Parallel Interleaved Capacitor Electrode Pairs (e.g., Interdigitized) Patents (Class 257/307)
  • Patent number: 8546233
    Abstract: A method produces integrated circuit arrangement that includes an undulating capacitor in a conductive structure layer. The surface area of the capacitor is enlarged in comparison with an even capacitor. The capacitor is interlinked with dielectric regions at its top side and/or its underside, so that it can be produced by methods which may not have to be altered in comparison with conventional CMP methods.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: October 1, 2013
    Assignee: Infineon Technologies AG
    Inventor: Anton Steltenpohl
  • Patent number: 8508019
    Abstract: One or more embodiments are related to a semiconductor chip comprising a capacitor, the capacitor comprising: a plurality of conductive plates, each of the plates including a first conductive strip and a second conductive strip disposed over or under the first conductive strip, the second conductive strip of each plate being substantially parallel to the first conductive strip of the same plate, the second conductive strip of each plate electrically coupled to the first conductive strip of the plate through at least one conductive via, the second conductive strips of each group of at least two consecutive plates being spaced apart from each other in a direction along the length of the plates.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: August 13, 2013
    Assignee: Infineon Techn. AG
    Inventor: Philipp Riess
  • Patent number: 8497565
    Abstract: In a disclosed embodiment, a stacked capacitor (100) has bottom, middle and top metal electrode layers (141A, 141B, 141C) interleaved with dielectric layers (142A, 142B) conformally disposed within holes (140A, 140B, 140C) in a protective overcoat or backend dielectric layer (110) over a top metal layer (115) of an integrated circuit (105). A top electrode (155) contacts the top metal electrode layer (141C). A bottom electrode (150) electrically couples an isolated part of the top metal electrode layer (141C) through a bottom electrode via (165A) to a first contact node (135A) in the top metal layer (115) which is in contact with the bottom metal electrode layer (141A). A middle electrode (160) electrically couples a part of the middle metal electrode layer (141B) not covered by the top metal layer (115) through a middle electrode via (165B) to a second contact node (135B) in the top metal electrode layer (115).
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: July 30, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Byron Lovell Willaims, Maxwell Walthour Lippitt, III, Betty Mercer, Scott Montgomery, Binghua Hu
  • Patent number: 8492822
    Abstract: A method for manufacturing an LC circuit, including forming a first conductive layer pattern serving as a lower electrode of a capacitor on a first interlayer insulating layer, forming a dielectric layer pattern storing electric charges on the first conductive layer pattern, forming a second conductive layer pattern serving as an upper electrode of the capacitor on the dielectric layer pattern, forming a second interlayer insulating layer on the second conductive layer pattern, forming a contact via exposing one of the first or second conductive layer pattern in the second interlayer insulating layer, and filling the contact via with a contact plug, and forming a third conductive layer pattern on the second interlayer insulating layer having the contact plug, wherein the third conductive layer pattern is electrically connected to the contact plug, and is etched in a metal interconnection type layer and functions as an inductor.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: July 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Sung Lim, Chul-Ho Chung
  • Patent number: 8487406
    Abstract: At least a first capacitor is formed on a substrate and connected to a first differential node of a differential circuit, and the first capacitor may be variable in capacitance. A second capacitor is formed on the substrate and connected to a second differential node of the differential circuit, and the second capacitor also may be variable. A third capacitor is connected between the first differential node and the second differential node, and is formed at least partially above the first capacitor. In this way, a size of the first capacitor and/or the second capacitor may be reduced on the substrate, and capacitances of the first and/or second capacitor(s) may be adjusted in response to a variable characteristic of one or more circuit components of the differential circuit.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: July 16, 2013
    Assignee: Broadcom Corporation
    Inventors: Hooman Darabi, Qiang Li, Bo Zhang
  • Patent number: 8482048
    Abstract: A bypass capacitor is directly integrated on top of a MOSFET chip. The capacitor comprises multi layers of conductive material and dielectric material staking on top of each other with connection vias through dielectric layer for connecting different conductive layers. The method of integrating the bypass capacitor comprises repeating steps of depositing a dielectric layer, forming connection vias through the dielectric layer, depositing a conductive layer and patterning the conductive layer.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: July 9, 2013
