Plural Additional Contacted Control Electrodes Patents (Class 257/319)
  • Patent number: 8860116
    Abstract: A nonvolatile semiconductor memory of an aspect of the present invention including a plurality of first active areas which are provided in the memory cell array side-by-side in a first direction and which have a dimension smaller than a fabrication limit dimension obtained by lithography, a second active area provided between the first active areas adjacent in the first direction, a memory cell unit which is provided in each of the plurality of first active areas and which has memory cells and select transistors, and a linear contact which is connected to one end of the memory cell unit and which extends in the first direction, wherein an area in which the linear contact is provided is one semiconductor area to which the plurality of first active areas are connected by the plurality of second active areas, and the bottom surface of the linear contact is planar.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: October 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Sakaguchi, Hiroyuki Nitta
  • Publication number: 20140264539
    Abstract: A memory device array with spaced apart parallel isolation regions formed in a semiconductor substrate, with an active region between each pair of adjacent isolation regions. Each isolation region includes a trench formed into the substrate surface and an insulation material formed in the trench. Portions of a top surface of the insulation material are recessed below the surface of the substrate. Each active region includes a column of memory cells each having spaced apart first and second regions with a channel region therebetween, a floating gate over a first channel region portion, and a select gate over a second channel region portion. The select gates are formed as continuous word lines extending perpendicular to the isolation regions and each forming the select gates for one row of the memory cells. Portions of each word line extend down into the trenches and disposed laterally adjacent to sidewalls of the trenches.
    Type: Application
    Filed: February 27, 2014
    Publication date: September 18, 2014
    Applicant: Silicon Storage Technology, Inc.
    Inventors: Nhan Do, Hieu Van Tran, Chien-Sheng Su, Prateep Tuntasood
  • Patent number: 8829597
    Abstract: A nonvolatile memory device includes a plurality of channel connection layers formed over a substrate; a first gate electrode layer filling a space between the plurality channel connection layers; a gate dielectric layer interposed between each of the channel connection layers and the first gate electrode layer; a stacked structure formed over the plurality channel connection layers and the first gate electrode layer, the stacked structure including a plurality of interlayer dielectric layers and a plurality second gate electrode layers, which are alternately stacked; a pair of channel layers, formed through the stacked structure and connected to each channel connection layer of the plurality of channel connection layers; and a memory layer interposed between each of the channel layers and each of the second gate electrode layers.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: September 9, 2014
    Assignee: SK Hynix Inc.
    Inventor: Su-Chang Kwak
  • Patent number: 8829590
    Abstract: A variable resistance memory device includes a plurality of column selection switches, a plurality of variable resistance memory cells configured to be stacked and selected by the plurality of column selection switches, and a bit line connected to the plurality of variable resistance memory cells. Each of the plurality of variable resistance memory cells includes an ovonic threshold switch (OTS) element selectively driven by a plurality of word lines arranged to be stacked and a variable resistor connected in parallel to the OTS element.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 9, 2014
    Assignee: SK Hynix Inc.
    Inventor: Nam Kyun Park
  • Patent number: 8829591
    Abstract: A monolithic three dimensional NAND string includes a semiconductor channel having at least one end extending substantially perpendicular to a major surface of a substrate, a plurality of control gates extending substantially parallel to the major surface of the substrate, including a first control gate located in a first device level and a second control gate located in a second device level, a charge storage material located in the first device level and in the second device level, a blocking dielectric located between the charge storage material and the plurality of control gates, and a tunneling dielectric located between the charge storage material and the semiconductor channel. The tunneling dielectric has a straight sidewall, portions of the blocking dielectric have a clam shape, and each of the plurality of control gates is located at least partially in an opening in the clam-shaped portion of the blocking dielectric.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: September 9, 2014
    Assignee: Sandisk Technologies Inc.
    Inventor: Johann Alsmeier
  • Publication number: 20140239367
    Abstract: The performances of a semiconductor device are improved. The semiconductor device has a first control gate electrode and a second control gate electrode spaced along the gate length direction, a first cap insulation film formed over the first control gate electrode, and a second cap insulation film formed over the second control gate electrode. Further, the semiconductor device has a first memory gate electrode arranged on the side of the first control gate electrode opposite to the second control gate electrode, and a second memory gate electrode arranged on the side of the second control gate electrode opposite to the first control gate electrode. The end at the top surface of the first cap insulation film on the second control gate electrode side is situated closer to the first memory gate electrode side than the side surface of the first control gate electrode on the second control gate electrode side.
