconductor material having p-type conductivity and a semiconductor device using the oxide semiconductor material are provided. The oxide semiconductor material having p-type conductivity can be provided using a molybdenum oxide material containing molybdenum oxide (MoOy (2<y<3)) having an intermediate composition between molybdenum dioxide and molybdenum trioxide. For example, a semiconductor device is formed using a molybdenum oxide material containing molybdenum trioxide (MoO3) as its main component and MoOy (2<y<3) at 4% or more.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: July 8, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshinobu Asami, Riho Kataishi, Erumu Kikuchi
  • Patent number: 8766391
    Abstract: Photodetector arrays, image sensors, and other apparatus are disclosed. In one aspect, an apparatus may include a surface to receive light, a plurality of photosensitive regions disposed within a substrate, and a material coupled between the surface and the plurality of photosensitive regions. The material may receive the light. At least some of the light may free electrons in the material. The apparatus may also include a plurality of discrete electron repulsive elements. The discrete electron repulsive elements may be coupled between the surface and the material. Each of the discrete electron repulsive elements may correspond to a different photosensitive region. Each of the discrete electron repulsive elements may repel electrons in the material toward a corresponding photosensitive region. Other apparatus are also disclosed, as are methods of use, methods of fabrication, and systems incorporating such apparatus.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: July 1, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventor: Hidetoshi Nozaki
  • Publication number: 20140175286
    Abstract: Methods and systems for electromagnetic detection are disclosed, including providing a high operating temperature quantum dot infrared photodetector comprising: a substrate; a bottom contacting layer atop the substrate; one or more active regions atop the bottom contacting layer; and a top contacting layer atop the one or more active regions; and exposing the high operating temperature quantum dot infrared photodetector to electromagnetic waves. Other embodiments are described and claimed.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 26, 2014
    Inventor: Jarrod Vaillancourt
  • Patent number: 8759826
    Abstract: The organic electroluminescent element (100) of the present invention comprises, on a substrate (1), electrodes (positive electrode (2) and negative electrode (8)) forming a pair and an organic functional layer (20) having at least an electron transport layer (6) and a light emitting layer (5). At least one of the electron transport layer (6) and the light emitting layer (5) contain semiconductor nanoparticles having a conduction band energy level of ?5.5-?1.5 ev.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: June 24, 2014
    Assignee: Konica Minolta, Inc.
    Inventor: Kazuhiro Oikawa
  • Patent number: 8759816
    Abstract: A composite material is described. The composite material comprises semiconductor nanocrystals, and organic molecules that passivate the surfaces of the semiconductor nanocrystals. One or more properties of the organic molecules facilitate the transfer of charge between the semiconductor nanocrystals. A semiconductor material is described that comprises p-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of electrons in the semiconductor material being greater than or equal to a mobility of holes. A semiconductor material is described that comprises n-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of holes in the semiconductor material being greater than or equal to a mobility of electrons.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: June 24, 2014
    Assignee: InVisage Technologies, Inc.
    Inventors: Edward Hartley Sargent, Keith William Johnston, Andras Geza Pattantyus-Abraham, Jason Paul Clifford
  • Patent number: 8755240
    Abstract: An optical memory device and a method of recording/reproducing information by using the optical memory device. The optical memory device includes a substrate; a first barrier layer formed on the substrate; a quantum well layer; a second barrier layer; a quantum dot layer; and a third barrier layer. The quantum well layer has an energy band gap which is wider than that of the quantum dot layer, and the second barrier layer has an energy band gap which is wider than that of the quantum well layer, so that electrons in excitons which are generated in the quantum dot layer by light of a certain wavelength are captured by the quantum well layer to record information, and then, recorded information may be erased or reproduced by irradiating light of a certain wavelength to the optical memory device.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: June 17, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Cheol Bae, Joo-Ho Kim, Jin-Kyung Lee
  • Patent number: 8742398
    Abstract: A photodetector includes one or more photodiodes and a signal processing circuit. Each photodiode includes a transparent first electrode, a second electrode, and a heterojunction interposed between the first electrode and the second electrode. Each heterojunction includes a quantum dot layer and a fullerene layer disposed directly on the quantum dot layer. The signal processing circuit is in signal communication each the second electrode. The photodetector may be responsive to wavelengths in the infrared, visible, and/or ultraviolet ranges. The quantum dot layer may be treated with a chemistry that increases the charge carrier mobility of the quantum dot layer.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: June 3, 2014
    Assignee: Research Triangle Institute, Int'l.