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yan Xun Xue, Anup Bhalla, Hamza Yilmaz, Jun Lu
  • Patent number: 8445951
    Abstract: A semiconductor integrated circuit device, includes a first electrode including a first semiconductor layer formed on a substrate, a side surface insulating film formed on at least a part of a side surface of the first electrode, an upper surface insulating film formed on the first electrode and the side surface insulating film, a second electrode which covers the side surface insulating film and the upper surface insulating film, and a fin-type field effect transistor. The first electrode, the side surface insulating film, and the second electrode constitute a capacitor element. A thickness of the upper surface insulating film between the first electrode and the second electrode is larger than a thickness of the side surface insulating film between the first electrode and the second electrode, and the fin-type field effect transistor includes a second semiconductor layer which protrudes with respect to the plane of the substrate.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: May 21, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Furuta, Takayuki Shirai, Shunsaku Naga
  • Patent number: 8384144
    Abstract: An interdigitated Metal-Insulator-Metal (MIM) capacitor provides self-shielding and accurate capacitance ratios with small capacitance values. The MIM capacitor includes two terminals that extend to a plurality of interdigitated fingers separated by an insulator. Metal plates occupy layers above and below the fingers and connect to fingers of one terminal. As a result, the MIM capacitor provides self-shielding to one terminal. Additional shielding may be employed by a series of additional shielding layers that are isolated from the capacitor. The self-shielding and additional shielding may also be implemented at an array of MIM capacitors.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: February 26, 2013
    Assignee: Kenet, Inc.
    Inventor: Michael P. Anthony
  • Patent number: 8330251
    Abstract: An integrated circuit chip includes a first electronic device, a second electronic device, and a common electrode feature. The first electronic device includes a first feature. The first electronic device has a first footprint area in a given layer. The second electronic device includes a second feature. The second electronic device has a second footprint area in the given layer. The first and second electronic devices are electrically matched. The common electrode feature is common to the first and second electronic devices. The common electrode is at least partially located in the given layer. More than a majority of the first footprint area overlaps with the second footprint area. A first spacing between the first feature and the common electrode feature is about the same as a second spacing between the second feature and the common electrode feature.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: December 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Long Chang, Chia-Yi Chen, Chih-Ping Chao
  • Patent number: 8324069
    Abstract: A method of fabricating a high-performance capacitor that may be incorporated into a standard CMOS fabrication process suitable for submicron devices is described. The parameters used in the standard CMOS process may be maintained, particularly for the definition and etch of the lower electrode layer. To reduce variation in critical dimension width, an Anti-Reflective Layer (ARL) is used, such as a Plasma Enhanced chemical vapor deposition Anti-Reflective Layer (PEARL) or other Anti-Reflective Coatings (ARCS), such as a conductive film like TiN. This ARL formation occurs after the capacitor specific process steps, but prior to the masking used for defining the lower electrodes. A Rapid Thermal Oxidation (RTO) is performed subsequent to removing the unwanted capacitor dielectric layer from the transistor poly outside of the capacitor regions, but prior to the PEARL deposition.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: December 4, 2012
    Assignee: IXYS CH GmbH
    Inventors: Timothy K. Carns, John L. Horvath, Lee J. DeBruler, Michael J. Westphal
  • Patent number: 8314452
    Abstract: Structures and methods of forming an ideal MIM capacitor are disclosed. The single capacitor includes a first and a second metal structure overlying a substrate, a first dielectric material disposed between a first portion of the first metal structure and a first portion of the second metal structure. A second dielectric material is disposed between a second portion of the first metal structure and a second portion of the second metal structure. No first dielectric material is disposed between the second portion of the first and second metal structures, and no second dielectric material is disposed between the first portion of the first and second metal structures. The first and second dielectric material layers include materials with opposite coefficient of capacitance.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: November 20, 2012
    Assignee: Infineon Technologies AG
    Inventors: Philipp Riess, Armin Fischer