    Type: Application
    Filed: January 2, 2014
    Publication date: August 28, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: KENTARO SAITO, HIRAKU CHAKIHARA
  • Patent number: 8809935
    Abstract: According to one embodiment, a method for manufacturing a semiconductor device includes: forming an underlayer film that contains atoms selected from the group consisting of aluminum, boron and alkaline earth metal; and forming a silicon oxide film on the underlayer film by a CVD method or an ALD method by use of a silicon source containing at least one of an ethoxy group, a halogen group, an alkyl group and an amino group, or a silicon source of a siloxane system.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: August 19, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Tanaka, Kenichiro Toratani
  • Patent number: 8803220
    Abstract: Non-voltage storage and techniques for fabricating non-volatile storage are disclosed. In some embodiments, at least a portion of the control gates of non-volatile storage elements are formed from p-type polysilicon. In one embodiment, a lower portion of the control gate is p-type polysilicon. The upper portion of the control gate could be p-type polysilicon, n-type polysilicon, metal, metal nitride, etc. P-type polysilicon in the control gate may not deplete even at high Vpgm. Therefore, a number of problems that could occur if the control gate depleted are mitigated. For example, a memory cell having a control gate that is at least partially p-type polysilicon might be programmed with a lower Vpgm than a memory cell formed from n-type polysilicon.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: August 12, 2014
    Assignee: SanDisk Technologies Inc.
    Inventors: Takashi Whitney Orimoto, Atsushi Suyama, Ming Tian, Henry Chin, Henry Chien, Vinod Robert Purayath, Dana Lee
  • Publication number: 20140217490
    Abstract: In a nonvolatile memory device and a method for fabricating the same, a device comprises a substrate, a trench in the substrate and a first gate pattern comprising a first bottom gate electrode having a first portion in the trench and having a second portion on the first portion and protruding in an upward direction relative to an upper surface of the substrate. A second gate pattern comprising a second gate electrode is on the substrate at a side of the first gate pattern and insulated from the first gate pattern. An impurity region is present in the substrate at a side of the first gate pattern opposite the second gate pattern, and overlapping part of the trench.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 7, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Bo-Young Seo, Weon-Ho Park, Chang-Min Jeon, Yong-Sang Cho
  • Patent number: 8791524
    Abstract: According to one embodiment, a method is disclosed for manufacturing a nonvolatile semiconductor memory device. The method can includes forming a semiconductor layer containing an impurity and forming a pattern on the semiconductor layer. The method can include forming first insulating layers in a stripe shape from a surface of the semiconductor layer toward an inside and forming a first insulating film on the semiconductor layer and on the first insulating layers to form a stacked body including electrode layers on the first insulating film. The method can include forming a pair of holes in the stacked body and forming a space portion connected to a lower end of the holes. The method can include forming a memory film on a side wall of the holes. In addition, the method can include forming a channel body layer on a surface of the memory film.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: July 29, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Daigo Ichinose, Hanae Ishihara
  • Patent number: 8779499
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes sheet-like memory strings arranged in a matrix shape substantially perpendicularly to a substrate. A control gate electrode film includes a common connecting section that extends in a first direction and an electrode forming section that is provided for each of memory cells above or below a floating gate electrode film via an inter-electrode dielectric film to project from the common connecting section in a second direction. The floating gate electrode film extends in the second direction and is formed on a first principal plane of a sheet-like semiconductor film via a tunnel dielectric film.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: July 15, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masahiro Kiyotoshi
  • Patent number: 8772108
    Abstract: A process for creating a low-cost multi-time programmable (MTP) non-volatile memory (NVM) and the resulting device are provided. Embodiments include forming a select gate and a floating gate above a substrate, each over a first shallow trench isolation (STI) region, a doped region formed between a source and a drain, and a second STI region, forming a metal layer over the floating gate, and forming a pair of self-aligned contacts on the first and second STI regions on opposite sides of the doped region, respectively, and electrically connected to the metal layer.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: July 8, 2014
    Assignee: GlobalFoundries Singapore Pte. Ltd.