    Inventors: Ethan Klem, John Lewis
  • Patent number: 8742399
    Abstract: A quantum dot, which is an ultrafine grain, has a core-shell structure having a core portion and a shell portion protecting the core portion. The surface of the shell portion is covered with two kinds of surfactants, a hole-transporting surfactant and an electron-transporting surfactant, which are concurrently present. Moreover, the hole-transporting surfactant has a HOMO level which tunneling-resonates with the valence band of the quantum dot and the electron-transporting surfactant has a LUMO level which tunneling-resonates with the transfer band of the quantum dot. Thus, a nanograin material which has good carrier transport efficiency and is suitable for use in a photoelectric conversion device is achieved.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: June 3, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Koji Murayama
  • Publication number: 20140138622
    Abstract: Apparatus and methods are provided. A first apparatus includes: a semiconductor film; and at least one semiconductor nanostructure, including a heterojunction, configured to modulate the conductivity of the semiconductor film by causing photo-generated carriers to transfer into the semiconductor film from the at least one semiconductor nanostructure. A second apparatus includes: a semimetal film; and at least one semiconductor nanostructure, including a heterojunction, configured to generate carrier pairs in the semimetal film via resonant energy transfer, and configured to generate an external electric field for separating the generated carrier pairs in the semimetal film.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Applicant: Nokia Corporation
    Inventors: Alan COLLI, Tim J. ECHTERMEYER, Anna EIDEN, Andrea C. FERRARI
  • Patent number: 8729528
    Abstract: An optoelectronic device includes a first electrode, a quantum dot layer disposed on the first electrode including a plurality of quantum dots, a fullerene layer disposed directly on the quantum dot layer wherein the quantum dot layer and the fullerene layer form an electronic heterojunction, and a second electrode disposed on the fullerene layer. The device may include an electron blocking layer. The quantum dot layer may be modified by a chemical treatment to exhibit increased charge carrier mobility.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: May 20, 2014
    Assignee: Research Triangle Institute
    Inventors: Ethan Klem, John Lewis
  • Patent number: 8729527
    Abstract: A light-receiving element includes a group III-V compound semiconductor stacked structure that includes an absorption layer having a pn-junction therein. The stacked structure is formed on a group III-V compound semiconductor substrate. The absorption layer has a multiquantum well structure composed of group III-V compound semiconductors, and the pn-junction is formed by selectively diffusing an impurity element into the absorption layer. A diffusion concentration distribution control layer composed of a III-V group semiconductor is disposed in contact with the absorption layer on a side of the absorption layer opposite the side adjacent to the group III-V compound semiconductor substrate. The bandgap energy of the diffusion concentration distribution control layer is smaller than that of the group III-V compound semiconductor substrate. The concentration of the impurity element selectively diffused in the diffusion concentration distribution control layer is 5×1016/cm3 or less toward the absorption layer.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: May 20, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuhiro Iguchi, Kohei Miura, Hiroshi Inada, Youichi Nagai
  • Patent number: 8704248
    Abstract: Implementations and techniques for coupled asymmetric quantum confinement structures are generally disclosed.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: April 22, 2014
    Assignee: University of Seoul Industry Cooperation Foundation
    Inventor: Doyeol Ahn
  • Publication number: 20140103193
    Abstract: A binary image sensor includes a plurality of unit pixels on a substrate having a surface on which light is incident. At least one quantum dot is disposed on the surface of a substrate. A column sense amplifier circuit is configured to detect binary information of a selected unit pixel among the plurality of unit pixels from a voltage or a current detected from the selected unit pixel, and a processing unit is configured to process binary information of the respective unit pixels to generate pixel image information. Related devices and methods of operation are also discussed.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 17, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: GwideokRyan Lee, SangChul Sul, Myungwon Lee, Min-ho Kim, Taechan Kim, Taeseok Oh, KwangHyun Lee, Taeyon Lee, Younggu Jin
  • Publication number: 20140103295
    Abstract: A 1D nanowire photodetector device includes a nanowire that is individually contacted by electrodes for applying a longitudinal electric field which drives the photocurrent. An intrinsic radial electric field to inhibits photo-carrier recombination, thus enhancing the photocurrent response. Circuits of 1D nanowire photodetectors include groups of photodetectors addressed by their individual 1D nanowire electrode contacts. Placement of 1D nanostructures is accomplished with registration onto a substrate. A substrate is patterned with a material, e.g., photoresist, and trenches are formed in the patterning material at predetermined locations for the placement of 1D nanostructures. The 1D nanostructures are aligned in a liquid suspension, and then transferred into the trenches from the liquid suspension. Removal of the patterning material places the 1D nanostructures in predetermined, registered positions on the substrate.