  • Patent number: 8304321
    Abstract: A wiring substrate in which a capacitor is provided, the capacitor comprising a capacitor body including a plurality of dielectric layers and internal electrode layers provided between the different dielectric layers, wherein said capacitor body has, in at least one side face of said capacitor body, recesses extending in a thickness direction of said capacitor body from at least one of a first principal face of said capacitor body and a second principal face positioned on the side opposite to the first principal face.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: November 6, 2012
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Motohiko Sato, Kazuhiro Hayashi, Kenji Murakami, Motonobu Kurahashi, Yusuke Kaieda, Jun Otsuka, Manabu Sato
  • Patent number: 8299575
    Abstract: A switched-capacitor circuit on a semiconductor device may include accurately matched, high-density metal-to-metal capacitors, using top-plate-to-bottom-plate fringe-capacitance for obtaining the desired capacitance values. A polysilicon plate may be inserted below the bottom metal layer, and bootstrapped to the top plate of each capacitor in order to minimize and/or eliminate the parasitic top-plate-to-substrate capacitance. This may free up the bottom metal layer to be used in forming additional fringe-capacitance, thereby increasing capacitance density. By forming each capacitance solely based on fringe-capacitance from the top plate to the bottom plate, no parallel-plate-capacitance is used, which may reduce capacitor mismatch.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: October 30, 2012
    Assignee: Standard Microsystems Corporation
    Inventor: Scott C. McLeod
  • Patent number: 8299576
    Abstract: A switched-capacitor circuit on a semiconductor device may include accurately matched, high-density metal-to-metal capacitors, using top-plate-to-bottom-plate fringe-capacitance for obtaining the desired capacitance values. A polysilicon plate may be inserted below the bottom metal layer, and bootstrapped to the top plate of each capacitor in order to minimize and/or eliminate the parasitic top-plate-to-substrate capacitance. This may free up the bottom metal layer to be used in forming additional fringe-capacitance, thereby increasing capacitance density. By forming each capacitance solely based on fringe-capacitance from the top plate to the bottom plate, no parallel-plate-capacitance is used, which may reduce capacitor mismatch. Parasitic bottom plate capacitance to the substrate may also be eliminated, with only a small capacitance to the bootstrapped polysilicon plate remaining.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: October 30, 2012
    Assignee: Standard Microsystems Corporation
    Inventor: Scott C. McLeod
  • Patent number: 8299518
    Abstract: A semiconductor device includes an Si substrate having a first surface provided with semiconductor elements, such as a CMOS transistor and a diode, and a second surface opposite to the first surface. On one of the first and the second surfaces, a bypass capacitor is formed. The bypass capacitor includes a Vcc power supply layer and a GND layer which serve to supply a power supply voltage to the semiconductor element, and a high dielectric constant layer sandwiched between the Vcc power supply layer and the GND layer.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: October 30, 2012
    Assignee: Liquid Design Systems Inc.
    Inventor: Seisei Oyamada
  • Patent number: 8299577
    Abstract: A switched-capacitor circuit on a semiconductor device may include accurately matched, high-density metal-to-metal capacitors, using top-plate-to-bottom-plate fringe-capacitance for obtaining the desired capacitance values. A polysilicon plate may be inserted below the bottom metal layer, and bootstrapped to the top plate of each capacitor in order to minimize and/or eliminate the parasitic top-plate-to-substrate capacitance. This may free up the bottom metal layer to be used in forming additional fringe-capacitance, thereby increasing capacitance density. By forming each capacitance solely based on fringe-capacitance from the top plate to the bottom plate, no parallel-plate-capacitance is used, which may reduce capacitor mismatch. Parasitic bottom plate capacitance to the substrate may also be eliminated, with only a small capacitance to the bootstrapped polysilicon plate remaining.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: October 30, 2012
    Assignee: Standard Microsystems Corporation
    Inventor: Scott C. McLeod
  • Patent number: 8242579
    Abstract: One or more embodiments are related to a semiconductor chip comprising a capacitor, the capacitor comprising: a plurality of conductive plates, each of the plates including a first conductive strip and a second conductive strip disposed over or under the first conductive strip, the second conductive strip of each plate being substantially parallel to the first conductive strip of the same plate, the second conductive strip of each plate electrically coupled to the first conductive strip of the plate through at least one conductive via, the second conductive strips of each group of at least two consecutive plates being spaced apart from each other in a direction along the length of the plates.