    Inventors: Eng Huat Toh, Shyue Seng Tan, Elgin Quek
  • Patent number: 8772101
    Abstract: One method includes forming first sidewall spacers adjacent opposite sides of a sacrificial gate structure and a gate cap layer, removing the gate cap layer and a portion of the first sidewall spacers to define reduced-height first sidewall spacers, forming second sidewall spacers, removing the sacrificial gate structure to thereby define a gate cavity, whereby a portion of the gate cavity is laterally defined by the second sidewall spacers, and forming a replacement gate structure in the gate cavity, wherein at least a first portion of the replacement gate structure is positioned between the second sidewall spacers. A device includes a gate structure positioned above the substrate between first and second spaced-apart portions of a layer of insulating material and a plurality of first sidewall spacers, each of which are positioned between the gate structure and on one of the first and second portions of the layer of insulating material.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: July 8, 2014
    Assignees: GLOBALFOUNDRIES Inc., International Business Machines Corporation
    Inventors: Ruilong Xie, Ponoth Shom, Cho Jin, Charan Veera Venkata Satya Surisetty
  • Patent number: 8772857
    Abstract: A vertical memory device includes a channel, a ground selection line (GSL), word lines and a string selection line (SSL). The channel extends in a first direction substantially perpendicular to a top surface of a substrate, and a thickness of the channel is different according to height. The GSL, the word lines and the SSL are sequentially formed on a sidewall of the channel in the first direction and spaced apart from each other.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byeong-In Choe, Jae-Hoon Jang, Sun-Il Shim, Han-Soo Kim, Jin-Man Han
  • Patent number: 8772855
    Abstract: Embodiments of a semiconductor device including a resistor and a method of fabricating the same are provided. The semiconductor device includes a mold pattern disposed on a semiconductor substrate to define a trench, a resistance pattern including a body region and first and second contact regions, wherein the body region covers the bottom and sidewalls of the trench, the first and second contact regions extend from the extending from the body region over upper surfaces of the mold pattern, respectively; and first and second lines contacting the first and second contact regions, respectively.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: July 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoonmoon Park, Keonsoo Kim, Jinhyun Shin, Jae-Hwang Sim
  • Patent number: 8765538
    Abstract: Provided are three-dimensional semiconductor memory devices and methods of forming the same. The device includes a substrate, conductive patterns stacked on the substrate, and an active pattern penetrating the conductive patterns to be connected to the substrate. The active pattern may include a first doped region provided in an upper portion of the active pattern, and a diffusion-resistant doped region overlapped with at least a portion of the first doped region. The diffusion-resistant doped region may be a region doped with carbon.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: July 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bio Kim, Kihyun Hwang, Jaeyoung Ahn, SeungHyun Lim, Dongwoo Kim
  • Publication number: 20140177338
    Abstract: A non-volatile memory cell comprises a coupling device, a first and a second select transistor, and a first and a second floating gate transistor is disclosed. The coupling device is formed in a first conductivity region. The first select transistor is serially connected to the first floating gate transistor and the second select transistor. Moreover, the first select transistor, the first floating gate transistor, and the second select transistor are formed in a second conductivity region. The second floating gate transistor is formed in a third conductivity region, wherein the first conductivity region, the second conductivity region, and the third conductivity region are formed in a fourth conductivity region. The first conductivity region, the second conductivity region, and the third conductivity region are wells, and the fourth conductivity region is a deep well. The third conductivity region surrounds the first conductivity region and the second conductivity region.
    Type: Application
    Filed: February 26, 2014
    Publication date: June 26, 2014
    Applicant: eMemory Technology Inc.
    Inventors: Wen-Hao Ching, Shih-Chen Wang
  • Patent number: 8759900
    Abstract: A semiconductor memory device includes a substrate including a cell region and a peripheral region, word lines on the substrate of the cell region, each of the word lines including a charge storing part and a control gate electrode sequentially stacked, and a peripheral gate pattern on the substrate of the peripheral region. Each of the control gate electrode and the peripheral gate pattern includes a high-carbon semiconductor pattern and a low-carbon semiconductor pattern, the low-carbon semiconductor pattern being on the high-carbon semiconductor pattern.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: June 24, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae-Hwang Sim
  • Patent number: 8759897
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a stacked structural unit, a semiconductor pillar, a memory layer, an inner insulating film, an outer insulating film and a cap insulating film. The unit includes a plurality of electrode films stacked alternately in a first direction with a plurality of inter-electrode insulating films. The pillar pierces the stacked structural unit in the first direction. The memory layer is provided between the electrode films and the semiconductor pillar. The inner insulating film is provided between the memory layer and the semiconductor pillar. The outer insulating film is provided between the memory layer and the electrode films. The cap insulating film is provided between the outer insulating film and the electrode films, and the cap insulating film has a higher relative dielectric constant than the outer insulating film.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: June 24, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shigeto Oota, Yoshimasa Mikajiri, Masaru Kito, Ryouhei Kirisawa
  • Patent number: 8754485
    Abstract: A 3-dimensional (3-D) non-volatile memory device includes a first channel protruding from a substrate, a selection gate formed on sidewalls of the first channel and in an L shape, and a gate insulating layer interposed between the first channel and the selection gate and surrounding the first channel. A method of manufacturing a 3-D non-volatile memory device includes forming first channels protruding from a substrate, forming a first gate insulating layer surrounding the first channels, and forming first selection gates having an L shape on sidewalls of the first channels on which the first gate insulating layers are formed.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: June 17, 2014
    Assignee: SK Hynix Inc.