    Type: Application
    Filed: March 11, 2013
    Publication date: April 17, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
  • Publication number: 20140094372
    Abstract: Compactly-integrated electronic structures and associated systems and methods are provided. Certain embodiments relate to the ability to integrate nanowire-based detectors with optical components.
    Type: Application
    Filed: October 2, 2012
    Publication date: April 3, 2014
    Applicants: Massachusetts Institute of Technology, The Trustees of Columbia University in the City of New York
    Inventors: The Trustees of Columbia University in the City of New York, Massachusetts Institute of Technology
  • Publication number: 20140087952
    Abstract: A superconducting nanowire single photon detector (SN-SPD) microelectronic circuit is described which has higher quantum efficiency and signal-to-noise than any SN-SPD's known in the art. The material and configuration of the microelectronic circuit eliminates the polarization dependence and shows improved signal-to-noise over SN-SPD microelectronic circuits known in the art. The higher efficiency, polarization independence, and high signal-to-noise is achieved by vertically stacking two tungsten-silicide (TS) SN-SPDs and electrically connecting them in parallel. This structure forms a multilayer superconducting nanowire avalanche photo-detector (SNAP). A single photon detection device employing the multilayer (SNAP) microelectronic circuit demonstrates a peak system detection efficiency of 87.7% and a polarization dependence of less than 2%. This represents nearly an order of magnitude improvement in both system detection efficiency and reduction of polarization dependence compared to conventional SNSPDs.
    Type: Application
    Filed: April 24, 2013
    Publication date: March 27, 2014
    Applicant: The United States of America as represented by the Secretary of Commerce
    Inventors: Sae Woo Nam, Burm Baek
  • Patent number: 8680586
    Abstract: A semiconductor light emitting device including: a substrate made of GaAs; and a semiconductor layer formed on the substrate, in which part of the substrate on a side opposite to the semiconductor layer is removed by etching so that the semiconductor light emitting device has a thickness of not more than 60 ?m.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: March 25, 2014
    Assignee: ROHM Co., Ltd.
    Inventors: Tadahiro Hosomi, Kentaro Mineshita
  • Patent number: 8679906
    Abstract: In one embodiment, there is an asymmetric multi-gated transistor that has a semiconductor fin with a non-uniform doping profile. A first portion of the fin has a higher doping concentration while a second portion of the fin has a lower doping concentration. In another embodiment, there is an asymmetric multi-gated transistor with gate dielectrics formed on the semiconductor fin that vary in thickness. This asymmetric multi-gated transistor has a thin gate dielectric formed on a first side portion of the semiconductor fin and a thick gate dielectric formed on a second side portion of the fin.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventor: Kangguo Cheng
  • Publication number: 20140061584
    Abstract: A device comprising an arrangement of device materials and a layer comprising a material with heat-dissipating properties disposed over at least a portion thereof is disclosed. The device can further include an interleave layer disposed between the top surface of the arrangement of device materials and the layer comprising a material with heat-dissipating properties. A barrier layer may further be included between the arrangement of device materials and the layer comprising a material with heat-dissipating properties. Methods are also disclosed. In certain embodiments, a device includes quantum confined semiconductor nanoparticles.