    Type: Grant
    Filed: May 25, 2009
    Date of Patent: August 14, 2012
    Assignee: Infineon Technologies AG
    Inventor: Philipp Riess
  • Patent number: 8242570
    Abstract: A truss structure is provided. The truss structure comprises a substrate; and plural sub-truss groups disposed on the substrate, wherein each sub-truss group comprises plural VIAs; and plural metal layers interlaced with the plural VIAs, wherein the plural sub-truss groups are piled up on each other to form a 3-D corrugate structure.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: August 14, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Pin Chang, Chin-Hung Wang, Chia-Yu Wu, Jien-Ming Chen
  • Patent number: 8237209
    Abstract: A semiconductor structure including a capacitor having increased capacitance and improved electrical performance is provided. The semiconductor structure includes a substrate and a MIM capacitor over the substrate. The MIM capacitor includes a bottom plate, an insulating layer over the bottom plate, and a top plate over the insulating layer. The semiconductor structure further includes a MOS device including a gate dielectric over the substrate and a metal-containing gate electrode free from polysilicon on the gate dielectric, wherein the metal-containing gate electrode is formed of a same material and has a same thickness as the bottom plate.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: August 7, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Long Chang, David Ding-Chung Lu, Chia-Yi Chen, I-Lu Wu
  • Patent number: 8227846
    Abstract: A decoupling capacitor includes a pair of MOS capacitors formed in wells of opposite plurality. Each MOS capacitor has a set of well-ties and a high-dose implant, allowing high frequency performance under accumulation or depletion biasing. The top conductor of each MOS capacitor is electrically coupled to the well-ties of the other MOS capacitor and biased consistently with logic transistor wells. The well-ties and/or the high-dose implants of the MOS capacitors exhibit asymmetry with respect to their dopant polarities.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: July 24, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Andrew E. Carlson
  • Patent number: 8207569
    Abstract: Capacitive structures in integrated circuits are disclosed. The capacitive structures are formed on a substrate. Each capacitive structure includes a first conductive finger and a second conductive finger. The first and second conductive fingers are arranged in parallel with each other and separated from each other by a dielectric material. The first finger is connected to a first interconnect and the second conductive finger is connected to a second interconnect. A first capacitor is formed from a first group of the plurality of capacitive structures having respective interconnects coupled together. A second capacitor is formed from a second group of the plurality of capacitive structures having respective interconnects coupled together. The capacitive structures of the first group are intertwined with the capacitive structures of the second group.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: June 26, 2012
    Assignee: QUALCOMM, Incorporated
    Inventor: David Bang
  • Patent number: 8207592
    Abstract: A capacitor in an integrated circuit (“IC”) has a first plurality of conductive crosses formed in a layer of the IC electrically connected to and forming a portion of a first node of the capacitor and a second plurality of conductive crosses formed in the metal layer of the IC. The conductive crosses in the second plurality of conductive crosses are electrically connected to and form a portion of a second node of the capacitor and capacitively couple to the first node.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: June 26, 2012
    Assignee: Xilinx, Inc.
    Inventor: Patrick J. Quinn
  • Patent number: 8207567
    Abstract: A stacked metal-oxide-metal (MOM) capacitor structure and method of forming the same to increase an electrode/capacitor dielectric coupling area to increase a capacitance, the MOM capacitor structure including a plurality of metallization layers in stacked relationship; wherein each metallization layer includes substantially parallel spaced apart conductive electrode line portions having a first intervening capacitor dielectric; and, wherein the conductive electrode line portions are electrically interconnected between metallization layers by conductive damascene line portions formed in a second capacitor dielectric and disposed underlying the conductive electrode line portions.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: June 26, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Chi Chin, Ming-Chu King, Chen Cheng Chou
  • Patent number: 8183616
    Abstract: Provided is a technology capable of reducing parasitic capacitance of a capacitor while reducing the space occupied by the capacitor. A stacked structure is obtained by forming, over a capacitor composed of a lower electrode, a capacitor insulating film and an intermediate electrode, another capacitor composed of the intermediate electrode, another capacitor insulating film and an upper electrode. Since the intermediate electrode has a step difference, each of the distance between the intermediate electrode and lower electrode and the distance between the intermediate electrode and upper electrode in a region other than the capacitor formation region becomes greater than that in the capacitor formation region. For example, the lower electrode is brought into direct contact with the capacitor insulating film in the capacitor formation region, while the lower electrode is not brought into direct contact with the capacitor insulating film in the region other than the capacitor formation region.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: May 22, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Tsuyoshi Fujiwara, Toshinori Imai, Takeshi Saikawa, Yoshinori Kawasaki, Mitsuhiro Toya, Shunji Mori, Yoshiyuki Okabe
  • Patent number: 8169014