    Inventors: Ki Hong Lee, Seung Ho Pyi, Sung Chul Shin
  • Patent number: 8748967
    Abstract: An aspect of the present embodiment, there is provided a semiconductor device, including a semiconductor substrate, a first insulator above the semiconductor substrate, the first insulator containing tungsten, germanium and silicon, a charge storage film on the first insulator, a second insulator on the charge storage film and, a control gate electrode on the second insulator.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: June 10, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenichiro Toratani, Masayuki Tanaka
  • Patent number: 8742488
    Abstract: Example embodiments relate to a three-dimensional semiconductor memory device including an electrode structure on a substrate, the electrode structure including at least one conductive pattern on a lower electrode, and a semiconductor pattern extending through the electrode structure to the substrate. A vertical insulating layer may be between the semiconductor pattern and the electrode structure, and a lower insulating layer may be between the lower electrode and the substrate. The lower insulating layer may be between a bottom surface of the vertical insulating layer and a top surface of the substrate. Example embodiments related to methods for fabricating the foregoing three-dimensional semiconductor memory device.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: June 3, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaegoo Lee, Kil-Su Jeong, Hansoo Kim, Youngwoo Park
  • Patent number: 8735961
    Abstract: A non-volatile memory device having a string of a plurality of memory cells that are serially coupled, wherein the string of memory cells includes a plurality of second channels of a pillar type, a first channel coupling lower end portions of the plurality of the second channels with each other, and a plurality of control gate electrodes surrounding the plurality of the second channels.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: May 27, 2014
    Assignee: SK Hynix Inc.
    Inventor: Han-Soo Joo
  • Patent number: 8735969
    Abstract: A semiconductor structure and a manufacturing method thereof are provided. The semiconductor structure includes a stacked structure, a plurality of first conductive blocks, a plurality of first conductive layers, a plurality of second conductive layers, and a plurality of conductive damascene structures. The stacked structure, comprising a plurality of conductive strips and a plurality of insulating strips, is formed on a substrate, and the conductive strips and the insulating strips are interlaced. The first conductive blocks are formed on the stacked structure. The first conductive layers and the second conductive layers are formed on two sidewalls of the stacked structure, respectively. The conductive damascene structures are formed on two sides of the stacked structure, wherein each of the first conductive blocks is electrically connected to each of the conductive damascene structures via each of the first conductive strips and each of the second conductive strips.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: May 27, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Erh-Kun Lai, Yen-Hao Shih, Shih-Chang Tsai
  • Patent number: 8729623
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes: a stacked body including a plurality of electrode layers and a plurality of insulating layers, which are alternately stacked, and diffusion suppressing layers each provided between each of the plurality of electrode layers and each of the plurality of insulating layers; and a memory film provided on a side wall of a hole penetrating the stacked body in a stacking direction. Each of the plurality of electrode layers is a first semiconductor layer containing a first impurity element. The diffusion suppressing layer is a second semiconductor layer containing a second impurity element which is different from the first impurity element. The diffusion suppressing layer is a film having an effect of suppressing diffusion of the first impurity element.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: May 20, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomo Ohsawa, Yosuke Komori
  • Patent number: 8723246
    Abstract: A nonvolatile semiconductor memory according to examples of the present invention comprises a memory cell and a peripheral transistor. The memory cell has a first intergate insulating film having a multilayer structure and provided on a floating gate electrode and an isolation insulating layer. The peripheral transistor has a second intergate insulating film having a multilayer structure and provided on a first gate electrode and a second isolation insulating layer. The first and second intergate insulating films have the same structure, and a lowermost insulating layer of the first intergate insulating film on the first isolation insulating layer is thinner than a lowermost insulating layer of the second intergate insulating film on the second isolation insulating layer.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: May 13, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshitake Yaegashi
  • Patent number: 8716780
    Abstract: A memory device includes a planar substrate, a plurality of horizontal conductive planes above the planar substrate, and a plurality of horizontal insulating layers interleaved with the plurality of horizontal conductive planes. An array of vertical conductive columns, perpendicular to the pluralities of conductive planes and insulating layers, passes through apertures in the pluralities of conductive planes and insulating layers. The memory device includes a plurality of programmable memory elements, each of which couples one of the horizontal conductive planes to a respective vertical conductive column.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: May 6, 2014
    Assignee: Rambus Inc.