    Type: Application
    Filed: November 21, 2012
    Publication date: March 6, 2014
    Applicant: QD VISION, INC.
    Inventor: QD Vision, Inc.
  • Publication number: 20140061588
    Abstract: An object of the present invention is to provide a group III-V compound semiconductor photo detector comprising an absorption layer having a group III-V compound semiconductor layer containing Sb as a group V constituent element, and an n-type InP window layer, resulting in reduced dark current. The InP layer 23 grown on the absorption layer 23 contains antimony as impurity, due to the memory effect with antimony which is supplied during the growth of a GaAsSb layer of the absorption layer 21. In the group III-V compound semiconductor photo detector 11, the InP layer 23 contains antimony as impurity and is doped with silicon as n-type dopant. Although antimony impurities in the InP layer 23 generate holes, the silicon contained in the InP layer 23 compensates for the generated carriers. As a result, the second portion 23d of the InP layer 23 has sufficient n-type conductivity.
    Type: Application
    Filed: November 5, 2013
    Publication date: March 6, 2014
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Katsushi Akita, Takashi Ishizuka, Kei Fujii, Youichi Nagai
  • Publication number: 20140054442
    Abstract: A photodetector includes an anode that is transparent or partially transparent to light, a cathode and an active layer disposed between the anode and the cathode. The active layer includes a nanocomposite material that has a polymer blended with nanoparticles or organic electron trapping particles. The photodetector has a low dark current when not illuminated by light and has a high conductivity when illuminated by light, in which the light passes the anode and is absorbed by the active layer.
    Type: Application
    Filed: July 19, 2013
    Publication date: February 27, 2014
    Applicant: Board of Regents of the University of Nebraska
    Inventors: Jinsong Huang, Fawen Guo
  • Publication number: 20140054545
    Abstract: Provided are a photodetector in which, in a III-V semiconductor having sensitivity in the near-infrared region to the far-infrared region, the carrier concentration can be controlled with high accuracy; an epitaxial wafer serving as a material of the photodetector; and a method for producing the epitaxial wafer. Included are a substrate formed of a III-V compound semiconductor; an absorption layer configured to absorb light; a window layer having a larger bandgap energy than the absorption layer; and a p-n junction positioned at least in the absorption layer, wherein the window layer has a surface having a root-mean-square surface roughness of 10 nm or more and 40 nm or less.
    Type: Application
    Filed: October 29, 2012
    Publication date: February 27, 2014
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Katsushi Akita, Kei Fujii, Takashi Ishizuka, Youichi Nagai
  • Publication number: 20140048772
    Abstract: Provided is a silicon-wafer-based germanium semiconductor photodetector configured to be able to provide properties of high gain, high sensitivity, and high speed, at a relatively low voltage. A germanium-based carrier multiplication layer (e.g., a single germanium layer or a germanium and silicon superlattice layer) may be provided on a silicon wafer, and a germanium charge layer may be provided thereon, a germanium absorption layer may be provided on the charge layer, and a polysilicon second contact layer may be provided on the absorption layer. The absorption layer may be configured to include germanium quantum dots or wires.
    Type: Application
    Filed: July 23, 2013
    Publication date: February 20, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Gyungock KIM, Sang Hoon KIM, Ki Seok JANG, In Gyoo KIM, Jin Hyuk OH, Sun Ae KIM
  • Patent number: 8653529
    Abstract: In a semiconductor device in which a glass substrate is attached to a surface of a semiconductor die with an adhesive layer being interposed therebetween, it is an object to fill a recess portion of an insulation film formed on a photodiode with the adhesive layer without bubbles therein. In a semiconductor die in which an optical semiconductor integrated circuit including a photodiode having a recess portion of an interlayer insulation film in the upper portion, an NPN bipolar transistor, and so on are formed, generally, a light shield film covers a portion except the recess portion region on the photodiode and except a dicing region. In the invention, an opening slit is further formed in the light shield film, extending from the recess portion to the outside of the recess portion, so as to attain the object.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: February 18, 2014
    Assignee: ON Semiconductor Trading, Ltd.
    Inventors: Shinzo Ishibe, Katsuhiko Kitagawa