    Abstract: System and method for an improved interdigitated capacitive structure for an integrated circuit. A preferred embodiment comprises a first layer of a sequence of substantially parallel interdigitated strips, each strip of either a first polarity or a second polarity, the sequence alternating between a strip of the first polarity and a strip of the second polarity. A first dielectric layer is deposited over each strip of the first layer of strips. A first extension layer of a sequence of substantially interdigitated extension strips is deposited over the first dielectric layer, each extension strip deposited over a strip of the first layer of the opposite polarity. A first sequence of vias is coupled to the first extension layer, each via deposited over an extension strip of the same polarity. A second layer of a sequence of substantially parallel interdigitated strips can be coupled to the first sequence of vias.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: May 1, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yueh-You Chen, Chung-Long Chang, Chih-Ping Chao
  • Patent number: 8164132
    Abstract: The invention includes methods of forming semiconductor constructions and methods of forming pluralities of capacitor devices. An exemplary method of the invention includes forming conductive material within openings in an insulative material to form capacitor electrode structures. A lattice is formed in physical contact with at least some of the electrode structures, a protective cap is formed over the lattice, and subsequently some of the insulative material is removed to expose outer surfaces of the electrode structures. The lattice can alleviate toppling or other loss of structural integrity of the electrode structures, and the protective cap can protect covered portions of the insulative material from the etch. After the outer sidewalls of the electrode structures are exposed, the protective cap is removed. The electrode structures are then incorporated into capacitor constructions.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: April 24, 2012
    Assignee: Round Rock Research, LLC
    Inventor: H. Montgomery Manning
  • Patent number: 8138539
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In one embodiment, a capacitor plate includes a plurality of first parallel conductive members, and a plurality of second parallel conductive members disposed over the plurality of first parallel conductive members. A first base member is coupled to an end of the plurality of first parallel conductive members, and a second base member is coupled to an end of the plurality of second parallel conductive members. A connecting member is disposed between the plurality of first parallel conductive members and the plurality of second parallel conductive members, wherein the connecting member includes at least one elongated via.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: March 20, 2012
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Barth, Erwin Ruderer, Alexander Von Glasow, Philipp Riess, Erdem Kaltalioglu, Peter Baumgartner, Thomas Benetik, Helmut Horst Tews
  • Patent number: 8120086
    Abstract: An integrated circuit structure includes a semiconductor substrate including a first region and a second region; an insulation region in the second region of the semiconductor substrate; and an inter-layer dielectric (ILD) over the insulation region. A transistor is in the first region. The transistor includes a gate dielectric and a gate electrode over the gate dielectric. A first conductive line and a second conductive line are over the insulation region. The first conductive line and the second conductive line are substantially parallel to each other and extending in a first direction. A first metal line and a second metal line are in a bottom metal layer (M1) and extending in the first direction. The first metal line and the second metal line substantially vertically overlap the first conductive line and the second conductive line, respectively. The first metal line and the second metal line form two capacitor electrodes of a capacitor.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: February 21, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Oscar M. K. Law, Kong-Beng Thei, Harry Chuang
  • Patent number: 8120084
    Abstract: Described is a modulatable injection barrier and a semiconductor element comprising same. More particularly, the invention relates to a two-terminal, non-volatile programmable resistor. Such a resistor can be applied in non-volatile memory devices, and as an active switch e.g. in displays. The device comprises, in between electrode layers, a storage layer comprising a blend of a ferro-electric material and a semiconductor material. Preferably both materials in the blend are polymers.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: February 21, 2012
    Assignee: Rijksuniversiteit Groningen
    Inventors: Paulus Wilhelmus Maria Blom, Bert de Boer, Kamal Asadi
  • Patent number: 8116063
    Abstract: The present invention provides a metal-oxide-metal (MOM) capacitor structure composed of a first capacitor and a second capacitor. The MOM capacitor structure has a plurality of symmetrical branch sections, which form an interdigitated structure along a plurality of ring contours. The MOM capacitor structure has an optimal geometrical symmetry, and therefore a better capacitance matching effect can be obtained, and the MOM capacitor structure has a higher unit capacitance. In addition, a capacitance value ratio between the first capacitor and the second capacitor can be adjusted according to different requirements in the MOM capacitor structure. Furthermore, the MOM capacitor structure of the present invention does not need additional masks, and the process cost is cheaper. In addition, due to the semiconductor process improvement, a large amount of metal layers can be stacked, and since the distance between the metal layers becomes smaller, the unit capacitance becomes higher.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: February 14, 2012
    Assignee: Realtek Semiconductor Corp.