    Inventors: Mark D. Kellam, Gary B. Bronner
  • Patent number: 8686490
    Abstract: Methods and apparatuses for electronic devices such as non-volatile memory devices are described. The memory devices include a multi-layer control dielectric, such as a double or triple layer. The multi-layer control dielectric includes a combination of high-k dielectric materials such as aluminum oxide, hafnium oxide, and/or hybrid films of hafnium aluminum oxide. The multi-layer control dielectric provides enhanced characteristics, including increased charge retention, enhanced memory program/erase window, improved reliability and stability, with feasibility for single or multi state (e.g., two, three or four bit) operation.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: April 1, 2014
    Assignee: SanDisk Corporation
    Inventor: Jian Chen
  • Publication number: 20140071762
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a memory cell and a select gate transistor formed on a semiconductor substrate. The memory cell includes a first gate insulating film, a first charge storage layer, a first intergate insulating film, and a first control gate. The first gate insulating film, the first charge storage layer, the first intergate insulating film, and the first control gate are formed on the semiconductor substrate in order. The select gate transistor includes a second gate insulating film, a first gate electrode, a second intergate insulating film, and a second control gate. The second gate insulating film, the first gate electrode, the second intergate insulating film, and the second control gate are formed on the semiconductor substrate in order. The second intergate insulating film different first and second thicknesses.
    Type: Application
    Filed: March 5, 2013
    Publication date: March 13, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Satoshi INOUE
  • Patent number: 8664712
    Abstract: The invention relates to a flash memory cell having a FET transistor with a floating gate on a semiconductor-on-insulator (SOI) substrate composed of a thin film of semiconductor material separated from a base substrate by an insulating buried oxide (BOX) layer, The transistor has in the thin film, a channel, with two control gates, a front control gate located above the floating gate and separated from it by an inter-gate dielectric, and a back control gate located within the base substrate directly under the insulating (BOX) layer and separated from the channel by only the insulating (BOX) layer. The two control gates are designed to be used in combination to perform a cell programming operation. The invention also relates to a memory array made up of a plurality of memory cells according to the first aspect of the invention, which can be in an array of rows and columns, and a method of fabricating such memory cells and memory arrays.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 4, 2014
    Assignee: Soitec
    Inventors: Carlos Mazure, Richard Ferrant
  • Publication number: 20140054670
    Abstract: A three dimensional memory device including a substrate and a semiconductor channel. At least one end portion of the semiconductor channel extends substantially perpendicular to a major surface of the substrate. The device also includes at least one charge storage region located adjacent to semiconductor channel and a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate. The plurality of control gate electrodes include at least a first control gate electrode located in a first device level and a second control gate electrode located in a second device level located over the major surface of the substrate and below the first device level. The device also includes an etch stop layer located between the substrate and the plurality of control gate electrodes.
    Type: Application
    Filed: October 30, 2013
    Publication date: February 27, 2014
    Applicant: SanDisk Technologies, Inc.
    Inventors: Yao-Sheng Lee, Johann Alsmeier
  • Patent number: 8659069
    Abstract: A method of forming a gate structure includes forming a tunnel insulation layer pattern on a substrate, forming a floating gate on the tunnel insulation layer pattern, forming a dielectric layer pattern on the floating gate, the dielectric layer pattern including a first oxide layer pattern, a nitride layer pattern on the first oxide layer pattern, and a second oxide layer pattern on the nitride layer pattern, the second oxide layer pattern being formed by performing an anisotropic plasma oxidation process on the nitride layer, such that a first portion of the second oxide layer pattern on a top surface of the floating gate has a larger thickness than a second portion of the second oxide layer pattern on a sidewall of the floating gate, and forming a control gate on the second oxide layer.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: February 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Sung-Ho Heo, Jae-Ho Choi, Hun-Hyeong Lim, Ki-Hyun Hwang, Woo-Sung Lee
  • Patent number: 8648405
    Abstract: A nonvolatile semiconductor memory device includes a plurality of floating gate electrodes respectively formed above a semiconductor substrate with first insulating films disposed therebetween, and a control gate electrode formed above the plurality of floating gate electrodes with a second insulating film disposed therebetween. In each of the plurality of floating gate electrodes is formed to have a width of an upper portion thereof in a channel width direction which is smaller than a width of a lower portion thereof in the channel width direction and one of contact surfaces thereof on at least opposed sides which contact the second insulating film is formed to have one surface, and the second insulating film has a maximum film thickness in a vertical direction, the maximum film thickness being set smaller than a distance from a lowest surface to a highest surface of the second insulating film in the vertical direction.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: February 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshitake Yaegashi
  • Patent number: 8644759
    Abstract: Offset voltages developed on floating nodes on inputs to high-performance amplifiers that are DC isolated from the data signals input to amplifiers are cancelled by connecting a highly resistive element between the input node and a predetermined potential, particularly useful in proximity communication systems in which two chips are connected through capacitive or inductive coupling circuits formed jointly in the two chips. The resistive element may be an off MOS transistor connected between the node and a desired bias voltage or a MOS transistor with its gate and drain connected to the potential. Multiple bias voltages may be distributed to all receivers and locally selected by a multiplexer for application to one or two input nodes of the receiver. The receiver output can also serve as a predetermined potential when the resistive element has a long time constant compared to the data rate or the resistive element is non-linear.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: February 4, 2014
    Assignee: Oracle America, Inc.
    Inventors: Justin M. Schauer, Robert David Hopkins, Robert J. Drost
  • Patent number: 8638589
    Abstract: An operating method for a memory unit is provided, wherein the memory unit includes a well region, a select gate, a first gate, a second gate, an oxide nitride spacer, a first diffusion region, and a second diffusion region. The operating method for the memory unit comprises the following steps. During a programming operation, a breakdown voltage is coupled to the second diffusion region through a first channel region formed under the select gate. A programming voltage is sequentially or simultaneously applied to the first gate and the second gate to rupture a first oxide layer and a second oxide layer, wherein the first oxide layer is disposed between the first gate and the well region, and the second oxide layer is disposed between the second gate and the well region.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: January 28, 2014
    Assignee: eMemory Technology Inc.
    Inventors: Hau-Yan Lu, Hsin-Ming Chen, Ching-Sung Yang
  • Publication number: 20140008712
    Abstract: A method of manufacturing a semiconductor device includes forming a plurality of strings spaced a first distance from each other, each string including first preliminary gate structures spaced a second distance, smaller than the first distance, between second preliminary gate structures, forming a first insulation layer to cover the first and second preliminary gate structures, forming an insulation layer structure to fill a space between the strings, forming a sacrificial layer pattern to partially fill spaces between first and second preliminary gate structures, removing a portion of the first insulation layer not covered by the sacrificial layer pattern to form a first insulation layer pattern, reacting portions of the first and second preliminary gate structures not covered by the first insulation layer pattern with a conductive layer to form gate structures, and forming a capping layer on the gate structures to form air gaps between the gate structures.
    Type: Application
    Filed: September 6, 2013
    Publication date: January 9, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Jae-Hwang SIM
  • Patent number: 8624317
    Abstract: Nonvolatile semiconductor memory device includes first memory cell array layer, first insulating layer formed thereabove, and second memory cell array layer formed thereabove. First memory cell array layer includes first NAND cell units each including plural first memory cells. The first memory cell includes first semiconductor layer, first gate insulating film formed thereabove, and first charge accumulation layer formed thereabove. The second memory cell array layer includes second NAND cell units each including plural second memory cells. The second memory cell includes second charge accumulation layer, second gate insulating film formed thereabove, and second semiconductor layer formed thereabove. Control gates are formed, via an inter-gate insulating film, on first-direction both sides of the first and second charge accumulation layers positioned the latter above the former via the first insulating layer. The control gates extend in a second direction perpendicular to the first direction.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: January 7, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Fumitaka Arai, Satoshi Nagashima, Hisataka Meguro, Hideto Takekida, Kenta Yamada
  • Publication number: 20130334587
    Abstract: High-density semiconductor memory utilizing metal control gate structures and air gap electrical isolation between discrete devices in these types of structures are provided. During gate formation and definition, etching the metal control gate layer(s) is separated from etching the charge storage layer to form protective sidewall spacers along the vertical sidewalls of the metal control gate layer(s). The sidewall spacers encapsulate the metal control gate layer(s) while etching the charge storage material to avoid contamination of the charge storage and tunnel dielectric materials. Electrical isolation is provided, at least in part, by air gaps that are formed in the row direction and/or air gaps that are formed in the column direction.