    Inventors: Ta-Hsun Yeh, Han-Chang Kang
  • Patent number: 8106470
    Abstract: An integrated circuit structure includes a substrate having a top surface; a first conductive layer over and contacting the top surface of the substrate; a dielectric layer over and contacting the first conductive layer, wherein the dielectric layer includes an opening exposing a portion of the first conductive layer; and a proof-mass in the opening and including a second conductive layer at a bottom of the proof-mass. The second conductive layer is spaced apart from the portion of the first conductive layer by an air space. Springs anchor the proof-mass to portions of the dielectric layer encircling the opening. The springs are configured to allow the proof-mass to make three-dimensional movements.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: January 31, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Hau Wu, Chun-Wen Cheng, Chun-Ren Cheng, Shang-Ying Tsai, Jung-Huei Peng, Jiou-Kang Lee, Allen Timothy Chang
  • Patent number: 8093643
    Abstract: A capacitor for use in integrated circuits comprises a layer of conductive material. The layer of conductive material including at least a first portion and a second portion, wherein the first portion and the second portion are arranged in a predetermined pattern relative to one another to provide a maximum amount of capacitance per semiconductor die area.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: January 10, 2012
    Assignee: Micron Technology, Inc.
    Inventors: R. Jacob Baker, Kurt D. Beigel
  • Patent number: 8076752
    Abstract: Capacitors configured in a switched-capacitor circuit on a semiconductor device may comprise very accurately matched, high capacitance density metal-to-metal capacitors, using top-plate-to-bottom-plate fringe-capacitance for obtaining the desired capacitance values. A polysilicon plate may be inserted below the bottom metal layer as a shield, and bootstrapped to the top plate of each capacitor in order to minimize and/or eliminate the parasitic top-plate-to-substrate capacitance. This may free up the bottom metal layer to be used in forming additional fringe-capacitance, thereby increasing capacitance density. By forming each capacitance solely based on fringe-capacitance from the top plate to the bottom plate, no parallel-plate-capacitance is used, which may reduce capacitor mismatch. Parasitic bottom plate capacitance to the substrate may also be eliminated, with only a small capacitance to the bootstrapped polysilicon plate remaining.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: December 13, 2011
    Assignee: Standard Microsystems Corporation
    Inventor: Scott C. McLeod
  • Patent number: 8053307
    Abstract: A semiconductor device may include a substrate having a cell active region. A cell gate electrode may be formed in the cell active region. A cell gate capping layer may be formed on the cell gate electrode. At least two cell epitaxial layers may be formed on the cell active region. One of the at least two cell epitaxial layers may extend to one end of the cell gate capping layer and another one of the at least two cell epitaxial layers may extend to an opposite end of the cell gate capping layer. Cell impurity regions may be disposed in the cell active region. The cell impurity regions may correspond to a respective one of the at least two cell epitaxial layers.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-Won Seo, Jae-Man Yoon, Kang-Yoon Lee, Bong-Soo Kim
  • Patent number: 8053824
    Abstract: Apparatuses and methods for increasing well distributed, high quality-factor on-chip capacitance of integrated circuit devices are disclosed. In one aspect, an integrated circuit device structure includes a first metal line implemented on a metallization layer of a semiconductor substrate, the first metal line having a first set of metal fingers extending therefrom; and a second metal line electrically isolated from the first metal line, the second metal line having a second set of metal fingers extending therefrom, the first set of metal fingers and the second set of metal fingers capacitively coupled. The basic structure of metal lines with interlocking metal fingers may be repeated on multiple adjacent metallization layers, with the metal lines oriented either in parallel or perpendicular.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: November 8, 2011
    Assignee: LSI Corporation
    Inventors: Greg Winn, Steve Howard
  • Patent number: 8049302
    Abstract: At least a first capacitor is formed on a substrate and connected to a first differential node of a differential circuit, and the first capacitor may be variable in capacitance. A second capacitor is formed on the substrate and connected to a second differential node of the differential circuit, and the second capacitor also may be variable. A third capacitor is connected between the first differential node and the second differential node, and is formed at least partially above the first capacitor. In this way, a size of the first capacitor and/or the second capacitor may be reduced on the substrate, and capacitances of the first and/or second capacitor(s) may be adjusted in response to a variable characteristic of one or more circuit components of the differential circuit.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: November 1, 2011
    Assignee: Broadcom Corporation
    Inventors: Hooman Darabi, Oiang Li, Bo Zhang
  • Publication number: 20110260231
    Abstract: The present application discloses a memory device and a method for manufacturing the same.