    Type: Application
    Filed: July 22, 2013
    Publication date: December 19, 2013
    Applicant: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, Tuan Pham, Hiroyuki Kinoshita, Yuan Zhang, Henry Chin, James K. Kai, Takashi W. Orimoto, George Matamis, Henry Chien
  • Patent number: 8610197
    Abstract: Provided is a nonvolatile memory 10 having a selective gate SG formed below a silicon layer 14, which is to be a channel region formed between a source region S and a drain region D of a transistor, through a gate insulating film 15 between the silicon layer and the selective gate, a floating gate FG formed on a part over the silicon layer 14 through a gate insulating film 16, and a control gate CG connected to the floating gate FG. The selective gate SG has one end overlapping the source region S through the gate insulating film 15, and the floating gate FG has one end overlapping the drain region D through the gate insulating film 16, and the other end separated from the source region S and overlapping the silicon layer 14 through the gate insulating film 16. Thus, a nonvolatile memory whose performance is not deteriorated even when it is formed on an insulating substrate having a low heat dissipating characteristic can be achieved.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: December 17, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Naoki Ueda, Yoshimitsu Yamauchi
  • Patent number: 8610193
    Abstract: Some embodiments include methods of forming semiconductor constructions. Alternating layers of n-type doped material and p-type doped material may be formed. The alternating layers may be patterned into a plurality of vertical columns that are spaced from one another by openings. The openings may be lined with tunnel dielectric, charge-storage material and blocking dielectric. Alternating layers of insulative material and conductive control gate material may be formed within the lined openings. Some embodiments include methods of forming NAND unit cells. Columns of alternating n-type material and p-type material may be formed. The columns may be lined with a layer of tunnel dielectric, a layer of charge-storage material, and a layer of blocking dielectric. Alternating layers of insulative material and conductive control gate material may be formed between the lined columns. Some embodiments include semiconductor constructions, and some embodiments include NAND unit cells.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: December 17, 2013
    Assignee: Micron Technology Inc.
    Inventor: D. V. Nirmal Ramaswamy
  • Publication number: 20130325372
    Abstract: A semiconductor device includes a first SSAD unit and a second SSAD unit. The first SSAD unit has at least one first transistor with a first dielectric layer between a first substrate and a first floating gate. The second SSAD unit has at least one second transistor with a second dielectric layer between a second substrate and a second floating gate. The second dielectric layer is thicker than the first dielectric layer.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Applicant: PHISON ELECTRONICS CORP.
    Inventor: Hiroshi Watanabe
  • Publication number: 20130313625
    Abstract: A semiconductor device includes a semiconductor substrate and at least a first gate structure disposed on the semiconductor substrate. Furthermore, a spacer only disposed at a side of the first gate structure, and a material of the spacer does not comprise nitride.
    Type: Application
    Filed: May 28, 2012
    Publication date: November 28, 2013
    Inventor: Ching-Hung Kao
  • Patent number: 8592272
    Abstract: A method of manufacturing a non-volatile semiconductor memory device of an embodiment includes: forming, on a semiconductor substrate, an element isolation region to be filled with a first insulating film; forming memory cell gate electrodes on element regions; etching the first insulating film so that the first insulating film remains in the element isolation region of a region in which a select gate electrode is to be formed; forming a second insulating film on the memory cell gate electrodes so that an air gap is created between the memory cell gate electrodes; forming two select gate electrodes; forming carbon side walls on the select gate electrodes; implanting ions of an impurity between the two select gate electrodes with the side walls as a mask; and removing the carbon side walls.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: November 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Koichi Matsuno
  • Publication number: 20130307050
    Abstract: A nonvolatile memory device includes: a channel layer protruding perpendicular to a surface of a substrate; a tunnel insulation layer formed on a surface of the channel layer; a stack structure, in which a plurality of floating gate electrodes and a plurality of control gate electrodes are alternately formed along the channel layer; and a charge blocking layer interposed between each floating gate electrode, of the plurality of floating gate electrodes, and each control gate electrode of the plurality of control gate electrodes, wherein the floating gate electrode includes a first floating gate electrode between two control gate electrodes and a second floating gate electrode positioned in the lowermost and uppermost parts of the stack structure and having a smaller width in a direction parallel to the substrate than the first floating gate electrode.