    Type: Application
    Filed: September 21, 2010
    Publication date: October 27, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huicai Zhong
  • Patent number: 8030697
    Abstract: A cell structure of a semiconductor device includes an active region, having a concave portion, and an inactive region that defines the active region. A gate pattern in the active region is arranged perpendicular to the active region. A landing pad on the active region and the inactive region contacts the active region. A bit line pattern on the inactive region intersects the gate pattern perpendicularly, the bit line pattern being electrically connected to the landing pad and having a first protrusion corresponding to the concave portion of the active region.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: October 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Min-Hee Cho, Seung-Bae Park
  • Patent number: 8022458
    Abstract: A semiconductor structure including a capacitor having increased capacitance and improved electrical performance is provided. The semiconductor structure includes a substrate; and a capacitor over the substrate. The capacitor includes a first layer including a first capacitor electrode and a second capacitor electrode, wherein the first capacitor electrode is formed of a metal-containing material and is free from polysilicon. The semiconductor structure further includes a MOS device including a gate dielectric over the substrate; and a metal-containing gate electrode on the gate dielectric, wherein the metal-containing gate electrode is formed of a same material, and has a same thickness, as the first capacitor electrode.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: September 20, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Long Chang, David Ding-Chung Lu, Chia-Yi Chen, I-Lu Wu
  • Patent number: 8018009
    Abstract: A movable substrate is placed over a bottom substrate where both substrates contain Coulomb islands. The Coulomb islands can be adjusted in charge and are used to develop a force between two opposing Coulomb islands. Information from sensors is applied to a control unit to control the movement of the movable substrate. Coulomb islands are formed in the juxtaposed edges of a first substrate and second substrate, respectively. The islands generate edge Coulomb forces. These edge Coulomb forces can be used to detach, repel, move, attract and reattach the edges of substrates into new configurations. One possibility is to combine a plurality of individual substrates into one large planar substrate.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: September 13, 2011
    Assignee: MetaMEMS Corp.
    Inventor: Thaddeus John Gabara
  • Patent number: 7999297
    Abstract: A semiconductor device having transistors formed on different layers of a stack structure includes a stacked capacitor cluster, wherein a stacked capacitor of the stacked capacitor cluster includes an insulation layer of a transistor of the semiconductor device, and at least a first conduction layer and a second conduction layer disposed above and below the insulation layer, wherein the stacked capacitor is a decoupling capacitor of the stacked capacitor cluster connected in parallel between a first line and a second line.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: August 16, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyang-Ja Yang
  • Patent number: 7994561
    Abstract: A semiconductor device for preventing the leaning of storage nodes and a method of manufacturing the same is described. The semiconductor device includes support patterns that are formed to support a plurality of cylinder type storage nodes. The support patterns are formed of a BN layer and have a hexagonal structure. The BN layer forming the support patterns has compressive stress as opposed to tensile stress and can therefore withstand cracking in the support patterns.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: August 9, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hun Kim, Byung Soo Eun
  • Patent number: 7977724
    Abstract: A capacitor includes a cylindrical storage electrode formed on a substrate. A ring-shaped stabilizing member encloses an upper portion of the storage electrode to structurally support the storage electrode and an adjacent storage electrode. The ring-shaped stabilizing member is substantially perpendicular to the storage electrode and extends in a direction where the adjacent storage electrode is arranged. A dielectric layer is formed on the storage electrode. A plate electrode is formed on the dielectric layer.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: July 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Je-Min Park
  • Patent number: 7968929
    Abstract: The present disclosure provides on-chip decoupling capacitor structures having trench capacitors integrated with a passive capacitor formed in the back-end-of-line wiring to provide an improved overall capacitance density. In some embodiments, the structure includes at least one deep trench capacitor and a passive capacitor formed in at least two back-end-of-line wiring levels. The trench and passive capacitors are in electrical communication through one of the wiring levels. In other embodiments, the structure includes at least one deep trench capacitor, a first back-end-of-line wiring level, and a second back-end-of-line wiring level. The deep trench capacitor with a dielectric that has an upper edge that terminates at a lower surface of a shallow trench isolation region. The first wiring level is in electrical communication with the trench capacitor. The second wiring level is vertically electrically connected to the first wiring level by vertical connectors so as to form a passive capacitor.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: June 28, 2011