    Type: Application
    Filed: September 10, 2012
    Publication date: November 21, 2013
    Inventors: Young-Soo AHN, Jeong-Seob OH
  • Publication number: 20130307049
    Abstract: A method of fabricating a semiconductor device includes the following steps. At first, a semiconductor substrate is provided. A gate stack layer is formed on the semiconductor substrate, and the gate stack layer further includes a cap layer disposed thereon. Furthermore, two first spacers surrounding sidewalls of the gate stack layer is further formed. Subsequently, the cap layer is removed, and two second spacers are formed on a part of the gate stack layer. Afterwards, a part of the first spacers and the gate stack layer not overlapped with the two second spacers are removed to form two gate stack structures.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Inventor: Ping-Chia Shih
  • Patent number: 8587036
    Abstract: A non-volatile memory is formed on a substrate. The non-volatile memory includes an isolation structure, a floating gate, and a gate dielectric layer. The isolation structure is disposed in the substrate to define an active area. The floating gate is disposed on the substrate and crosses over the active area. The gate dielectric layer is disposed between the floating gate and the substrate. The floating gate includes a first region and a second region. An energy band of the second region is lower than an energy band of the first region, so that charges stored in the floating gate are away from an overlap region of the floating gate and the gate dielectric layer.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: November 19, 2013
    Assignee: eMemory Technology Inc.
    Inventors: Shih-Chen Wang, Wen-Hao Ching
  • Patent number: 8587052
    Abstract: One example embodiment of a semiconductor device includes a memory cell array formed on a substrate. The memory cell array includes a gate stack including alternating conductive and insulating layers. A first lower conductive layer in the gate stack has a portion disposed below a first upper conductive layer in the gate stack, and a first contact area of the first lower conductive layer is disposed higher than a second contact area of the first upper conductive layer. The semiconductor device further includes first and second contact plugs extending into the gate stack to contact the first and second contact areas, respectively.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: November 19, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jang-Gn Yun, Kwang-Soo Seol, Jungdal Choi
  • Patent number: 8581342
    Abstract: A semiconductor device with a field electrode and method. One embodiment provides a controllable semiconductor device including a control electrode for controlling the semiconductor device and a field electrode. The field electrode includes a number of longish segments which extend in a first lateral direction and which run substantially parallel to one another. The control electrode includes a number of longish segments extending in a second lateral direction and running substantially parallel to one another, wherein the first lateral direction is different from the second lateral direction.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: November 12, 2013
    Assignee: Infineon Technologies Austria AG
    Inventor: Oliver Haeberlen
  • Patent number: 8581328
    Abstract: In a semiconductor memory device having split-gate MONOS memory cells, disturb resistance during writing by a SSI method is improved. In addition, with an improvement in the disturb resistance of a non-selected memory cell, a reduction in the area occupied by a memory module can be achieved. Over a side surface of a memory gate electrode, a first insulating film is formed between a charge storage film and a second insulating film so that the total thickness of the first and second insulating films over the side surface of the memory gate electrode is larger than the thickness of the second insulating film under the memory gate electrode.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: November 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Yutaka Okuyama
  • Patent number: 8575682
    Abstract: Provided are three-dimensional semiconductor memory devices and methods of forming the same. The device includes a substrate, conductive patterns stacked on the substrate, and an active pattern penetrating the conductive patterns to be connected to the substrate. The active pattern may include a first doped region provided in an upper portion of the active pattern, and a diffusion-resistant doped region overlapped with at least a portion of the first doped region. The diffusion-resistant doped region may be a region doped with carbon.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: November 5, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bio Kim, Kihyun Hwang, Jaeyoung Ahn, SeungHyun Lim, Dongwoo Kim