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Eric Thompson
  • Patent number: 7960773
    Abstract: This invention provides a capacitor device with a high dielectric constant material and multiple vertical electrode plates. The capacitor devices can be directly fabricated on a wafer with low temperature processes so as to be integrated with active devices formed on the wafer. This invention also forms vertical conducting lines in the capacitor devices using the through-silicon-via technology to facilitate the three-dimensional stacking of the capacitor devices.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: June 14, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Shu-Ming Chang, Chia-Wen Chiang
  • Patent number: 7943978
    Abstract: In a semiconductor device, the semiconductor device may include a first active structure, a first gate insulation layer, a first gate electrode, a first impurity region, a second impurity region and a contact structure. The first active structure may include a first lower pattern in a first region of a substrate and a first upper pattern on the first lower pattern. The first gate insulation layer may be formed on a sidewall of the first upper pattern. The first gate electrode may be formed on the first gate insulation layer. The first impurity region may be formed in the first lower pattern. The second impurity region may be formed in the first upper pattern. The contact structure may surround an upper surface and an upper sidewall of the first upper pattern including the second impurity region. Accordingly, the contact resistance between the contact structure and the second impurity region may be decreased and structural stability of the contact structure may be improved.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: May 17, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kang-Uk Kim, Jae-Man Yoon, Yong-Chul Oh, Hui-Jung Kim, Hyun-Woo Chung, Hyun-Gi Kim
  • Patent number: 7939910
    Abstract: Capacitance circuits are provided disposing a lower vertical-native capacitor metal layer above a planar front-end-of-line semiconductor base substrate, planar metal bottom plates spaced a bottom plate distance from the base and top plates above the bottom plates spaced a top plate distance from the base defining metal-insulator-metal capacitors, top plate footprints disposed above the base substrate smaller than bottom plate footprints and exposing bottom plate remainder upper lateral connector surfaces; disposing parallel positive port and negative port upper vertical-native capacitor metal layers over and each connected to top plate and bottom plate upper remainder lateral connector surface. Moreover, electrical connecting of the first top plate and the second bottom plate to the positive port metal layer and of the second top plate and the first bottom to the negative port metal layer impart equal total negative port and positive port metal-insulator-metal capacitor extrinsic capacitance.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: May 10, 2011
    Assignee: International Business Machines Corporation
    Inventors: Choongyeun Cho, Jonghae Kim, Moon J. Kim, Jean-Olivier Plouchart, Robert E. Trzcinski
  • Patent number: 7923817
    Abstract: A semiconductor device includes a first capacitor comprising a plurality of first unit capacitors interconnected to each other, each having a first unit capacitance; and a second capacitor comprising a plurality of second unit capacitors interconnected to each other, each having a second unit capacitance, wherein the first unit capacitors and the second unit capacitors have equal numbers of unit capacitors. The first unit capacitors and the second unit capacitors are arranged in an array with rows and columns and placed in an alternating pattern in each row and each column. The first and the second unit capacitors each have a total number greater than two.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: April 12, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Yi Chen, Chung-Long Chang, Chih-Ping Chao
  • Patent number: 7919803
    Abstract: A semiconductor memory device in which a plurality of capacitors each including a columnar lower electrode, a capacitor insulation film and an upper electrode are stacked with interlayer films therebetween, a contact plug connects an upper face of each lower electrode of a lower layer with a bottom face of each lower electrode of an upper layer, and another contact plug connects upper electrodes of the capacitors in respective layers with each other.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: April 5, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Naoki Yokoi
  • Patent number: 7910949
    Abstract: A power semiconductor device includes a conductive board and a switching element mounted on the conductive board and electrically connected thereto. The power semiconductor device also includes an integrated circuit mounted on the conductive board at a distance from the switching element and electrically connected thereto. The switching element turns ON/OFF a connection between first and second main electrodes in response to a control signal inputted to a control electrode. The integrated circuit includes a control circuit which controls ON/OFF the switching element and a back side voltage detection element which detects a voltage of the back side of the integrated circuit.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: March 22, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yukio Yasuda, Atsunobu Kawamoto, Shinsuke Goudo